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Enhanced plasmon anomaly in the dynamical conductivity of heterostructures with large spacer
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We calculate the frequency-dependent scattering rate M"(co), which determines the dynamical
conductivity of a disordered two-dimensional electron gas. The existence of plasmons in an in-

teracting electron gas gives rise to a strongly frequency-dependent scattering rate. For
Al„Ga& „As/GaAs heterostructures with large spacer width a, we get an analytical result for the
scattering rate: M"( to)=M"(0)[1+Aicoi'exp( —Bto2)]. The coefficients A and B depend on the
Fermi wave number kF, the effective Bohr radius a *, and a. M"{co) peaks at
coo EF(5a*/a)' /(kFa ), where cF is the Fermi energy. The high-frequency scattering rate is also
calculated: M"(co))2cF) (&M"(0). We predict a maximum linewidth for plasmons with wave

number qo =5/(4a). The relevance of our theory to anomalies found in cyclotron-resonance experi-
ments is discussed.

I. INTRODUCTION

Two-dimensional electron systems can be used to study
interacting electrons at low temperatures (for a review,
see Ref. I}. Strong anomalies have been found in
cyclotron-resonance experiments in silicon metal-oxide-
semiconductor (MOS) structures. It was claimed that
novel phenomena have been observed in experiments on
the dynamical conductivity of two-dimensional electrons
at finite magnetic field. A Wigner crystal was discussed
in connection with data on silicon MOS structures. Ex-
citon physics has been related to some experimental re-
sults on Al„Ga& „As/GaAs heterostructures. In this
paper, I will present arguments which bring into question
the theoretical interpretation of the experimental data as
given in Refs. 3 and 5.

Plasmon-density excitations are the most important
concept of the long-range Coulomb repulsion of interact-
ing electrons. Anomalous linewidths and energy shifts
of plasmons in silicon MOS structures have been report-
ed. An anomalous enhancement of the dynamical con-
ductivity at finite frequency in the same structure was in-
terpreted as a result of plasmon dynamics. Theoretical
studies of the dynamical conductivity for disordered in-
teracting electrons in silicon MOS structures showed that
the scattering rate is strongly frequency dependent. The
anomalies found in plasmon-resonance experiments have
been explained by this frequency-dependent scattering
time. '

The existence of plasmons in an interacting-electron
gas enhances the density of final states for the decay rate
of the current. Therefore, the frequency-dependent
current relaxation rate is enhanced in comparison to the
static value. In silicon MOS structures with impurities at
the Si/Si02 interface the enhancement factor is about
3. ' In the calculations of the dynamical conductivity
of A1 Ga, „As/GaAs heterostructures with a spacer
width a = 150 A the enhancement factor was about 5."

The theoretical results on silicon MOS structures '
and Al„Ga, „As/GaAs heterostructures" were given as

numerical results. Therefore, it is dimcult for experimen-
talists to compare quantitatively with the theory In t.his

paper, I present analytical results for Al„Ga, „As/GaAs
heterostructures with large spacer widths. Plasmons in

Al„Ga, „As/GaAs heterostructures have been studied

recently. ' 's I shall argue that the frequency-dependent
scattering time is most easily studied by plasmon-
resonance experiments. I propose some experiments to
test the theoretical predictions of my theory. Further-
more, I analyze some experimental results found for the
cyclotron resonance in these structures ' by neglecting
the effects of the magnetic field on the scattering rate.
The agreement between theory and experiments is
surprisingly good.

The paper is organized as follows. In Sec. II the model
and the theory are described. The results for large spacer
are presented in Sec. III. Finite-width effects of the dop-
ing and the electron gas are calculated in Sec. IV. Other
scattering mechanisms are discussed in Sec. V. The ap-
plication to the plasmon resonance and the cyclotron res-
onance is presented in Sec. VI. The discussion of the re-
sults is given in Sec. VII. I compare my results with ex-
perimental results in Sec. VIII. The conclusion is in Sec.
IX.

II. MODEL AND THEORY

A. Model

I consider a two-dimensional interacting-electron gas
disordered by a sheet of charged impurities with impurity
density N;. The impurities are separated from the elec-
tron gas by a spacer of width a. The width of the doping
layer is 5. 1/b is the extension parameter of the electron
gas perpendicular to the Al„Ga& „As/GaAs interface.
The Fourier transform of the random potential
( i U(q}i ) is written as"

2
1

—2&5
2

(iU(q)i )=&,
eL q 2q5 (I+q/b)6

(la)
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ei is the background dielectric constant and q the wave

number. The extension parameter b is expressed in terms
of the electron density X and the depletion density XD.
For Al„Ga, „As/GaAs heterostructures one finds'

ba'=3. 73[N(a*) +32ND(a') /ll]' (lb)

0a' is the effective Bohr radius: a'= eL))1 /me 1—00 A.
m =0.067m, is the electron mass in the lattice. m, is the
vacuum electron mass. In the following, I use )rt= 1 un-

less specified otherwise. As mentioned before, the main
result of the long-range Coulomb interaction is the ex-
istence of a plasmon branch with plasmon dispersion

coFp(q):

P (q, co+i0)=ct)'(q, co)+ict)"(q, co) is the density-density
correlation function in the plasmon-pole approximation.
Explicitly one gets

and

—cogi(q)
(t)' (q, co ) =

co coFp(q)
(7a)

1 &Lq
g, (q)=

I'(q) 2n.e2
(8)

ct)"(q,co)= ,'~gr(-q)[5(co co p—(q))+5(co+coFp(q))] . (7b)

gr(q) is the compressibility of the interacting-electron
gas. I use gz(q) for small q given by

EF
co p(q) =4g„(qa'),

kFa
(2) V(q) is the electron-electron interaction potential.

where g„ is the valley degeneracy, cF is the Fermi energy,
and kF is the Fermi wave number. Equation (2) describes

the plasrnon dispersion for small q. For large q, addition-
al terms must be taken into account, ' see Sec. UII A.

B. Theory

C. The high-frequency conductivity

In Eq. (5), I neglected the frequency dependence of the
particle-hole decay channel. However, for very large fre-
quencies the inverse scattering time is determined by the
frequency dependence of the particle-hole channel and is
expressed as

I calculate the dynamical conductivity for zero temper-
ature. The disorder in the system gives rise to a finite
conductivity. I express the dynamical conductivity cr(z)
for complex frequency z as'

¹ i
cT(z) =

m z+M(z)
(3)

M(co+iO) =M'(co)+iM "(co) . (4)

M(z) is the current relaxation kernel with a real (reac-
tive) part and an imaginary (dissipative) part,

M" (co »2sF) = f ""q q'&
I U(q)12)(t)I)'(q co)

4mNm 0

(9)

(I()p ( q co ) is the density-density correlation function of
the non-interacting-electron gas. PI)'(q, co) is finite for

q) (q (q2 with q) =(kF+2mco)' kF and q2—=(kF
+2mco)'/ +kF. For the calculation of the q integral in

Eq. (9), I use

1/ M"( co)= r( co) is the frequency-dependent relaxation
time.

The main reason for the frequency dependence of the
current relaxation kernel is the decay of current modes
into plasmon modes. The other decay channel, the decay
of current modes into particle-hole excitations, is weakly
frequency dependent for co (2sF. The high-frequency ex-

pression is specified later. Therefore, I rewrite Eq. (4) as

f dq qd, (qru) d, (q",», (f=d"q q",

and with the f-sum rule, I get for q
'

(q
q' )2 2EF

=co 1+
2m N

(loa)

(lob)

M(co+iO) =MF'(co)+i [M"(0)+MF"(co)),
The explicit calculation of ()I(p'(q', co) for co »2EF gives

and p indicates the plasmon channel. Following previous
work, I write

MF'(co )

M "(co)

(tF (q, co)

dqq Uq X' With Eqs. (1) and (9)—(11), I get for remote impurity dop-
ing

N; CF
M "(co»2EF ) =4g, eF

(a kF)(5kF)

3/2
2kF a(»(lc& )

— —2kFs{c»/cF )
) /2 1

[1+(co/sF )' kF /b]
(12)
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Equation (12) clearly shows that the large-q behavior of
the random potential determines the high-frequency
dependence of the scattering rate of the electron-hole
channel.

III. RESULTS FOR 5=0 AND 1/b =0

In this section, I discuss the random potential with
5=0 and 1/b =0. Detailed analytical results are derived.

A. The scattering rate

In the following, I present the analytical results for
Mz(co) and M"(co) and discuss the relevant frequency
scales which define the structures seen in M'(co) and
M"(co). The magnitude of M'(co) and M"(co) is defined

by the relaxation rate for zero frequency M"(co=0), ex-
pressed as' '

1 a
Np ~F, 5fvkFa* ' a

1/2 ' ' 1/2
57M

eL 2a (16)

=3.60 g„"a* (17a)

The enhancement factor in Fig. 1 is about 10, which is
much larger than the enhancement found in silicon MOS
systems. 9 The real part of M(co) at coo is expressed as

' 1/2

Due to the plasmon dynamics, the scattering rate is
strongly enhanced for finite frequency. The enhancement
factor at Np is written as

' 1/2

Mz'(coo)/M"(co=0) =n. g„4 e"24a*
1/2

M"(co =0)= eF g„N (2kFa)

With Eqs. (1), (2), (6)—(8), and (13), I get
' 1/2

(13)

M'(coo)/M"(co=0) = —0.29 g„ a' (17b)

The width of the maximum of M"(co) is estimated by
the frequencies co, 2, which are defined by d M" /d2co=0,
and given by

M'(Q ) =M"(co =0) 2g„"a co) 2=coo[[11+(41)' ]/10I
' (18a)

XQ[1+Q —Q Ei(Q )e ] (14a)
Explicitly, I get N1=0. 68Np and N2=1 ~ 32Np. The width
of the resonance is defined as

and
' 1/2

N2
—N1=0. 64Np . (18b)

M"(Q) =M"(co=0) 1+@ 2g„'a' /Q/5e
—n

(14b)

Ei(x) is the exponential-integral function. 2O In Eq. (14), I
introduced a normalized frequency Q, defined as

' 1/2

0= N 1 aa kF
F 2gU

N* =0.97Np,

N —0.63Np,

(19a)

(19b)

Np, N1, and N2 are indicated in Fig. 1.
M'(co) versus co is shown in Fig. 2 for the same parame-

ters as for Fig. 1. M'(co) changes sign at co', where
M'(co')=0. M'(co) shows a maximum at co and a
minimum at co+. Using Eq. (14a), I obtain the following
numerical values:

M"(co) versus co is shown in Fig. 1 for N =1.5X10"
cm and a =750 A. A pronounced maximum

—2

(dM" /dco=O) is found for co=coo. From Eq. (14b), one
gets )0 54 3
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FIG. 1. M"(co) vs frequency co for %=1.5X10" cm and
a =750 A according to Eq. (14b). coo, co&, and co~ are discussed in
the text, see Eqs. (16) and (18a). eF if the Fermi energy. v is the
Landau filling factor defined by v=2cF /~ (g„=1).

FIG. 2. M'(co) vs frequency co for N=1.5X10" cm and
0a=750 A according to Eq. (14a). co, co+, and co are discussed

in the text, see Eq. (19). eF is the Fermi energy. vis the Landau
filling factor defined by v=2m~/co (g, = 1).
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co+ = 1.43@op,

which lead to

M'(co )/M"(co=0)=+1.84 g„'a*

and

M'(c0+)/M"(c0=0) = —2.44 g„
a

'a'
The range of M'(c0) is expressed as

' 1/2

' 1/2

(19c)

(20a)

(20b)

' 1/2

C. The electron-hole contribution to the conductivity

M"(co » 2ez ) =64g„M"(0)(kza ) a*

2
E,F

X exp[ —(20g„a/a" )' (cue~/c013)' ] .

(24}

With Eq. (12), one gets for 5=1/b =0 the relaxation
rate for large frequencies due to the particle-hole decay
channel:

[M'(co )
—M'(co+)]/M"(co=0) =4.28 g„"a'

(21)

Comparing Eq. (17a) with Eq. (21), I remark that the
variations of M'(co) and M"(co }are of same order of mag-
nitude.

B. The plasmon anomaly in the conductivity

In the case of o3»~M'(co)~, M"(co) (for small N;) the
dynamical conductivity can be written as o'(c0)
=Ne M"(co)/(me@ ) and the frequency dependence of
the conductivity is determined by M"(co). Then one ex-
pects two peaks for the frequency-dependent conductivi-
ty: The first peak at co=0 is the Drude peak of Lorentz
form with width M"(co=0). The second peak at
co=coo =coo( —', )'/ is non-Lorentzian and much broader
than the peak at co =0. For a =cop, I get

Ni ]. a*
cr'(c0o )=

h 6g„N 2k~a a 1+2.73 g,

' 1/2

(22)

The peak conductivity at cop depends on a, N;, and N.
For the parameters used in Figs. 1 and 2, one gets
ez =5.4 meV and M"(c0=0)= 1.7 X 10 meV.

For small; but finite c0 [M'(co), M"(co) «co«o3o], I
get with Eq. (14} M'(co) ~ coM"(0) and M"(co)
=M"(0}[1+0(co)]. The conductivity is written as
cr''(c0)=Ne M"(0)/(m c0 ) with an effective mass m

given by

Equation (24) clearly demonstrates that for large frequen-
cies the particle-hole channel gives a larger scattering
rate than the plasmon channel with Mz'(co)
~ ~co~ exp( Bco }.—The conductivity for high frequencies
follows the law cr(co»2e~) ~exp[ —2k~a(o3/e~)' ]/c0 .

IV. RESULTS FOR 1/b & 0 AND 5 & 0

In this section, I discuss the random potential with
1/b & 0 and 5 & 0. Only results for M"(c0) are given.

A. Finite width of the electron gas

In my calculations in Sec. III, I neglected the finite-
extension effects of the electron gas perpendicular to the
interface [described by the extension parameter 1/b (Ref.
1)]. With Eq. (1) (but 5=0), one gets

M"(Q, b) ~ ~Q~5e
(1+Q /2ab)

(25)

It is easy to derive the frequency coo(b) where M"(co) has
a maximum:

o3 (b)=co 1— 3

2ab
for ab »1 (27a)

o3 (b) —
o3 (

7 )1/2[( 1 + 13/ ab + 16 a2b 2)1/2 1 4ab]1/2o io 49 49 7

(26)

Asymptotic expressions are given by

M (0)
Fa

m CF

N;~ l+ (23)
g„N (2k,a}2

and

cL3o(b)=coo( ,'ab)' =2e.z—,( —,'g„a'b)' for a=O .1/2

kFa
We shall see in Sec. IV that the mass renormalization due
to reactive effects is also an important concept for
plasmon-resonance and cyclotron-resonance experiments. For a=0, I get

(27b)

(1+2k~/b)
M"(Q, b)=M"(o3=0, b) 1+ (k+c3') (1+g„k~c3 )

32g
"

E (1+Q /2ab)
(28a)
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and21

1M"(co =0, b )= eF
g, N (I+g,kFa') (1+2kF lb)

and

coo(b)=2sF „ (1.22g„a "b)' for a=O .
1

k~a ' (30b)

MF"(ci)o(b))/M "(co=0, b) =0.053
kFa
' S/2

X

6
2kF

1+

For kFa *« 1, one finds with Eqs. (27b) and (28)
1/2

(28b)

(29)

By comparing Eq. (27a) with Eq. (30a}, one finds that the
finite-width effects of the electron-electron interaction
compensate in part for the width effects of the electron-
impurity interaction. Equation (30) should be helpful for
silicon MOS structures because one expects that most of
the impurities are located at or near the Si/SiOz interface
(a=0}. However, my analytical results for a=0 [Eqs.
(28) and (29)] are not as accurate as the results for
a/a' »1 [Eqs. (14b) and (17a)] because I neglected the
width effects on the electron-electron interaction poten-
tial in order to get transparent analytical results.

The enhancement factor depends on the electron density
via kF and increases for decreasing ¹ However, for
small electron densities multiple-scattering effects (which
lead to a reduction of the enhancement} become impor-
tant, see Refs. 9 and 10.

In Fig. 3, I plotted coo(b) versus a according to Eq. (26)
for N=1.5X10" cm and ND=5X10' cm . The
finite-extension effects reduce the frequency where
M"(co) has a maximum. But for a/a*& 1, the correc-
tions due to the finite-extension effects are small, see Eq.
(27a).

For the derivation of Eqs. (25)—(29), I have neglected
the finite-extension effects on the electron-electron in-
teraction potential which enter Eq. (8}. Neglecting the
image potential, the electron-electron interaction poten-
tial is expressed as

V(q)=2rre F(q)/(FLq)

and

F(q)=[1+9q/(8b)+3q /(8b )]/(1+q/b)
=1—15q/(8b)+O(q )

is the form factor for the finite width. If I include the
finite-width effects of the electron-electron interaction
and the electron-impurity interaction for the calculation
of the maximum of M "(ru), I get the following asymptot-
ic expressions:

(31)

One derives the following asymptotic expressions:

coo(5)=run 1 — +O(5 ) for 5/a «1 (32a)

and

coo(5)=run( —,
')' for 1/5=0 . (32b)

In Fig. 4, I show coo(5) versus 5. A finite doping width
reduces the frequency coo where M"(co) has a maximum.

For 5 & a, it is favorable to introduce a three-
dimensional doping density Ns=N;/5. The inverse re-
laxation time for zero frequency and large spacer width is

expressed as

1 N& 1 1M"(co=0, 5)=sF 1—
4g NkF (2kFa) (1+5/a)

(33)

and the enhancement factor is given by
' 1/2

B. Finite width of doping

In Sec. III, the finite width 5 of the remote doping was
set to 5=0. With Eq. (1) (but with 1/b =0), one gets for
5)0

33
coo(b) =rdo 1

32ab
for ab))1 (30a)

M"(coo(1/5=0) )/M"(co=0, 1/5=0) =3.64 g„'a*
(34}

3—
'VJ

2O

I

2
g/a

~~ ~ ~ ~ ~ ~ ~)—2
4

Comparing Eq. (17a) with Eq. (34), I conclude that a
finite doping width only slightly changes the enhance-
ment factor. However, coo(5) depends on 5, see Fig. 4.

C. High-frequency conductivity

For 1/b =0 and 1/5=0 one derives with Eq. (12)
2

M"(ro»2eF)=64g, M"(co=0, 1/5=0)
a

FIG. 3. duo(b) vs a for N=1.5X10"cm and ND=5X10'
cm according to Eq. (26). The dotted line corresponds to
lib =0, see Eq. (16). v is the Landau filling factor defined by
v= 2FF /Np( b) (g = 1 ).

X

' 3/2

exp —2k~a
CF

' 1/2

(35)
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t.0
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FIG. 4. coo(5) vs 5 calculated with Eq. (31). coo is given in Eq.
(16).

roughness scattering was discussed in Ref. 10. Homo-
geneous background doping was considered in Ref. 22.

B. Interface-roughness scattering

The random potential for interface-roughness scatter-
ing is written as'

( ~ U(q)
~

) =rc[2g„b,AeF(1+21VD/1V)/a '] e

(38)

and M(co=0, 1/5=0) is given in Eq. (33). The high-
frequency conductivity is expressed as cr(co »2eF )
~ exp[ —2kFa(co/s~)' ]/co'

For a=0 and 5=0, one gets

¹ 1 cF
M"(co)&2eF)=8g„eF, z& (a'kF)' co

and A and 6 are the length parameters of the roughness.
One gets for a long-range interface-roughness scattering
(Ab »2 and A)&a'}

]/2 ' ' 9/2

M"(Q)=M"(co=0, A) 1+ g„
1 mA A

96 2a* a

X
1

[1+(co/e~ )' kF /b]
(36)

V. RESULTS FOR OTHER
SCATTERING MECHANISMS

The high-frequency conductivity follows the law
cr(co &)2e~) cc 1/co . Because of the low absolute value of
the conductivity at large frequencies, it will be very
difficult to measure the asymptotic laws given in Eqs. (35)
and (36).

X Q~9 n A /(16a )

and"
2

ND
M"(co=0, A) =3m' eF 1+2

N

I derive with Eq. (39a) for Ab »2 and A )&a '
' 1/2

coo(A) =2eF ~ eF1/2

Aa*k

and the enhancement factor is written as

(39a)

(39b)

(39c)

In this section, I calculate the effect of an additional
scattering mechanism on the enhancement factor and
present results for interface-roughness scattering.

M"(coo(A))/M"(co=0, A)=4. 37 g,
A
a*

1/2

(39d)

A. Enhancement factor

The conductivity of Al„Ga, „As/GaAs heterostruc-
tures with large spacer width is usually lower than ex-
pected theoretically. This is because additional scattering
mechanisms (scattering by background impurities,
interface-roughness scattering, and alloy-disorder scatter-
ing) are present.

For simplicity, let us assume that the additional
scattering mechanism has a negligible frequency depen-
dence in the frequency range co, & co & co, : M, (co)
=Mz(0). Then, the characteristic frequencies coo and co'

are determined by Mt(co). However, the enhancement
factor of the relaxation rate is reduced by the presence of
the second scattering mechanism, and the total inverse
scattering time is written as

M~", (co)/M", (0)
M "(co)= [M", (0)+M2 (0)] 1+

1+Mq'(0)/M t'(0)

(37)

The factor 1/[1+M2'(0)/M", (0)] in Eq. (37) describes
this reduction of the enhancement factor, compare with
Eq. (17a).

Of course, my assumption of a non-frequency-
dependent scattering time is somehow artificial. The fre-
quency dependence of the scattering time for interface-

' 1/2

coo(A) =2eF
kF

cccF for Ab &(2 . (40)

VI. PLASMON AND CYCLOTRON RESONANCE

In this section, I discuss the implications of the
frequency-dependent scattering time on plasmon-
excitation and cyclotron-resonance experiments. I
present results for 5=1/b =0.

A. Plasmon resonance

The Drude conductivity can be considered as a reso-
nance phenomenon with resonance frequency co~ =0 and
half-width at half maximum (HWHM) 2 =M "(0). The
high-frequency conductivity is small, and the peak in
M"(co) is difficult to measure in experiments. Grating
couplers ' ' make it possible to study plasmons in a
resonance experiment with resonance frequency
co„=co~o(q). It was shown before that in the presence of

The enhancement factor for long-range interface-
roughness scattering is similar to the enhancement factor
for long-range Coulomb scattering, compare Eq. (39d}
with Eq. (17a).

For short-range interface-roughness scattering, one
derives M "(co)~ ~co~ /( I+Czco ) with C2co~=Q2/(2ab)
and
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weak disorder the plasmon energy is shifted to
co~„=co~o—M'(co~0)/2 and the HWHM is given by
X&=M"(co&0)I2 .With co&„~ 1 /mal, I define a plasmon
mass m and get for M'(co 0),M "(co 0) « co o « ~o

' 2 ' 1/2m, k
M"(0) m

2 F
EF mm

and

X[1+2qa—4q a Ei(2qa)e ~ ]

1/2

(42a)

M"(co~0}=M"(co=0) 1+8m g„(qa)5 e 2/ex

(42b)

M'(co~0) and M"(co~o) describe the shift and the width of
the resonance, respectively. The peak structure in
M"(co) gives rise to a maximum linewidth of plasmons
with co~o=coo. With Eqs. (2), (14},and (16), I predict that
plasmons with wave number q =qp, and

qoa (43)

have maximum linewidth. For 1/b = 1/5 =0 and
a/a'&)1, I get qoa= —', . With Eq. (27b), I derive, for
a=5=0 and 1/b )0, qolb =—', . Because of the frequen-
cy dependence of M'(co), I expect the following relations
to hold: co „&co 0 (co „&co o) for co~0 & co' (co~0 & m' ).
The disorder-induced energy shift of the plasmon might
be interpreted as an effective plasmon mass, see Ref. 7.

B. Cyclotron resonance

For finite magnetic field the cyclotron frequency co, is
the resonance frequency and the high-frequency conduc-
tivity can be studied easily. However, the magnetic field
will also modify M'(co) and M"(co). I have successfully
analyzed' '" some experimental results on cyclotron-
resonance anomalies found in silicon MOS systems and
Al„Ga, „As/GaAs heterostructures under the assump-
tion that M'(co) and M"(co) are not modified by the mag-
netic field. ' With an argument which neglected quantum
effects, I estimated that this approximation should be
applicable for v))kFa'. " v=2mNI& is the filling factor
of the Landau levels, and lp is the magnetic length.

Again, as for plasmons, one expects a disorder-induced
shift of the resonance energy co„=co,—M'(co, ) and a
HWHM X, =M"(co, ). ' " I use co„~ 1/m, for the
definition of a effective cyclotron-resonance mass m, and

Equation (41) deinonstrates that for weak disorder the
plasmon mass is determined by M'(co) 0-A@M"(0). For a
non-frequency-dependent scattering rate, the plasmon
mass would be determined by M"(0} . However, my
results show explicitly that a non-frequency-dependent
scattering time and the concept of an interacting-electron
gas with plasmons is inconsistent. For strong disorder
M"(co}will also contribute to the plasmon mass.

For co =cozo, one gets with Eq. (14}
' 1/2

M'(co~0) =M"(co =0)2 g, qa

derive for M'(co, ),M"(co, ) « co, « coo

1/2M"(0)=1—k o.F
mam,

(44)

The peak structure in M"(cu) gives rise to a maximum
linewidth for co, =cop. This frequency corresponds to the
Landau filling factor vo (co, /ez =2g„/v) given by

1/2
8n.

Na *a (45)

The filling factor is indicated in Figs. 1 and 2, and the
linewidth maximum is found for v-2. 4.

VII. DISCUSSION

A. Range of validity

qL a'=2g, [(1+2kF/qL )' —1][1—G(qL )]F(qI ) .

(46)

G (q) describes local-field corrections. Plasmons as
defined in Eq. (2) are only well defined for
co&coL =co~0(q =qL ). If I assume that 2kF/ql &&1, I
find qI a =2g„(kFa lg„)' . With Eq. (2), I get

1/2 ~
' 1/6

CX kFa
3 1/2ML —

COp ~ gU ») ( —', ) coo .a'
Nv

(47)

From Eq. (47), I conclude that Landau damping can be
neglected for the description of the peak structure in
M"(ro).

The results for the electron-hole contribution represent
expansions for small and large frequencies. For large
spacer width, the plasmon contribution is much larger

For small wave numbers the plasmon dispersion co~(q}
is given by' " co~ (q) =co~o(q) [1+3qa ' l(8g„)—q /
(4g„kF)—15q/(8b)+0(q )]. In Eq. (2), I neglected the
higher-order terms and only took into account co 0(q).
Therefore, the validity conditions for Eq. (2) are
qa

' « 8g, /3, q /kF « 4g„, and q « 8b /15.
For a doping model with finite spacer only

0 & q & 1/2a are important for the q integral in Eq. (6) re-
sulting in the following validity conditions for Eq. (6):
a'/a «16g„/3 and kFa »8g„. For a=0, the range of
the q integral is determined by q &bl6, resulting in
ba' «16g„and kF/b &)1/(24g„) as the validity condi-
tions for Eq. (6).

The calculations are performed in the lowest order of
the electron-impurity coupling (-N;). Therefore, the
impurity density should be low so that multiple-
scattering effects can be neglected, see Refs. 9-11. I men-
tion that the static transport properties in the case of a
large spacer width are determined by a long-range ran-
dom potential. '

My calculation on the plasmon contribution to the
scattering rate is not restricted in the frequency range if
Landau damping (the decay of plasmons into electron-
hole excitations) is neglected. Landau damping becomes
possible for q ~ qL, and ql is expressed in
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than the electron-hole contribution to the scattering rate,
and it is sufficient to consider only the plasmon contribu-
tion.

The energy shift and the width of the plasmon have
been calculated within the hydrodynamic approximation
of the density-density relaxation function. This approxi-
mation is valid at the plasmon energy for q «g, /a'.
For q =qp =5/(4a), one gets a/a' »5/(4g„).

B. Relation to other work

In this paper, I have shown (by giving analytical re-
sults) that for a long-range random potential the plasmon
anomalies are strongly enhanced and the enhancement
factor is given by Mz'(cop)/M" (co=0)=3.60(g„a/a *)'~ .
The enhancement factor is nonanalytical in the spacer
width.

For a long-range random potential the scattering time
7, '=M"(co=0) is strongly enhanced due to the reduced
backscattering. ' Backscattering is less reduced for the
single-particle relaxation time ~„which determines the
density of states (the Green's function), and one expects
that 7, /7, »1, which was shown numerically in Refs. 24
and 2S. For 2k„a &)1, one can derive the analytical re-
sult:

M"(co,q) =M"(co=0, q)+Mt'(co, q) (50a)

with

enhancement factor of 0.3 was reported. The small
enhancement factor is presumably due to the high elec-
tron density used in Ref. 27.

A generalization of the previous work on plasmon dy-
namics " was proposed in Ref. 28 for 1/b =0. Nu-
merical results have been presented for a=0. There, a
wave-number-dependent current relaxation kernel
M(co, q) was introduced into the theory. A long time ago
it was shown that such a q dependence introduces an
artificial singularity into the conductivity at zero frequen-
cy for a non-interacting-electron gas in two dimensions
if a self-consistent calculation of M (co, q) is performed. It
is easy to see that an equivalent singularity is present for
an interacting-electron gas, and therefore the approach
given in Ref. 28 cannot be generalized to include
multiple-scattering effects. I want to stress that without
this generalization, the results given in Ref. 28 are identi-
cal to former results for two dimensions " and three
dimensions. ' '

If I take into account the q dependence of the current
relaxation kernel as in Ref. 28, I get the following analyti-
cal results for small q:

7, /7, =(21cFa) (48)

In Eq. (43), I predicted a maximum linewidth for
plasmons with qa= —,'. If one defines a plasmon scatter-
ing time 7& by I/[7&(co p)] =M "(co p), one gets for
qa= —,

' (co p=cop)
' 1/2

M"(co=0, q)=M"(co=0)[l+(qa) /4+0(q )], (50b)

M~"(co, q) =M&'( )col+ —,'(aq) 1 — +0 (q4)
S

30

7, /7~(cop) =1+3.60 g„
a

(49a)

and

(50c)

A similar result holds for long-range interface-roughness
scattering (replace a by A and 3.60 by 4.37). The
nonanalytical enhancement of the scattering rate seems
to be a general property of long-range random potentials.
For co~p &&cop (q &&qp), one finds

a
7( /7p(copp «cop) = 1+8m g„ a'

1/2

(qa )5i2 (49b)

The strong reduction of the plasmon scattering time
makes it very difficult to relate the linewidth for plasmons
(with co~p-cop) to the scattering time at zero frequency.
However, the analytical results given in this paper will
make it easy to compare my predictions with experimen-
tal results. The enhanced contribution of the plasmon
dynamics to the scattering rate for a long-range random
potential shows that for two-dimensional systems realistic
random potentials have to be used in the calculations to
get reliable results. Model calculations with a= 1/b =0
are of little relevance in connection to experiments. My
calculations also show that for a realistic random poten-
tial, simple analytical results can be derived.

The frequency-dependent scattering rate for impurities
at the interface (a=5=0) and for an ideally two-
dimensional electron gas ( I /b =0) was calculated in Ref.
27. Numerical results have been presented. A very small

M "(co)=M"(co=0)a 2g,

' 1/2

(50d)

see Eq. (14b). For co = co p, one gets

M~"(co~p, q)=M~"(co~p)[1 —
—,'aq(1 —

—,'aq)+0(q')] . (51)

In agreement with Ref. 28, I find that the essential q
dependence of M"(co~p, q) is due to M"(co p), see Eq.
(49b).

Reference 28 confirmed previous results (see Fig. 12 of
Ref. 10) on the density dependence of the ratio
7, /7~(cozp) In Ref. 28, . it was claimed that the ratio
7, /7~(co p) is nearly independent of a. This result is in
contradiction to the results presented in this paper, see
Eqs. (42) and (49). It was shown in Ref. 11 that even for
a & 0 the plasmon contribution for small frequencies is in-
dependent of a and given by M"(co)~co . M"(co=0)
depends strongly on a and 7, /7 (co~p) must depend
strongly on a, see Eq. (49b).

My results for the cyclotron-resonance anomalies
could be criticized because I neglected the magnetic field
dependence of the scattering rate. Due to the disorder
the Landau levels are broadened, and for low magnetic
fields the overlap of the Landau bands will result in a
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weak magnetic field dependence of the density of
states. ' In my theory, I have used the plasmon
dispersion instead of the magnetoplasmon dispersion:
co, (q)=(co, +co~)' . However, for large q and small

magnetic fields the magnetoplasmon dispersion can be
approximated by the plasmon dispersion. Small q have
only a small weight to the integral in Eq. (6), and there-
fore my approximation is presumably useful for small
magnetic fields. I neglected the magnetic field depen-
dence of the collective modes. Therefore, my theory is
certainly wrong for high magnetic fields. It is clear that
my theory cannot account for oscillations of the
linewidth with the filling factor of the Landau levels as
found in Refs. 34 and 35. In this case the filling-factor
dependence of the screening due to the oscillating density
of states ' is probably a better description.

The importance of disorder for the cyclotron
anomalies was pointed out long ago. The calculation in
Ref. 38 has been performed for a noninteracting electron
gas and can explain positive shifts of the cyclotron reso-
nance. I believe that for large disorder, the relevant
physics is included in the approach given in Ref. 38. Ap-
parently, ' this model cannot explain negative shifts of the
cyclotron resonance as seen in experiment.

Anyway, the comparison of theoretical results (where
approximations are always necessary} with experimental
results can give some hints as to which approximations
are tolerable. Therefore, I leave it up to the experimen-
talists whether they can use my results to understand
their experiments.

VIII. COMPARISON WITH EXPERIMENTS

In this section, I discuss some plasmon-excitation ex-
periments and compare some cyclotron-resonance experi-
ments with theory.

A. Plasmon-excitation experiments

In Sec. VI, I found that the plasmons with qa= —,
' (for

1/b =5=0) have maximal linewidth. The experimental
results for plasmon excitation by light' ' ' or via a grat-
ing coupler' ' indicate that qa= —,

' is achievable. In
Table I some typical parameters of the experiments (q)
and the used structures (a, 5) are given.

The largest q value achieved with a grating coupler was
reported in Ref. 15: q =2.0X10 cm '. However, in
Ref. 15, only a moderate enhancement factor of 0.5 for
q =1.0X10 cm ' was reported. This is probably due to
the small spacer width of this sample, see Eq. (49b). With
a similar structure but a larger spacer, the maximum

linewidth should be observable using the grating-coupler
technique.

An enhancement factor of 3 was reported in Ref. 39
and the reduced-plasmon scattering time was interpreted
as the single-particle relaxation time. This interpretation
is presumably wrong. The enhanced scattering rate
comes from the frequency dependence of M"(~) due to
plasmon dynamics. " In Ref. 39 a non-frequency-
dependent scattering rate was used for the interpretation
of the experiments, and consequently M'(co) =0 was used.
With Eq. (21},I conclude that the change of M'(co) is of
the same order as the change of M"(co). Therefore, I be-
lieve that for an enhancement factor of 3 for the scatter-
ing rate, as reported in Ref. 39, one should not neglect
M'(co).

Very large q values have been achieved in Raman spec-
troscopy experiments: q (6.8 X 10 cm '. However,
in Ref. 40 systematic results on the H%HM have not
been reported.

From the analysis of the experiments, I conclude that
with the presently available technology, one should ob-
serve the frequency-dependent scattering time and that
one could reach the maximum at qa= —,'. However, one
should use samples with a well-known scattering mecha-
nism (determinable from the density dependence of the
mobility) to get interpretable. results.

In the experiments on silicon MOS systems it was
found that co&„&co&0 (mz & m). I predict that for larger q
and for cleaner samples also co „&co o (m~ & m) could be
measured in experiment. This will happen for co 0) co*.
With Al„Ga, „As/GaAs heterostructures it is probably
easier to reduce the disorder and to reach the weak disor-
der limit.

B. Cyclotron-resonance experiments

In a very recent paper ' on cyclotron-resonance
anomalies in Al„Ga, „As/GaAs heterostructures it was
claimed that the cyclotron-resonance anomalies found in
silicon MOS systems are by common consent due to im-
perfections. I claim that there exists no consensus on the
origin of these anomalies, see Refs. 3—5. The argument
that the cyclotron-resonance anomalies are due to the
frequency-dependent scattering time (disorder) was origi-
nally put forward in Refs. 10 and 11 on the basis of a
comparison of experiments with theory. In the analyzed
experiments sodium ions have been drifted to the
Si02/Si interface, resulting in a well-defined scattering
mechanism. This is in contradiction to the claim in Ref.
41 that the disorder is unspecified in silicon MOS struc-
tures.

TABLE I. Typical parameters for plasmon-excitation experiments.

Ref.

12
14
15
39
40

Spacer a
{A)

100
50
35
50

200

Doping width 6
(A)

200
600
530
250
100

q
(cm ')

8X10
5 X10'

20X10'
15 X 10'
60X10'

qa

0.08
0.03
0.08
0.09
1.20

q(a+5)

0.24
0.33
1.14
0.38
1.80
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In recent cyclotron-resonance experiments on
Al„Gai „As/GaAs heterostructures ' ' similar
anomalies as in silicon MOS systems ' have been report-
ed. A maximum linewidth was found at a certain mag-
netic field (if the frequency-dependent conductivity is
measured) which corresponds to a certain cyclotron fre-
quency. The dependence of this maximum linewidth on
the electron density ' and on the spacer width' was
studied. I have compared coo which depends on N and a
[see Eq. (16)] with the experimental results, ' and I find
very good agreement, see Table II. The calculated
enhancement factors for the inverse scattering rate are
larger than found in experiment. This is probably due to
an additional scattering mechanism, see Eq. (37).

From Eq. (16), one could conclude that coo ~ (N/a)'
which is apparently in agreement with the experimental
results of Ref. 43. However, on ungated
AI„Ga, „As/GaAs heterostructures, one finds that
N o- 1/a. 4 From the theoretical results of Ref. 45 the
following relation can be derived:

0.6 for x =0.2
aa'N- 1.2 for x =0.3

1.8 for x =0.4 .
(52)

coo(b, 5)=neo(5) 1— 3

2ab
(53)

we get good agreement between theory and experiment,
see Fig. 5. For Fig. 5, I used aa'N =0.64. I guess that
the splitting of the line found in Ref. 43 is due to a
strongly frequency-dependent scattering rate for
co, —coo( b, 5 ) superimposed on a nearly frequency-
independent scattering rate. However, I mention that
also an inhomogeneous impurity distribution could give

With Eqs. (16) and (52) one now would conclude that
coo~X, which is in disagreement with the experimental
results. However, in the experiments the spacer width
in most samples was low (50 A&a&400 A) and the
width of the remote doping was large (5=500 A). If one
takes into account the width effects via

rise to a effective long-range potential and to a strongly
peaked frequency-dependent scattering time.

The relation between N and a as given in Eq. (52) is for
structures without a gate. If one uses Eqs. (45) and (52),
one gets

1.7 for x =0.2
0= '2. 5 for x =0.3

3.0 for x =0.4 .
(54)

Equation (54) might explain why in experiments with
ungated samples and x -0.25 often a maximum
linewidth of the cyclotron resonance near v-2 was re-
ported. It should be possible to test Eq. (54) in ex-
periment.

For very low filling factors (v&0. 5) a linewidth nar-
rowing is found in some cyclotron-resonance experi-
ments. ' Low filling factors correspond to high frequen-
cies, and my condition co&&2cF for the high-frequency
conductivity corresponds to v((g„. My results on the
high-frequency conductivity indicate that M" (cu

»2eF)/M"(co=0) «1. This result, if applied to the
cyclotron-resonance experiments, could be interpreted as
a linewidth narrowing. However, if for fixed magnetic
field the electron density is reduced (to get a lower filling
factor) one reaches the metal-insulator transition, " and
the linewidth should increase again. This increase is due
to multiple-scattering effects and cannot be described by
the present theory, see Refs. 9 and 10. A linewidth nar-
rowing and a following linewidth increase with decreas-
ing filling factor was observed in Ref. 49. I think that my
theory is best applied for the large-filling-factor regime
and my results on the high-frequency-dependent scatter-

ing rate should be applied only with large caution to the
cyclotron linewidth narrowing. But my calculation on
the high-frequency scattering rate shows that the relation
M"(co»2sF)/M"(to=0) «1 is not a surprising result,

but occurs already for zero magnetic field.
It is hard to believe that the good agreement between

my theory and the experimental results (see Table II and

Fig. 5) is accidental. For an explanation of the positive
and negative shifts of the cyclotron resonance, ' one2, 3, 16,43

TABLE II. Comparison of cop from theory (cop'""") and ex-

periments (cop'" ") for Al„Gal „As/GaAs heterostructures.
For coo""""we used Eq. (16). cooj

"~" is taken from experimental
results of Refs. 5 and 16.

100

80—

Ref.

16
16
16
16
16
16

Spacer a
(A)

500
500
500
500

750
750
800

1600
1600
3200

Density N
(cm ')

8X 10'
6.5x10"

5X10'
3.5X10'

1.5x 10"
8X 10'
8x 10"
6x10"

2.5x10"
5 x10"

(theor)
Ct)p

(cm ')

32
29
26
21

35
26
29
15
10
10

(expt)
COp

(cm ')

30
27
22
15

42
23
25
17

&12
&15

I

4

FIG. 5. cop vs electron density according to Eq. (53). The
dots are experimental results for the linewidth maximum from
Ref. 43.
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needs an M'(ro) which changes sign. For an non-
interacting-electron gas in zero magnetic field, one finds
that M'(to) &0 for all frequencies. ' The inclusion of the
plasmon dynamics give rise to a positive M' for co &co'.
Therefore, I believe that the collective modes in an
interacting-electron system are essential to understand
the cyclotron anomalies. The similarities between my
theory on M'(to} [and M"(ro)] and the experimental re-
sults on co, —co„(and the HWHM} (Refs. 3, 5, and 43}are
so striking that according to my opinion the interpreta-
tions of the experimental results in terms of a Wigner
crystal or of exciton physics is very questionable.

IX. CONCLUSION

The frequency-dependent scattering time of a disor-
dered interacting-electron gas in two dimensions has been
calculated. Analytical results for the plasmon contribu-
tion to the relaxation rate have been presented for
Al„Ga, „As/GaAs heterostructures with large spacer
width.

I have shown that the plasmon decay channel is the
dominant channel for the current decay for frequencies
co, (co(co2 and that for a large spacer width the contri-
bution of the plasmon channel to the scattering rate is
much larger than the contribution of the particle-hole
channel. The frequency-dependent scattering rate (dissi-
pative) implies a reactive part of the current relaxation
kernel, which is of the same order of magnitude as the
dissipative part. Therefore, the concept of plasmons for
the density excitation spectrum implies a frequency-

dependent current relaxation kernel for the dynamical
conductivity.

The frequency-dependent scattering time determines
the linewidth of plasmon excitations, and I predicted a
maximum linewidth near qa= —,

' (1/b =5=0). The com-
parison of my theory with cyclotron-resonance experi-
ments suggests that the cyclotron-resonance anomalies
found in experiments ' are due to a collective mode, and
the agreement between my theory (where magnetic field
effects on the scattering rate are neglected} and the exper-
iments is surprisingly good, see Table II and Fig. 5.

For high frequencies the electron-hole contribution to
the scattering is dominant. I showed that the frequency
dependence of the scattering rate strongly depends on the
large q dependence of the random potential and
M"(ro»2eF) «M"(co=0).

The presented analytical results depend on measurable
quantities of the two-dimensional electron gas (N, ND)
and the doping profile of the heterostructure (a, 5,N;).
My theory has predictive power and thus can be tested in
experiments. This fact could challenge some experimen-
talists.
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