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H. A. Fertig, Song He, and S. Das Sarma
Center for Theoretical Physics and Department ofPhysics and Astronomy, University ofMaryland,

College Park, Maryland 20742-4111
(Received 1 September 1989)

We investigate, using a microscopic perturbation theory, the effects of elastic scattering on reso-
nant tunneling in double-barrier quantum-well structures. Using a perturbation expansion in the
scattering strength, we calculate corrections to the average transmission matrix for low impurity
densities. For two- and three-dimensional structures in the absence of a magnetic field, the
Lorentzian line shape associated with tunneling events that conserve transverse momentum is
broadened asymmetrically by impurity scattering. There are also contributions to the tunneling
probability that do not conserve transverse momentum; for incident energy c )Eo, where Eo is the
resonant energy, this contribution is strongly peaked when the energy of motion perpendicular to
the well closely matches Eo. This leads to a "focusing" of electrons into a particular set of final
states. In the absence of a magnetic field, a striking spatial distribution in the tunneling probability
results. For the total tunneling current, our microscopic theory gives results consistent with a
Breit-Wigner-type formula for the impurity scattering induced broadening. For the case in which a
magnetic field is applied perpendicular to the well region, we find that the "focused" electrons tend
to scatter into Landau levels n such that c—(n + —,

'
)coo is as close as possible to Eo. We also find a

broadening of the usual Lorentzian contribution to the tunneling probability in the magnetic field

case and an upward shift in the resonant energy that varies logarithmically with magnetic field. Fi-
nally, we test our predictions numerically by calculating the exact transmission matrix for a finite
two-dimensional system; the results are in good qualitative agreement with the perturbation theory
analysis. Our numerical work also shows that for stronger disorder scattering, the conductance is a
direct measure of the density of states inside the well ~

I. INTRODUCTION

In recent years, there has been a great deal of interest
in resonant tunneling through double-barrier quantum-
well (DBQW) devices. Such structures exhibit negative
differential resistance, making them promising candidates
for device applications. ' With the improved quality of
samples available in the recent past, there has been an
ever increasing demand for a detailed understanding of
their I-V characteristics. Qualitatively, the behavior of
these structures has been understood for some time.
However, most studies of important perturbations such
as electron-phonon and electron-impurity interactions
have been phenomological in nature ' and, furthermore,
are explicitly calculations for one-dimensional systems.
This latter limitation makes detailed comparison with ex-
periment dificult even on a qualitative level. Recently, a
number of workers have considered microscopic models
that address in detail the effects of electron-phonon ' and
electron-electron interactions. These studies are also,
for the most part, limited to one-dimensional models. '

In this work, we will study two- and three-dimensional
microscopic models for the purpose of understanding the
effect of elastic scattering in the DBQW system. Some of
these results have been briefly reported elsewhere; in this
article, we will give details of our calculations as well as
the results of exact numerical calculations that support
our perturbative approach. We consider a model in
which a well region is weakly coupled to reservoirs on the

right and left. (Similar models have been used to study
resonant tunneling in one-dimensional systems. ' ) The
weak links represent the barrier regions of the DBQW
system, and in the absence of coupling to the reservoirs,
the energy spectrum for electrons in the well is taken to
have the form Eo+c.~~. Here, Eo is the resonant energy,
and sl represents the energy of inotion parallel to the
well region. We consider both two- and three-
dimensional samples in the absence of a magnetic field,
and a three-dimensional sample with a magnetic field ap-
plied perpendicular to the well region. Impurities in our
models are confined to the well region. In all cases, we
will be evaluating the transmission matrix T(a,p;s),
which is a generalization of the transmission coeScient
often studied in one-dimensional scattering problems.
Here, a and p represent quantum numbers associated
with motion parallel to the well region. In the absence of
a magnetic field, they are just momenta, (i.e., a=p;„,
p=p „,); in the presence of a magnetic field, they include
both a Landau-level index and a one-dimensional
momentum. The transmission matrix should be under-
stood as the probability that an electron with energy c, in-
itially on the left of the well region in state a tunnels
through the DBQW structure into a state p on the right.

In Sec. III of this work, we calculate, using perturba-
tion theory, the effect of a small density of impurities in
the well on the average transmission matrix ( T(a,p;c, ) ).
We find that ( T ) is most conveniently expressed as a
sum of terms, each of which enters at a specified order in
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FIG. 1. Diagrammatic expansion of ( T) to second order in

the impurity density.

the impurity density, and all of which are specified by di-
agrarns such as those shown in Fig. 1. Specifically, Fig.
1(a) is proportional to T' ', Fig. 1(b) to T"', and the sum
of Figs. 1(c)—1(f) will specify T' '. T" is thus the ith-
order contribution to the transmission matrix. We begin
by discussing our results for a sample in the absence of a
magnetic field. The lowest-order contribution, T' ', is
overwhelmingly the largest contribution to the tunneling
probability in the weak-scattering limit. We note that
T' ' contains only processes that conserve momentum
parallel to the well region. As a function of e, T' '(a, p; e)
turns out to have essentially the usual Lorentzian behav-
ior associated with resonant tunneling; however, there is
an increased linewidth and a small asymmetry introduced
by the self-energy correction due to impurity scattering.

More interesting than this are processes that allow the
transverse momentum to change. With p;„=—a and

p,„,—=p, the lowest-order contribution that allows this is
T"'(p;„,p, „t', e), Fig. 1(b). We will find that T"' is easily
evaluated and that it has a number of interesting proper-
ties. Most importantly, we find that for fixed p;„and c,
T' " is strongly peaked when e —p,„,/(2m ) =En. This
leads to a pronounced spatial distribution that may be de-
scribed as a focusing effect, since certain momentum
states p,„,are picked out as favored final states.

To illustrate the focusing effect more clearly, it is con-
venient to study a two-dimensional DBQW system. In
Fig. 2, we display as a function of p,„, the behavior of
T"'(p;„,p,„„e) for p,„=O and two values of e. For
the case c. & Eo, the electron "sprays" out into an
angular distribution of about 1 rad. For the case c. & Eo,
one finds two sharp peaks located at +00 satisfying
E —p /(2m) =e cos 8c=Eo. This unique double peaking
is a direct result of the combination of elastic scattering
and resonant tunneling.

The two-dimensional system is of further interest be-
cause one can eva1uate all the contributions to
T' '(p;„p,„„e) [Figs. 1(c)—1(f)] to see how higher-order
terms contribute to the transmission matrix. In Fig. 3,
we illustrate a typical example of T' ' for c)Eo; the elec-
tron is taken to be incident from the second quadrant in
the inset of Fig. 2. The basic double-peak structure is
the same as that of T"'. However, we see the 00& 0 peak
is larger than the 00&0 peak. This behavior is related to
weak localization, as will be explained in Sec. III.
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FIG. 2. First-order correction to transmission matrix
T'"(p,„,p,„„'c) as a function of exit angle 8, for a two-
dimensional system, with p;„=0. Energy scale is set by ED=1,
and we take ID=0.1. Disorder parameter a&=0.2, and (a)
c=0.9 and (b) c, = 1.1. Inset: geometry specifying
H=arctan(p, „,/k, ), where k, =(2m' —p,„,)'

We have also examined a three-dimensional DBQW
model in which a magnetic field is applied perpendicular
to the well region. In this case, working in the Landau
gauge, the electron states are characterized by transverse
quantum numbers n and p, where n is a Landau-level in-
dex and p is a one-dimensional momentum. The analysis
in this case is considerably more complicated than in the
absence of a magnetic field, and so we restrict our calcu-
lations to lowest nontrivial order in the impurity density.
As in the nonmagnetic field case, the lowest-order contri-
bution to the transmission matrix conserves the trans-
verse quantum numbers [i.e., T'o'(a, p;e)~5,&]. As a
function of c., T' ' is nearly Lorentzian, with a small
broadening due to the self-energy correction. We also
find that the real part of the self-energy introduces a
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FIG. 3. Second-order correction to transmission matrix
T '(p;„,p,„„c)as a function of 0. ED=1, I O=0.1, a&=0.2,
c= 1.1 and c.~~ =0.5. Exit angle 8 is defined as in Fig. 2.
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small increase in the resonant energy that varies logarith-
mically with magnetic field.

In addition to T' ', there are also processes contribut-
ing to the average transmission matrix which do not con-
serve the transverse quantum numbers. To the lowest
nontrivial order, these are described by Fig. 1(b), and as
usual are denoted by T"'(a,P;s). We find that T'" is
only significant if the final momentum p& is within a few
magnetic lengths of the initial momentum, p . It is use-
ful to sum over final momentum states and consider the
distribution of final Landau indices for the tunneling elec-
tron. For fixed incident Landau index n and energy c,,
we find that T'" is maximized when s (n—&+ ,' )co,—isas
close as possible to Eo, where co, =eBlmc is the cyclo-
tron frequency. This is the analog of the focusing effect
we found for the nonmagnetic field case.

To check the validity of the perturbation theory
analysis, we have evaluated numerically the exact
transmission matrix for a two-dimensional tight-binding
model. We find good qualitative agreement between the
perturbation-theory results and the exact results for a
finite system if we average over several impurity realiza-
tions. The largest contribution to the tunneling probabil-
ity comes from the conserved momentum channel; at a
much smaller amplitude, one finds transmission into oth-
er momentum states, with a distribution that has a
double-peak structure very similar to that shown in Fig.
2. Furthermore, one can discern that the backscattering
peak indeed has slightly more weight than the
"forward"-scattering peak, as we found in the
perturbation-theory analysis. We remind the reader that
in this context, forward scattering and backscattering
refer only to the directions of the two peaks relative to
the incident momentum, and are not specified by

Pou~
=+PIn

The main difference between our perturbation theory
results and the exact finite-size results is that the finite-
size system has fluctuations superimposed on the double-
peak structure. These fluctuations smooth out as one
averages over a large number of impurity realizations.
For a single realization, the fluctuations are quite strong,

I

and the transmission matrix T may drop to zero many
times as a function of the exit angle L9. However, these
fluctuations are contained within an envelope function
that has the double-peak structure expected for the aver-
age transmission matrix. Thus, we find empirically that a
form of the focusing effect should be expected even in a
single sample at T =0, for which the impurity-averaging
procedure used in the perturbation-theory analysis is not
expected to be valid.

We have also investigated the total current for both
large and small bias. In two dimensions, and for small
disorder, we find good qualitative agreement between the
perturbation-theory analysis and the numerical results.
For larger disorder, we find empirically that the
differential current —which is essentially the conduc-
tance of the system —can be used to directly probe the
density of states inside the well.

This paper is organized as follows. In Sec. II, we de-
scribe in some detail the models used for our DBQW
structures and the impurity potentials inside the well. In
Sec. III A, we outline the general procedure for calculat-
ing the average transmission matrix in perturbation
theory. The remainder of Sec. III describes our results
for the models we study. In Sec. IV, we discuss our nu-
merical results for the finite-two-dimensional system, and
we conclude with a summary in Sec. V.

II. THE MODELS

In this work, we will consider two distinct models for a
DBQW system with impurities in the well. The first is a
natural generalization to three dimensions of a one-
dimensional resonant-tunneling model studied by other
workers. ' We consider a tight-binding Hamiltonian in
d dimensions, where all the on-site energies are the same,
except on a (d —1)-dimensional plane that models the
well region. The amplitude of the hopping terms con-
necting this plane to the left and right reservoirs are pur-
posely chosen to be small, to model the barrier regions of
the DBQW structure. In the site representation, the
Hamiltonian takes the form

H=t g (a& „aL +H.c. )+t" g (a& „a& +H. c. )+ V g (b„aL +H. c. )
(n, m) (n, m)

+V" g (b„az +Hc )+QE b b +t g (b b +Hc ),
(n, m) n (nm)

where the sums (n, m ) are over nearest neighbors, aL creates an electron at the mth site on the left, a„creates an
electron on the right, and b„creates an electron in the well region. For calculational purposes, it is more convenient to
work in a momentum representation, for which the Hamiltonian is

H = g (ek +op~)(cL k pcL k @+cd k peg k p)+ V g (cL k pdp+d pcL k p)

+ V g (cR k ~d~+d~cz k ~)+ g E~ ~ d~ d~
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where

1 ik (R„.z)+i p R„
CL, (~) k p N X e aL(R) nt

n

N is the number of sites in a reservoir, R„ is the position
of the nth site, p is a (d-1)-dimensional vector that lies in
the x-y plane, and the z direction is perpendicular to the
well region. The energies ck and c, I are approximated by

Z

k,2/2m and p /2m, respectively. The operators d are
given by

~p Rwd= —ge b
M

where R is the mth site inside the well region, and M is
the number of sites within the well. The matrix elements

Ep p
are given byP1P2

( — )Rw

m

To model a weak random potential, we take
=E0+5e, where 5s is a random variable satisfying

5s =0 and 5s 5s„=(M5 „. The bars represent averages
over the random variables, and the covariance p will be
small in the models we consider. We then have

with

U* U
P1P2 P3P4 M P1+P4' P2+ P

Higher-order variances (e.g., U, U2U3U4) are taken to
be equal to all possible combinations of averages of pairs
(e.g. , U, U2 U3U4), which is a standard property of
Gaussian randomness. A simple way to understand this
model is to imagine that each lattice site in the well has
some probability p of being occupied by an impurity. An
occupied site has excess energy 5s„=(1—p)V0, and an
unoccupied site 5E„=—

p V(). (Strictly speaking, the
higher-order variances in this model have a Gaussian
form only in the limit M~(x).) For p &&1, one finds

p=pVO, and p may be taken to be p =p; a'" ", where

p; „ is the areal density of impurities in the well, and
a' " is the area of a lattice site, which for consistency
should be taken as the size of an impurity. We thus see
that an expansion in p is equivalent to an expansion in
the impurity density.

The second model we consider is one in which a mag-
netic field is applied perpendicular to the well region. In
this case, it is convenient to start with a Hamiltonian of
the form in Eq. (2.1), specifically,

X (sk, +s )(cL,k, npcL, k, np+cR, k, pcR, k, np }+g (EO+s }dnpdnp +Rc, k, np~ck np }

+ g g U„n (p),p2)d„p d„p + V g (cL k „d„+H.c. )+ V" g (cR k „d„+H.c. ) .
nl, n2 P1,P2 k, n, p k, n, p

(2.2}

X.,(x y}= 1

~n 10L2"n!

1/2
ipy —(x+plo) /210

XH„((x +pl() )/I() ),

The indices n are Landau indices, and cL (z)k np
creates

Z

an electron in the left (right) reservoir with wave function

ik z
(t'k .,( r }= —e ' X., (x,y»np gL np

where

l

where L is the linear dimension of the reservoir,
10=(Pic/eB)'/ is the magnetic length, and H„ is the nth
Hermite polynomial. Similarly, d„creates an electron in
the well with wave function f (z)y„(x,y}; for simplicity,
we taken ~f(z)~ =5(z). The energies ek and s„" are, re-

Z

spectively, k, /2m and (n + —,()0t„where ro, =eB/mc is

the cyclotron frequency.
The U„„(p),p2) term is due to an interaction with a

1 2

short-ranged, white-noise potential inside the well. In
this case, we fix the number of impurities, and impurity
averages are taken by integrating over their positions. '

For a given impurity realization, one finds

U„„(p( p2)=a Vo
~1+22 n (n !2

i (p&
—p( )y,

—[(x +p(lo) +(x +p2IO) ]/2IO

XH„((x;+p) 1() }/1())H„((x,-+p21() ) /1() },

where r; =(x, ,y, , 0) is the ith impurity position, and the
potential due to this impurity is given by
a V05(x —x, )5(y —y;). The impurity averages in this
model are considerably more difficult than in the tight-
binding model. For this reason, we confine ourselves to
lowest nontrivial order in perturbation theory in the rnag-
netic field model.

III. PERTURBATION THEORY

A. General formulation

In this section, we outline the technique by which one
calculates the average transmission matrix (T(a,P;s)).
Here, a and P are quantum numbers that represent
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momentum vectors in the absence of a magnetic field, and
Landau indices and one-dimensional momenta in the
presence of a magnetic field. The diagrammatic method
used here is very similar to that used in the study of the
x-ray singularity problem in photoemission. " The
transmission matrix is defined as

T(a,P;E)=fdk, 5(k, —[2m(E —e'~)]' )

X g r(k, a;k,'P)/I(k„a),
k'

(3.1)

where I(k„a) is the current incident upon the well re-
gion for an electron in the state (k„a), and r(k, a;k,'p) is
the transition rate for an electron initially in state (k„a)
in the left reservoir to tunnel into a state (k,',P) in the
right reservoir. The transmission matrix T (a,p; s)
represents a generalization of the transmission coefficient
often studied in one-dimensional scattering problems.
Using formal scattering theory, ' ' the transition rate I
may be expressed in terms of the T matrix:

r(k, t;k.'p) =
I & k.'plUGUlk, ~ & I',

where

U= V g (cLt k d +H. c. )
k, a

The matrix element here is a vacuum expectation
value, which is appropriate when considering a single-
particle tunneling event. Defining the partial widths
I'0' (e)=2m+k IV '"I 5(E—ek ), the average transmis-

sion matrix takes the form

& T(a,p;E) ) =I o(c—e" )r,"(e—eJ)& IG q(s)I'), (3.5}

6 (s):—6 (c)= 1

s —e~~ Eo —X—(s)+i5
(3.6)

w~ere

XO(e) —(I VLI2+
I
VRI2) y

where we have adopted the notation 6 &(e)
= &OId&61 IO), and the angular brackets here denote an
impurity average. Thus, we have reduced the problem of
finding the transmission matrix to the calculation of a
Green's function.

In the absence of impurity scattering, the Hamiltonian
conserves the transverse quantum numbers a, so that
6 &(s)~5 &. In this situation, the evaluation of the
Green's function reduces to a one-dimensional problem
for each a, for which there is a well-known exact solu-
tion. Following Mahan, "one finds

+ V" g (ca k ~d +H. c. ),
k, a

(3.3)
The imaginary part of the self-energy is given by

ImX (e}= vr(I V —
I +I V I ) +5(s—e —sk )

and

G(e, )= 1

s H+i5—
Substitution of (3.3) into (3.2) gives

I (k,a, k,'p)=
I
v'I' Iv"I'I&oId Gd'Io) I (3.4)

I

—= —-'[r,'(e —s~~ )+rf(s—s~~ ) ] .

This connection between the imaginary part of the
self-energy and the partial widths was first noted in a
different context by Langreth. ' The transmission matrix
for pure system may be written as

r'(.—.~ )r'(.—.~ }5
Tpure( p. )

0 a 0 a aP

[s—si —Eo —ReX (s—s~' )] +[I o(s —s~' )/2]
(3.7)

where I 0=—I 0+I 0. Ignoring the energy dependence of
the self-energy, we arrive at the Lorentzian "Breit-
Wigner" behavior for the transmission coeKcient that is
expected for resonant-tunneling systems. ' In all of
what follows, we will adopt the approximation that X is
energy independent (ReX is then absorbed into a
redefinition of Eo and will not be referred to explicitly
again). For a one-dimensional system, the approximation
that I 0 and I 0 are constants is equivalent to assuming
that the density of states in the reservoirs is constant.
More generally, our approximation will be valid so long
as X (E) varies slowly in the vicinity of the resonance; i.e.,

shown in Fig. 1, with some of the lowest-order diagrams
in the perturbation expansion. The dashed lines with
crosses represent averaged impurity interactions. For the
tight-binding model, the value assigned to an impurity
line is just p/m; in the magnetic field model, its value is
considerably more complicated and in general can be
evaluated only for specific choices of the Landau-level in-
dices entering and leaving the impurity lines. %e note

dX (e}
dc e =ED

«1.
The effect of a small impurity-scattering term in the

Hamiltonian may be treated perturbatively. To calculate
& IG &I ), we need to evaluate a vertex function, as

FIG. 4. Higher-order diagram not included in the diagram-
matic analysis of the magnetic field model.
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(a) (b) (c)

Converting the sum to an integral, and noting
L /M =a, where L and a are the cross-sectional areas
of the well and an impurity, respectively, we find

FIG. 5. Diagrammatic expansion of the self-energy. y(i) (s) p~2 P
p

A d 1

s —Eo —p /2m+ ,'i—l0

also that diagrams like those shown in Fig. 4 should be
evaluated for the magnetic field model; however, we will

restrict ourselves to lowest order in the impurity density
for this case and hence, will not consider such contribu-
tions.

The double lines in Fig. 1 represent Green's functions
with self-energy corrections due to impurity interactions.
The first few terms of this contribution to the self-energy
are shown in Fig. 5.

B. Tight-binding model, three dimensions

We begin by considering a three-dimensional (3D) sam-

ple, and calculate the lowest-order nontrivial correction
to the average transmission matrix due to impurity
scattering; we thus need to evaluate Figs. 1(a), 1(b), and
5(a}. The self-energy is given simply by

g(i) P y
1

3D M

where we have set c. =p /2m. The quantity A=1/a is a
cutoff required to keep the integral finite. Performing the

integral, we find

ReX" (e }= ln3D 4

(s —E() —A /2m) +(I'()/2)

(s —E() ) +(I'()/2)

(3.8a)

and

ImX" (s) = — e(s),3D (3.8b)

where

2(s —E() )
e( s }= —+arctan

2 r, (3.8c)

To find the transmission matrix to lowest order in p,
we need to evaluate Figs. 1(a}and 1(b). We denote these,
respectively, as T' '(p(„,p,« , s) an'd T'"(p(„,p,«, e) Us-.

ing Eqs. (3.8), we find

L R
(0) r, l,

(p(n, po«~ s }=
(e p;„/2m ——Eo) +I o[(+aie(s)]2 2 2 O' P

(3.9)

T'"(p;„p,«;s)= ~ r'r" ~G', (.)~' ~G', (.)~2 (3.10)

where we have noted that ReX3'D(s} is only weakly energy

dependent, and have absorbed this into a redefimtion of
Eo. The quantity a3 is a unitless measure of the disorder,
and is defined as a, =(uma /2irlo=p; (2 mV()/2nIo.
We note that ai may be expressed for our short-range
impurity-scattering model in terms of the two-

dimensional mobility p' of the well region; using the
lowest-order Born approximation to calculate the col-
lision time, one finds a&=eh'/2nI'om(M'. The imaginary
part of the self-energy here introduces an asymmetry in

the usual Lorentzian form of the transmission coeScient
[Eq. (3.7)]; the low-energy tail now extends out slightly
farther than the high-energy tail.

To lowest order in )M, we find for Fig. 1(b)

I

the structure of the diagrams that it persists to all orders
in perturbation theory. We will also see below that it
occurs in two dimensions, and in a more restricted way in
our magnetic field model.

%hile the spatial distribution of the tunneling current
is the most interesting result of this work, it is not the
quantity measured in present experiments. Almost all
such experiments measure the total current across the
DBQW structure. ' For comparison, we have evaluated
the tunneling current for two situations: one for large
bias, i.e., a large chemical-potential difference between
the reservoirs [Fig. 6(a)], which is the common experi-
mental situation, and one for infinitesimal bias [Fig. 6(b)].
ln the former case, if the chemical potential on the right
is below the band bottom on the left, the total current at
zero temperature may be written approximately as

where we use the zeroth-order form for the Green's func-
tions because T"' is explicitly proportional to p. This
contribution has a number of interesting properties. For
fixed c and p;„, T' " depends only on the rnag-
nitude of p „„sothat the electron "sprays" out into the
right reservoir. Furthermore, for c, )EO, the transmis-
sion probability is strongly peaked for states satisfying
s —p,„,/2m =Eo This define. s a cone surface onto which
the spraying is favored and hence yields a pronounced
spatial distribution in the transmission probability. This
focusing effect is actually quite general; one can see from

FIG. 6. Chemical potential profile (a) for large-bias case and
(b) for infinitesimal bias.
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FIG. 7. Total current as a function of Eo for large bias;

pL =1.0, I o=0.1, and a3=0.1.
FIG. 8. Total current as a function of Eo for large bias, with

pL =1.0 and I"O=0.1. Solid line uses transmission function in
Eq. (3.lib), with a3= 1.0; dashed line use Breit-Wigner formula

[Eq. (3.11c)],with I;=0.6.

I(pi, Ep) — PpI p ds N(s)
mL'

27r 0

X N f, —CO T B,CO

0

(3.11a}

nological Breit-Wigner form

—,'r, (r,+r, )

Tnw(s, co) =
(s —~—E,)'+-'(r, +r, )' (3.11c}

where

I pI p [1 +2a38(s)]
Ttot(s ~)

(s —co —Ep)~+1 p[ —,'+a38(s))
(3.11b}

N(s} is the density of states, and all energies are mea-
sured from the left band bottom. Taking N(s) =Np to be
a constant, in Fig. 7 we plot I(pl Ep) as a function of Ep
for I o=0.1, pL =1.0, and a3=0.1. The asymmetric line
shape is typical of these systems and may be understood
from basic phase-space considerations. ' '

Many past works have resorted to the use of a phenom-
enological Breit-Wigner form for the transmission
coefBcient in the presence of incoherent scattering. '

For the purposes of comparison, we have computed the
total current for a relatively large impurity density, using
both the microscopic equation (3.11b) and the phenome-

I

where I; is a phenomenological impurity-scattering-
induced broadening parameter. In Fig. 8 we plot
I(pl, Ep} for both forms of T"'(s,co), where I; has been
chosen such that the currents ~atch at the lowest value
of Ep on the graphs. While the value of a3 used here is
somewhat large for us to work just in the lowest order of
perturbation theory, we see that within these approxima-
tions the two currents are almost identical.

Clearly, the phase-space factors entering Eq. (3.11a)
are much more important than the detailed form of
T"'( ceo} in determining the total current of the DBQW
system. This indicates that the Breit-Wigner formula
gives a good approximation for the calculation of the to-
tal current.

The current for the differential bias case,
AI(Ep, pl, )lhp, where hp=pL —pz, is given to first or-
der in impurity density by

EI(Ep Pc} L 3&z 1+2a38(s}
Np(2m) i dpi(s —co)'

ap 4~m '
o (s co Ep) +I p[ —,

'—+a—38(s)]
(3.12}

and is plotted for a3=0, 0.1, and 0.2 in Fig. 9 as a func-
tion of pL for fixed Eo. We see that the differential
current saturates when pL

——pz gets well above the reso-
nant energy Eo. As one might intuitively expect, the sat-
uration current decreases with increasing impurity densi-
ty, and switches over an increasing interval. This latter
effect reflects the increased broadening in the transmis-
sion line shape as a function of energy due to impurity
scattering.

It is interesting to examine the behavior of the pertur-
bation theory at larger values of the impurity density.
For such a discussion, it is convenient to express the

quantity (~G~(s)~ ) in the form ~G (s)~~5
&

+ [G (s)
~ ~ G&(s) ~

U &(s), where a =p;„and P=p,„,.
So long as the vertex function U~(e, } is not too strongly
dependent upon the final state P, it is clear that the focus-
ing effect will survive at even moderate impurity densi-
ties. However, U &(s) is not well-behaved for arbitrarily
large impurity density. To see this, one can estimate it
using the ladder approximation. The result is

U. (e)=" 1

M 1 —2a38(s)

Within the ladder approximation, U &(s) is independent
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those that would be needed to test our predictions. '

From a calculational point of view, the two-
dimensional case is easier to deal with than the three-
dimensional case. There turns out to be no necessity to
introduce an ultraviolet cutoff in this case, and nearly all
the integrals one has to evaluate may be performed using
simple contour integration. For example, the self-energy
to second order in the impurity density [Figs. 5(a)—5(c)] is
given by

0.00 '—
0.6 0.8 I.O t.2 l.4

2cll
( )'—,

Ko 2' 9Eo

(3.13)

FIG. 9. Differential current as a function of pL for EO=1.0,
I O=0.1, and (a) a3=0 (solid line), (b) a3=0.1 (dashed line), and

(c) a3=0.2 (dash-dotted line).

where so=2(s —Eo)+iI o, and the branch cut is chosen
such that Qeo has a positive imaginary part. We see that
the self-energy picks up some momentum dependence at
second order in p; however, for low impurity densities,
this has no pronounced effect.

The zeroth-order contribution to the transmission ma-
trix [Fig. 1(a)] is given by

of a and P, and thus will not spoil the focusing effect.
However, for a3) 1/2m, U &(s) diverges, indicating that
the perturbation theory itself breaks down. This is not
surprising, because if the impurity scattering is too
strong, the resonant tunneling in the system will be
spoiled. Indeed, we will see below (Sec. IV) that in the
strong-scattering limit the differential conductance has a
form very different from that expected for a nearly per-
fect well: one must interpret the conductance in terms of
tunneling through isolated states inside the well rather
than a state with a unique resonant energy Eo. Thus, the
focusing effect will not survive in the strong-scattering
limit; one needs to be in the weak or at least moderate re-
gime a3&1/2n. . We emphasize, however, that high-

quality DBQW structures meet this weak-scattering cri-
terion, as evidenced by the fact that their I- Vcharacteris-
tics can be interpreted as tunneling through a bound state
in the well with a unique energy Eo.

C. Tight-binding model, two dimensions

There are a number of reasons for examining the two-
dimensional DBQW system. The first, as we shall see
below, is that one can evaluate all the second-order
corrections to the transmission matrix. More important-
ly, if an experiment is designed to test the ideas in this
work, it will be necessary to probe the current at several
locations in the sample. This may be accomplished using
microlithographic-nanofabrication techniques on two-
dimensional structures. We note that some very recent
experiments have already produced structures similar to

with

Gp (e ) = [e Eo sp~ +X~D(p)~~ s) +i I o/2] (3.14)

The result is similar to the three-dimensional case, in
that for fixed p;„, T' ' as a function of c is essentially
Lorentzian, with a weak asymmetry imposed by the ener-

gy dependence in Xz'D(p, e). Since T' ' conserves trans-
verse momentum, this contribution is relatively unin-
teresting. The next-order contribution to the average
transmission matrix, T"'(p;„,p,„,;s), has the same form
as its three-dimensional counterpart [Eq. (3.10)], except
one must replace the factors G (s) with G~(s) in Eq.
(3.14). In Fig. 2, we plotted T"' as a function of the exit
angle (defined in the inset) for p;„=0 and (a) s & Eo, and
(b) s) Eo. For s &Eo, the tunneling electron sprays out
into an angular distribution with a width of approximate-
ly 1 rad. For c & Eo, the distribution breaks up into two
sharp peaks, centered at angles +go satisfying
e —p~„, /2m=scoszgo=Eo. This striking double peak-
ing is the analog of spraying onto a cone surface expected
in three dimensions. We note that if the incident electron
has a nonzero p;„, only the overall amplitude of T"' is
affected; the distribution remains symmetric around
0=0.

To see how higher-order terms affect the spatial distri-
bution, we have evaluated Figs. 1(c)—1(f). The sum of
these contributions is explicitly proportional to a2,
where az=v'm Vop; a /1 o, and we denote it as
T' '(p;„p,„,;e). After a few contour integrals, one finds

p3/2
T' '(p;„,p,„„.s)=a& I oI olG~ (s)l IG (e)l [L(e)+J(p;„+p,„„c)+2ReK(p;„—p,„„e)],



3604 H. A. FERTIG, SONG HE, AND S. DAS SARMA 41

O
LLi

o~
QP

I I I I ( 1 & 1 I
(

t ( l I
(

I I I ~
(

& I I (
(

l 1 I 1O. terpart, l&jbp, for this case does not saturate at large
pz', one can in fact show that EI/i((p~ 1/QpL in the
tail region. We see that the main effect of a small impuri-
ty density is to lower the peak height 'and shift the lead-
ing edge of the resonance peak slightly back. We will see
in Sec. IV that these results agree qualitatively with exact
numerical calculations for a finite two-dimensional sys-
tem.

D. Three dimensions, perpendicular magnetic Seld

0 7 0.8 0.9 I.O I. I I.2 l.5

FIG. 10. Di8'erential current for a two-dimensional system as
a function of pL, for 80=1.0, $ 0=0.1, and (a} a2=0, (b}
a2=0.1, and (c}a2=0.2. No and L are the density of states and
size of reservoir, respectively.

where

L (e)=r,'"IsollmV'eo,

1m+so
J(p, e) =4I

so 4(1m+so) +2e('

are the contributions from Fig. 1(c) (ladder diagram), Fig.
1(d) (crossed diagram), and Figs. 1(e) and 1(Q, respective-
ly. In Fig. 3, we plot T' ' as a function of 8 for fixed c
and E . The incident electron is taken to arrive from the

~in

second quadrant in the inset of Fig. 2. The spatial distri-
bution of T' ' has the same basic structure as T'", except
that the double peak becomes asymmetric, with a larger
"backscattering" than "forward-scattering" peak. In this
context, forward scattering and backscattering refer only
to the relative directions of p;„and p,„,. This contrasts
with the behavior well known from weak-localization
theory, ' for which one expects a peak in the scattering
at p;„=—p,„,. It is interesting to note that the crossed
diagram (which is responsible for enhanced backscatter-
ing in weak localization) in our calculation does indeed
have a maximum at p;„=—p,„,. However, this peak is
quite broad compared to the Lorentzians multiplying it,
and so only shows up in this context as an enhanced
weight for the Hp&0 peak.

We have also evaluated the differential current hI/Lp
as a function of the chemical potential in the reservoirs,
pr, including terms up to order a2. The results are
presented in Fig. 10. Unlike its three-dimensional coun-

As a final case of interest, we examine the transinission
matrix for a three-dimensional sample with a magnetic
field perpendicular to the well region. In this situation, if
one uses Landau gauge, the relevant transverse quantum
numbers are the Landau-level index n and a wave number
p. The self-energy to first order in the impurity density is
approximately

a I
X(') —— [0'( —,

' + ( Eo i I'/—2 co ) /o—i, )—lnN, ],
C

where co, =e8/mc, 8 is the magnetic field,
(x =a Vomco, p; /I o is a dimensionless measure of the
disorder strength, and (p is the digamma function. Note
that a is explicitly proportional to 8. We have intro-
duced a cutoff X, in the Landau-level summation to keep
X((o) finite; for a « lo, this is given approximately by
N, = io /2a, where lo = (Pic /e8) ' ~2 is the magnetic
length. As in the absence of a magnetic field, the diver-
gence in X"((o) as N, ~ ~ is an artifact of using the 5-
function scatterers. Within the hard-cutoff approxima-
tion, we note that

QmI 0ReX"= ln(2a e8 jc),
2&N

which shifts the peak in T( ' slightly upward, by an
amount that varies logarithmically with field. To esti-
mate the effect that impurities have on the width of T' ',
we evaluate ImX(((i) at co=Eo+ —,((o, (the resonance asso-
ciated with tunneling in the lowest Landau level). The re-
sult is ImX"(oi) = —iro(a /2ir) for (o, ))ro; the reso-
nance width increases slightly by an amount proportional
to 8.

To first order in a, the self-energy only enters as a
correction to the Green s functions in Fig. 1(a). This dia-
gram conserves the Landau index and the wave number p
in the tunneling process. The lowest-order contribution
to the transmission matrix that allows a nontrivial distri-
bution of final states is given by Fig. 1(b). The average
over impurity positions in this case is considerably more
diScult to carry out than in the absence of a magnetic
field, so we restrict ourselves to the case where the in-
cident electron lies in the lowest Landau level (n =0).
To first order in a

10T"'«.=0, p. ;np p'p,'e)=rorolgo«)l'IG. ' «)I'v'2/~ ~ roexp[ (p. pii)'io/2l~—«p, p. pp)— —
n& I



41 ELASTIC-SCATTERING EFFECTS ON RESONANT TUNNELING. . . 3605

where p is the incident wave number of the electron, n&
the Landau index of the transmitted electron, and p& the
transmitted wave number. The weighting function
W(n, p) is

, g 2"k'(k)'( —I)" "Hzn 2-k(pIo~r»2„nf k

where 0„ is the nth Hermite polynomial. Note that the
transmission matrix is only significant for ~p

—
pp~ Ip

This is reasonable, because the electron wave functions
are Gaussians of width lo centered at pip; one must ex-
pect a tunneling electron with incident wave number p
to emerge within a distance lo ofp l2p.

Because p is approximately conserved in the tunneling
process, it is useful to sum T'" over p&. This leads to the
much simpler expression

g T'"(a,P;e)= I I "I ~G„(E)~ ~G„(s)~
Pp

This is formally similar to T"' for the tight-binding
model [Eq. (3.10)],with the transverse momenta replaced
by Landau indices. For fixed n and c., this contribution
to the transmission matrix is maximized when
s (n&+ —,')co, is —as close as possible to Ep. This is the
analog of the focusing effect that led to such striking spa-
tial distributions of the tunneling electron in the absence
of a magnetic field.

To illustrate the behavior of T' ",we plot the quantity

(&) (i)
ror ( in~Pin&e) = g X ( in~Piniriour~pour~e)

"out &out

in Fig. 11 for n;„=0, I 0=0.1, co, =0.1, and ED=1.0
(which sets the energy scale), as a function of e. One
finds a very large peak at c=ED+ —,'co„with weaker peaks
superimposed at e=Ep+(n+ ,')co, Thes—e wea. ker peaks
are a direct result of the focusing effect in a magnetic
field: whenever the incident energy s of the electron
matches Ep+(n +—,

' )co„ there is an enhanced probability
of scattering into the nth Landau level. This is only pos-
sible in the presence of scattering; for a pure system, the
Landau index must be conserved in the tunneling pro-
cess.

IV. NUMERICAL SIMULATION

To check the validity of the perturbation-theory
analysis, we have computed the transmission matrix for
several two-dimensional finite-size systems, with periodic
boundary conditions in one direction, using the recursive
Green's-function method. ' The model used here is the
same as our two-dimensional tight-binding model: there
is a single row of sites whose average on-site energy may
be different than the other on-site energies, and we take
the hopping matrix elements connecting this row to the
left and right sides of the sample to be smaller than the
other hopping matrix elements. We then model the dis-
order by adding a small, random on-site energy within
the well-region row.

In Fig. 12, we show a typical average transmission ma-
trix for fixed incident energy and p;„as a function ofp,„,.
In this particular example, we have examined a system
that is 96 sites wide, and have averaged over 32 realiza-
tions of the random potential. There is a very sharp peak
at p,„,=p;„, which corresponds to the T' ' term in our
perturbation theory. At a much smaller amplitude, one
finds two peaks centered symmetrically around 8=0.
This double-peak structure is exactly of the form predict-
ed by the perturbation-theory analysis of Sec. III. We
note, furthermore, that the left peak apparently has a
slightly larger weight than the right peak, in agreement
with our second-order results, T' '.

Superimposed on the broad peak structure is a ran-
domly varying fine structure. This must be expected for
any average over a finite number of systems, since the ex-
act transmission differs for different impurity realizations.
In Fig. 13, we plot an example of the transmission matrix
for a single impurity realization of the same system pa-
rameters in Fig. 12. One can see that the fluctuations are
quite strong, of the same order of magnitude as the peak
heights in the transmission matrix. The focusing effect
for a single impurity realization arises as an envelope

x10 ~

.0 I I I I
(

I I I I )
I I I I ]

I I I I ] I I I I (
I I I I | I I I I | I I I I

0.8—

1.0 0.6—

0.8— 0.4—

—O
0.2—

0.4—

0.2—

0 I I I I I I I I

0.7 0.8 0.9 1.0 I. I

r r I I

1.2 1.3

FIG. 11. T,",,' as a function of F for p,„=0,co, =0.1, I 0=0.1,
and Eo =1.0

Pou«
FIG. 12. Transmission matrix as a function ofp,u, for a two-

dimensional system 96 sites wide, averaged over 32 impurity
realizations. The sharp peak at p,„,=p;„=0.9/a, where a is the
separation between sites, corresponds to T' ' in the perturbative
analysis, and is far ofF scale in this plot. The double-peak struc-
ture qualitatively agrees with the perturbation-theory analysis.
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FIG. 13. Transmission matrix for a single impurity realiza-

tion, with the same system parameters as in Fig. 12. The fluc-

tuations are contained within an envelope function that has the
double-peak structure expected for the average transmission

matrix.

FIG. 14. Differential current as a function of pL for a system
64 sites wide, with disorder strengths characterized by (a) W =0
(solid line), (b) W=0.2 (dashed line), and (c) W=0. 3 (dash-
dotted line).

function for the strongly fluctuating transmission matrix.
It is interesting to note that enhanced backscattering
effects, which give the left peak a slightly enhanced
weight in Fig. 12, manifest themselves as a higher density
of fine-structure peaks for negative p,„, than for positive

p,„,. The peak heights, on the other hand, do not appear
systematically larger on either side of the graph.

It is interesting to speculate on whether one expects to
observe Fig. 12 or Fig. 13 in a real experimental situa-
tion. An experiment is complicated by the fact that one
needs a source that can send electrons to the DBQW
structure with a well-defined p;„. Assuming one can fa-
bricate such a device, it is clear that at the lowest temper-
atures, one would expect transmitting electrons to have a
distribution of p,„, similar to that in Fig. 13. At higher
temperatures, we might expect phase-breaking processes
within the well to have an effect similar to averaging over
many systems. However, it is an open question whether
one in principle can detect the distribution of electron
momenta after they have undergone phase-breaking
events inside the well, but before they undergo such
events outside the well. (Phase-breaking events outside
the well would spoil the distribution of momenta intrinsic
to the transmission matrix. ) We emphasize, however,
that even if the experiment is performed in a regime for
which the averaging procedure is not appropriate, the
focusing effect still will be seen as an envelope function
for the fluctuating transmission matrix. Furthermore,
since wires collecting the current must have a finite
width, and the transmission peaks are quite close togeth-
er, the current collectors themselves will tend to average
out the fine structure.

We have also evaluated numerically the exact
differential current EI/hp for the two-dimensional finite
system. A typical series of graphs for this quantity as a
function of the chemical potential pI is shown in Fig. 14
for three different disorder strengths. The random poten-
tial is generated by adding an on-site potential 5c,„ to

each site inside the well, where 5c„ is chosen from a Hat

random distribution between + W/2. Thus, the disorder
strength for the numerical results is characterized by the
energy W. One can easily show that the expansion pa-
rameter az for the perturbation-theory analysis is propor-
tional to W . Figure 14 presents EI/by for 8'=0.0, 0.1,
and 0.2, where the energy scale is set by the hopping ma-
trix elements in the reservoir region. We see that the
qualitative features of these graphs are quite similar to
those of the analytic, perturbative calculation (Fig. 9). As
in that case, the peak height is reduced and the leading
edge shifts back with increasing disorder. We note that
the high-energy tail flattens out for 8'=0 at pL =0; this
is a finite-size effect, and must be expected due to
particle-hole symmetry when the on-site energies in the
well and reservoir region are chosen to be the same.
There is also some structure in the high-energy tail for
the case W=0.2; it is likely that this will not remain
when one averages over several impurity configurations.

It is also interesting to investigate the differential
current in the presence of stronger scattering potentials.
In Fig. 15, we present this for an impurity configuration
with 8'=1.6 for two values of the hopping matrix ele-
ments t and t, which we take to be identical for this ex-
ample. For small values of t, corresponding to high bar-
riers separating the well region from the reservoirs, we
find a series of sharp peaks at different values of the
chemical potential pl. By evaluating the energy spec-
trum of an electron in the isolated well, one finds that
each peak corresponds to a single electron state in the
disordered well region. Thus, for each state in the well,
there is an essentially Lorentzian resonance peak, whose
width I 0 is proportional to (t ) . As we increase t [Fig.
15(b)], the widths increase, so that resonance peaks that
are close together merge into broader, smoother struc-
tures. The peaks in this figure may then be understood as
maxima in the density of states inside the well. It is in-
teresting to note that with barrier heights adjusted to be
as large as possible, one can (in principle) directly probe
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I I I I 'f 1 I I I electronic states in the barrier; this interpretation seems
quite natural in light of our calculations. Unfortunately,
there is no direct control over the coupling of these elec-
tronic states to the reservoirs in this experiment. Our
calculations suggest that the development of devices for
which such parameters could be varied independently-
for example, by gate structures such as those used in Ref.
17—would lead to the observation of a rich variety of
physical phenomena.

V. SUMMARY
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FIG. 15. Differential current EI/b, p, as a function of chemi-
cal potential pL for W =1.6 and well-reservoir coupling matrix
elements: (a) t =t =0.05 and (b) t"=t =0.2.

We have investigated the effect of elastic scattering in a
resonant-tunneling DBQW system. We find that in the
absence of a magnetic field, the average transmission ma-
trix shows a striking spatial distribution in the tunneling
probability that may be described as a focusing effect.
W'e have verified this result by numerically solving for the
transmission matrix of a finite two-dimensional system;
there is good qualitative agreement, although there are
fluctuations present in the exact solution that only
smooth out if one averages over many impurity
configurations.

In the presence of a magnetic field, we find that there is
a self-energy correction to the usual Lorentzian behavior
in the transmission matrix that leads to a slight broaden-
ing of the Lorentzian, as well as an upward shift in the
resonant energy that varies logarithmically with magnetic
field. There is also a contribution to the average
transmission matrix from processes that do not conserve
Landau-level index; we find that this contribution is max-
imized when e —(n&+ —,')co, is as close as possible to the
resonant energy Eo, where n& is the final-state Landau in-
dex.

the microscopic energy spectrum inside the well region
by measuring the conductance of the system. We note
that in a very interesting experiment, Kopley and co-
workers studied the conductance of a single-barrier tun-
neling structure, for which they found isolated Lorentzi-
an resonances as a function of the gate voltage (which
fixed the chemical potential in the reservoirs). They asso-
ciate these resonances with tunneling through localized
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