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ploy disorder effects on the electronic properties of III-V quaternary semiconductor alloys
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A coherent-potential-approximation (CPA) formalism for the treatment of III-V quaternary semi-
conductor alloys with two disordered sublattices is developed. This formalism is applied to the al-

loys Al, Ga& zAsyPi » AlzGai zAsySb&» In& zGazAsyP&» and In, zGazAsySb&» and re-
sults are presented for the CPA densities of states, self-energies, band-bowing parameters, and
energy-gap variations with composition. Deviations from the virtual-crystal approximation (VCA),
which are indications of the effects of alloy disorder, are found to be more significant for the alloys
In] —z Gaz Asy Sbl —y and In) z Gaz Asy Pi —y than for Alz Ga] —z Asy PI —y and Alz Ga] —z Asy Sb]—y

As expected, the amount of disorder as measured by the magnitudes of the self-energy shifts, bow-

ings, and differences between the CPA and VCA energy gaps is stronger at certain alloy composi-
tions than others. Comparison is also made of the experimental energy gap of In& „Ga„AsyP& —y

lattice matched to InP, with calculated VCA and CPA energy gaps.

I. INTRODUCTION

Quaternary III-V semiconductor alloys with two disor-
dered sublattices, those whose chemical formulas have
the general form A B& C D&, have important tech-
nological device applications. Here x and y are the com-
positions and A, B, C, and D are the constituent atoms.
(In what follows, where possible, we use the notation
ABCD to denote the alloy A„Bt „C~D t .) Such ma-
terials have, for example, found use in photodetectors for
fiber optics communications, in solid-state lasers, in
light-emitting diodes, and in high-speed heterojunction
transistors. ' A major feature that has made this class
of materials valuable for optoelectronic device applica-
tions is the fact that the average lattice constant and
band gap can be varied independently so that (epitaxial)
layers of quaternary alloys of varying compositions can
be fabricated on a given lattice-matched substrate. ' By
contrast, for ternary alloy systems fabrication of lattice-
matched layers is more difficult. This type of fabrication
has been successfully accomplished for InGaAsP lattice
matched to InP. '

To our knowledge, the only detailed theoretical studies
of the electronic properties of alloys of this type have
been coherent-potential-approximation (CPA) calcula-
tions for InGaAsP lattice matched to InP and GaAs.
These have been carried out by Chen and Sher for the
valence bands only, and more recently for both the
valence and conduction bands by Gera et al. In addi-
tion to these theoretical investigations, various experi-
mental data exist for InGaAsP. ' ' Despite the wealth
of information which exists for this material, however,
and despite the fact that other quaternary alloys have po-
tential device applications, there have not been any de-
tailed studies of the electronic properties of other III-V
quaternary materials of this type. For example, the com-
positional variation of the band gap and other properties
is information which is needed for device design and
which is at present not well known for most alloys of this

type.
The purpose of this paper is to improve upon this situ-

ation by developing a CPA formalism which can be ap-
plied to the study of quaternary alloys of the form
A B, „C D, , and to apply this formalism to the
study of the electronic properties of several III-V alloys
of this type. A CPA calculation gives the relative size of
the alloy disorder effects in an alloy. A knowledge of
such effects can be important for the understanding of
transport properties such as electron mobilities and drift
velocities in these materials. Hence, such a calculation
can be used for a general theoretical characterization of
alloys based on the degree of alloy disorder effects.

The CPA formalism we use is a generalization of the
Chen and Sher bonding-antibonding CPA formalism. ' '

A bonding CPA approach similar to the present theory
was used in Ref. 5 to study the effects of alloy disorder in
the valence bands of InGaAsP. The formalism of Ref. 6
utilizes an approach which treats the CPA self-energies
for the anion and cation derived s and p states separately,
but it is apparently only applicable to cases of lattice-
matched compositions. In that reference, the effects of
diagonal disorder in the valence and conduction bands in
InGaAsP were studied for compositions lattice matched
to InP and GaAs. Our formalism, which may be viewed
as an extension of the formalism of Ref. 5 to include the
effects of alloy disorder in the conduction bands, can be
applied generally to quaternary alloys with independent
variations of the compositions x and y, and not just to
lattice-matched compositions where x and y are some
functions of each other. It thus includes the effects of in-
terference between the scattering from the two sublattices
of the quaternary alloy.

We present the results of our CPA calculations for In-
GaAsP for general compositions x and y, as well as for
particular compositions which are lattice matched to InP
and GaAs. In addition, we present CPA results for In-
GaAsSb, A1GaAsP, and A1GaAsSb. Our calculations for
lattice-matched and non-lattice-matched InGaAsP wi11
serve as a comparison with previous results. Our study of
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InGaAsSb is motivated by the small energy gap of its ter-
nary InAs, Sb constituent which is the smallest of the
III-V materials. ' A room-temperature band gap of 99
me V has been observed" for this ternary alloy at
x =0.68. This small-band-gap feature makes this materi-
al a prime candidate for long-wavelength (infrared and
near-infrared) photodetector applications. ' " For the
other materials, our studies will provide results necessary
for the understanding of the basic physics of these alloys.

We note that theoretical studies of the electronic prop-
erties of several III-V ternary alloys of the form
A„B, C, ' and of III-V quaternary alloys of the form
A, B~C, „~D (Ref. 12) which utilize the CPA have
been carried out. The quaternary semiconductor alloys
of the form A B, „C D, which we study in this pa-
per are quite different from these two alloy types because
of the presence of two totally disordered sublattices: a
group-III-cation-based sublattice and a group-V-anion-
based sublattice. By contrast, the other alloy types each
possess an ordered sublat tice and a disordered sublat tice.
The presence of the second disordered sublattice in the
alloys of interest here obviously makes the CPA formal-
ism more complex than that for the other alloy types.

For the present study, we assume a completely random
quaternary alloy, so that one disordered sublattice con-
tains a random mixture of A and B atoms with probabili-
ties x and 1 —x, respectively, and the other sublattice
contains C and D atoms which randomly occupy it with
probabilities y and 1 —y, respectively. Our assumption of
complete randomness is consistent with the CPA calcula-
tional procedure which requires an average over random
configurations of constituent atoms. It has been shown in
extended x-ray-absorption fine structure (EXAFS) experi-
ments on InGaAsSb (Ref. 13) that short-range-order
effects might be important and that not all combinations
of the compositions x and y are allowed. Where such de-
viations from randomness occur, more sophisticated ap-
proximations such as the quasichemical equilibrium' ap-
proximation may become necessary. Such an approxima-
tion has been applied to the ternary semiconductor al-
loys. ' However, it will not be discussed further here.

II. COHERENT-POTENTIAL-APPROXIMATION
FORMALISM

The formalism we present here is a generalization of
the Chen-Sher CPA formalism previously applied to ter-
nary alloy semiconductors. To obtain our numerical re-
sults, the sp s* semiempirical tight-binding band struc-
tures of Vogl et al. ' are used as input into this general-
ized formalism. A general description of the CPA pro-
cedure, originally developed by Soven and Taylor, can be
found in various review articles, ' and so only a brief out-
line of our theory will be given here.

We note that the bonding-antibonding CPA studies
carried out in Ref. 9 utilized the same band-structure pa-
rarneters that we employ here. ' In that reference, re-
sults were presented for five different ternary alloys at
various compositions and were shown to compare favor-
ably to the results of bonding-antibonding CPA studies
which used other band structures, to the results of

molecular CPA studies which included the effects of off-
diagonal disorder, ' and to experiments. Thus this type
of CPA theory combined with the band structures of
Vogl et ai. ' has been tested for the ternary alloys which
are the limiting cases of the quaternaries we consider
here. We thus have confidence in the trends that we pre-
dict for various quaternary alloys as functions of the alloy
compositions.

The starting point of our formalism is the virtual-
crystal approximation (UCA) Hamiltonian which has the
form

Ho =xyHac+y (1 «)H—ac+x (1 y)H—»
+ (1 —x)(1 y)H&D—,

where H~c, Hzc, H~D, and HzD are the Hamiltonians
for the compound semiconductors AC, BC, AD, and BD,
respectively, in a tight-binding representation. The true
alloy Hamiltonian H, is the sum of this VCA Hamiltoni-
an and a random potential V:

H, =Ho+ V =Ho+ g U;, (2)

where the U s are the atomic potentials at each cell site
and V is the total random potential. For the following
discussion, we cast this potential into a bonding and an
antibonding basis, ' so that the atomic pairs that make
up a bond in a cell can be described in terms of bonding
and antibonding states. In this basis, only diagonal disor-
der can be conveniently treated. We thus neglect off-
diagonal disorder in this paper. Off-diagonal disorder has
been treated in the work of Hass et al. ' for ternary alloy
semiconductors using a molecular CPA, which includes
the effects of disorder on states of different chemical ori-
gins. A generalization of the formalism of Ref. 18 to
treat off-diagonal disorder in the alloys of interest here
would be diScult for arbitrary x and y since that formal-
ism requires the existence of well-defined molecular units.
These are missing in the quaternary alloy
A, B, „C D& since both sublattices are disordered.

In the CPA one seeks to replace the disordered alloy
with a translationally invariant, periodic effective medi-
um. This CPA medium is characterized by a complex,
energy-dependent self-energy with real and imaginary
parts representing the shifts from the VCA eigenstates
and the broadening of the states, respectively. In the
CPA, the alloy Hamiltonian H, is thus replaced by an
effective medium Hamiltonian defined by

H, fr =Ho+ X(E), (3)

where X(E) is the effective coherent potential (or self-
energy) which, like the random potential V, can be cast
into a bonding-antibonding basis. In this basis, we denote
the bonding and antibonding parts of X(E) as ob(E) and
o, (E), respectively. The effective Hamiltonian H, s. has
the full crystal translational symmetry, and the observ-
able properties of the effective medium and thus of the al-
loy can be obtained from the configurationally averaged
Green's function which is replaced in the CPA with an
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effective medium Green's function defined by

G,tt(E, o ) =(E H—,tt)

In implementing the CPA, one determines the self-
energies o b and cr, from the CPA self-consistency condi-
tion. ' ' To do this, one forms the single-cell atomic
scattering operator or t matrix

t~i=u j(1 g—&u~t) (5)

Here g, is the site-diagonal matrix element of the
configurationally averaged Green's function G,tt [Eq. (4)],
which can be written as

Dvcw (E')
' I E —E' —cr (E)J

(6)

+ (1—x)(1—y)ssD, (7)

where Dive~(E') is the VCA density of states for the
valence (j =b } or the conduction (j = a } band. Also, in
Eq. (5), we have defined u/=(ajar —KJ—o'i) where s is
defined for either value ofj as

s =xys Ac+y (1—x)etic+x(1 —y)s „D

for clarity. Equation (10) can be further expanded to
solve explicitly for 0, resulting in a lengthy nonlinear, in-

tegral equation, which must be solved iteratively using
standard numerical techniques. This equation is shown
in Appendix I. Usually, six to ten iterations are enough
for convergence. Before solving Eqs. (6)—(10), all energies
are shifted to the vacuum level using experimental pho-
tothresholds. These energies before the shift are usual-

ly referred to zero at the valence-band maximum so that
the shift to the vacuum level accounts for band discon-
tinuities. In presenting and interpreting the results of the
calculations, we shift all energies back to the top of the
VCA valence-band edge.

For the following discussion, it will be convenient to
introduce disorder parameters for the bonding or anti-
bonding states. These are defined as differences in the
average bonding and antibonding energies given by Eq.
(8). For the alloy ABCD, if one (arbitrarily} chooses the
the material BD as the reference crystal, three disorder
parameters can be defined. They are

fiAD sBD eAD ~

~BC ~BD ~BC

fiAC sBD sAC

and the index j has been suppressed for clarity. In Eqs.
(5) and (6), i is a cell index which can take on any one of
the four values AC, BC, AD, or BD depending on which
atomic pair occupies the cell and j is an index denoting
bonding and antibonding states, which we will also refer
to as the valence-and the conduction-band states, respec-
tively. Thus u j in Eq. (5) can take on the values u J c,
u}ac, u„D, or u)D, with appropriate probabilities. The
quantities sj in Eq. (7) represent the bonding or the anti-
bonding energies of the constituent semiconductors AC,
BC, AD, or BD, respectively, and are defined by the rela-
tion

sj= ,' fED/(E)dE—, (8)

where D/(E) is the density of states for the bonding or
antibonding states for the compound i.

The CPA self-consistency condition requires that on
the average, there should be no scattering in the effective
medium so that the average t matrix vanishes or

+x (1—y)u „D(1—u „Dg)

+(1—x)(1—y)utiD(1 —usDg) (10)

Since in the bonding-antibonding basis the self-
consistency requirement holds separately for the valence-
and the conduction-band states, Eq. (10) has the same
form in both cases. Thus the index j has been suppressed

where ( t/ ) denotes an average over configurations.
When this relation is combined with Eq. (5), one obtains

O=xyuA~(1 uA~g) '+y(—1 —x)usc(1 —u~cg)

where the index j has again been suppressed. These dis-
order parameters are a crude measure of the expected
amount of alloy disorder in ABCD. A more detailed
measure is, of course, the energy-dependent CPA self-

energy. However, a knowledge of the disorder parame-
ters of a given alloy enables one to estimate the size of the
expected disorder effects before a CPA calculation is per-
formed.

It is well known' that the type of bonding-antibonding
CPA formalism outlined above averages over the disor-
der effects within the valence and conduction bands and
thus does not properly account for the different chemical
origins of states in different energy regions. For example,
it is known that s-like states are more strongly affected by
disorder than p-like states. This effect is accounted for
only in an average way in the bonding-antibonding CPA.
This formalism also neglects interband effects which
might be important in alloys with narrow band gaps, and,
as mentioned above, it also neglects off-diagonal disorder.
Because of these limitations, the predictions obtained
from the formalism should be taken as a first approxima-
tion to the expected effects of alloy disorder on the elec-
tronic properties. However, since, with the exception of
InGaAsP, there have been no previous studies of such
effects in the type of quaternary semiconductor alloys
considered here, the present study may be viewed as a
first step at beginning to understand such properties.
Furthermore, based on results obtained previously using
this type of formalism to describe ternary semiconductor
alloys ' as well as the valence bands of InGaAsP (Ref. 5)
and based on comparison of the results presented below
with those obtained by others for InGaAsP, we feel that
the trends predicted for the variation of various proper-
ties as a function of the alloy compositions and from alloy
to alloy should be reliable.
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III. RESULTS AND DISCUSSION

We first present results for the alloys AlGaAsSb, Al-
GaAsP, InGaAsP, and InGaAsSb for the compositions
x =y =0.50, which is the regime where all of the constit-
uent compounds of the alloys are equally weighted. In
Figs. 1(a)—(d) we show the VCA (dotted curves) and the
CPA (solid curves) densities of states for AlGaAsSb, Al-
GaAsP, InGaAsP, and InGaAsSb, respectively. A gen-
eral feature observed in these figures is the smoothing of
the VCA Van Hove singularities by the CPA. This
smoothing is especially significant at the top of the
valence bands for the InGaAsSb and A1GaAsSb alloys.
This is an indication of appreciable disorder effects in the
valence bands of these two alloys, and is typical of the

effects of alloy disorder on such peaks. '

Such disorder effects can also be related to the magni-
tudes of the disorder parameters, defined in Eq. (11), for
the bonding (valence band) and antibonding (conduction
band) states. In Table I, we list the bonding and anti-
bonding energies for the constituent compounds and the
magnitudes of the resulting disorder parameters for the
valence and conduction bands for various combinations
of these compounds that are relevant for the alloys con-
sidered here. The table shows, for example, that the
valence-band disorder parameters for alloys containing
mixtures of AlSb and GaAs, A1As and A1Sb, GaAs and
GaSb, and A1As and GaSb are 1.78, 1.48, 1.06, and 0.76
eV, respectively. The corresponding parameters for the
same set of compounds for the conduction band are 0.58,
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FIG. 1. The CPA (solid curve) and the VCA (dotted curve) density of states for (a) Alp 5Gap gAsp 5Sbp 5 (b) Alp 5Gap gAsp 5pp 5, (c)
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0.17, 0.42, and 0.01 eV, respectively. Clearly, these disor-
der parameter values are in qualitative agreement with
the relative amount of the smoothing of the VCA Van
Hove singularities by the CPA densities of states curves
shown in Figs. 1(a)—1(d).

The self-energies for the same alloys at the same com-
positions as in Fig. 1 are shown in Figs. 2(a)—2(d), where
the solid curves indicate the real parts of the self-energies
and the dotted curves are the negative of the imaginary
parts. These self-energies are also a measure of the disor-
der effects in the alloys. Their size is greatest in the In-
GaAsSb with the magnitude of the real part reaching
values of 0.80 eV near the top of the valence band and
0.45 eV near the bottom of the conduction band. The
size of the real part of the self-energy of A1GaAsSb rises
to about 0.60 eV near the top of the valence band and is
almost negligible in the conduction band showing that
while the disorder effects for the valence band are appre-
ciable, these effects in the conduction band of this quater-
nary alloy are minimal. The magnitudes of the self-
energies also correlate with the size of the disorder pa-
rameters for A1GaAsSb, obtained from Table I. In par-
ticular, minimal disorder effects are to be expected from
the relatively small disorder parameters. In A1GaAsP,
the magnitude of the self-energies rises to a maximum of
approximately 0.10 eV about 7.70 eV into the conduction
band and fluctuates between zero and 0.05 eV in the rest

of the band spectrum. There is therefore small disorder
in AlGaAsP, as expected by the small disorder parame-
ters for this alloy. For InGaAsP, a maximum value of
0.20 eV of the self-energy occurs at the top of the valence
band; so the disorder in this alloy is stronger than in Al-
GaAsP. In order to represent these self-energy values for
these alloys in plots without obscuring the essential
features, the scales have been enlarged [Figs. 2(b) and
2(c)].

The origin and relative sizes of the disorder effects in

these alloys as measured by both the self-energies and the
disorder parameters can also be related to the differences
in the s and p atomic energies which have been used to
compute the tight-binding band parameters which we

employ in these calculations. ' For example, the
differences in the s atomic energies between In and Ga,
between As and P, between Sb and As, and between Sb
and P are, respectively, 1.41, 0.28, 2.83, and 3.11 eV,
while the differences in the p atomic energies are 0.30,
0.60, 0.95, and 1.55 eV, respectively. As can be seen from
Table I, the disorder parameters in alloys containing As
and Sb anions are comparatively large (for instance, the
valence-band disorder parameter of A1Sb and GaAs in
A1GaAsSb is 1.78 eV), while disorder is expected to be
small for alloys containing As and P. It must be noted
that this relation between the relative degree of disorder
and the atomic energy differences should not be peculiar

TABLE I. Calculated bonding (valence-band) energies cb, antibonding (conduction-band) energies
s„and absolute values of disorder parameters 5~ „,= ~sb"„,—s~q„, ~

for III-V semiconductor com-
pounds. All energies are in electron volts.

Compound

A1As —10.40 0.04 A1As
A1As
A1As

Alsb
GaSb
GaAs

1.48
0.76
0.30

0.17
0.01
0.41

Alsb —8.92 —0.13 GaAs
GaAs

A1sb
GaSb

1.78
1.06

0.58
0.42

GaSb —9.64 0.03 GaSb
A1As

Alsb
Alp

0.72
0.25

0.10
0.54

GaAs —10.70 0.45 A1As
GaAs

GaP
GaP

0.45
0.05

0.70
0.28

Alp —10.65 0.58 GaAs
GaP

Alp
Alp

0.05
0.20

0.13
0.15

GaP —10.85 0.73 GaAs
GaAs

InAs
InSb

0.42
1.26

0.34
0.78

InAs —10.28 0.11 InAs
InAs

GaSb
InSb

0.64
0.84

0.08
0.44

InSb —9.44 —0.33 InSb
GaAs

GaSb
InP

0.20
0.55

0.36
0.51

InP —10.15 —0.08 InAs
InAs
InP

InP
GaP
GaP

0.13
0.57
0.70

0.19
0.62
0.81
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to the band-structure model we use for these calculations
but should be the case for other band-structure models
where atomiclike (tight-binding) orbitals are used for
computing band structures. '

Damping of the states (alloy broadening) near the fun-
damental band gap as represented by the imaginary part
(dotted curves) of the self-energy is very small for all of
the alloys we have considered. This is in agreement with
experimental results. ' Such alloy broadening is least in
A1GaAsP with a maximum value of 0.10 eV occurring
about 7.65 eV above the conduction-band minimum
(about the same energy where the maximum of the real
part occurs), and a maximum in the valence band of 0.06
eV about 2.52 eV below the valence-band maximum.
Consistent with results for the real part, values for the
imaginary part of the self-energy for the alloy A1GaAsSb

are greater in the valence band than in the conduction
band, with average values of about 0.25 eV, rising to a
maximum of 0.47 eV about 1.75 eV below the valence-
band maximum compared to a maximum value of only
0.02 eV about 6.70 eV into the conduction band. In In-
GaAsP, the maximum value of the imaginary part of the
self-energy is about 0.24 eV in both the conduction band
(2.20 eV into the conduction band) and the valence band
(2.20 eV below the valence-band maximum). In In-
GaAsSb, maximum values of the imaginary part in the
conduction and valence bands are 0.35 and 0.30 eV, re-
spectively, and occur about 1.65 eV into the conduction
band and 0.83 eV below the valence-band maximum.
These results imply that alloy broadening effects are
greater in InGaAsSb than in the other alloys considered
here.
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E(x,y)=E bf (x,y), — (12)

1.6

The band-gap variations with composition in the VCA
and CPA are shown for InGaAsP lattice matched to InP
(O~x ~0.47, O~y ~1.0) and to GaAs (0.48~x ~1.0,
O~y ~ 1.0) in Figs. 3 and 4, respectively. The relations
between x and y are y/x =2. 13 and 0.42x —0.22y =0.2,
respectively, for cases of the InP and GaAs lattice-
matched alloys. These figures show that there are devia-
tions of the CPA energy gaps from those predicted by the
VCA. The CPA energy gap in the GaAs lattice-matched
alloy shows a maximum deviation of 0.18 eV from the
VCA energy gap at an As composition y of about 0.40
and a Ga composition x =0.69, while the InP lattice-
matched material shows a maximum deviation of 0.09 eV
at an As composition between 0.50 and 0.60 and a corre-
sponding Ga composition of approximately 0.26. Also,
we have compared our calculated energy gaps for In-
GaAsP lattice matched to InP (at 0 K) with experimen-
tally measured values at room temperature (Fig. 3). It
is seen that the CPA energy gap is a better approximation
than the VCA to the experimental data showing that al-
loy disorder strongly infiuences the band-gap variation.
In particular, if the CPA energy gap is extrapolated to
room temperature, it will be in closer agreement with the

experiment than Fig. 3 shows.
It is well known that the band edges and band gaps in

an alloy deviate from the compositionally weighted aver-
ages of those of the constituent compounds. This devia-
tion is called bowing. It is a measure of the variation in
the crystal potential across the alloy field, and it exists
in both the VCA and the CPA. The deviation between
the VCA and the CPA bowing is another measure of al-

loy disorder. To discuss bowing for the band gap, it is
convenient to use the definition of the bowing parame-

23

where E is the composition weighted average gap, b is
called the bowing parameter, and f (x,y) is some quad-
ratic function of the compositions. One method that
has been used to calculate bowing in the type of quater-
nary alloys we consider here treats the disorder on the
two sublattices as independent. In this treatment, Eq.
(12) is usually written in the form

E(x,y) =E b,—x (1 x)—b2—y (1—y), (13)

f (x,y) =x (1—x)+y (1—y)+1, (14)

which now has an additional term of one that was not in

Eq. (13). Using this form of analysis, we have calculated
the composition dependence of the band-gap bowing pa-
rameters for InGaAsP lattice matched to both InP and
GaAs. The results of these calculations are shown in
Figs. 5 and 6 for both the CPA (solid curves) and the
VCA (dashed curves). The CPA bowing for the InP
lattice-matched InGaAsP compares very well with an
earlier calculation. However, the magnitude of the

where b& and b2 are two separate bowing parameters.
Equation (13) implies that there are two independent con-
tributions to the bowing, one due to the anion sublattice
and the second due to the cation sublattice. This is
equivalent to the assumption that the two sublattices
scatter independently, so that their contributions to the
bowing are additive. In this kind of treatment, the effects
of interference between the scattering from the two sub-
lattices that serve to reduce the bowing are thus
neglected. Such effects should be present even for a per-
fectly random alloy, as our calculations show, In order
to include these effects, we use the more general form
given by Eq. (12), and have thus assumed only one bow-
ing parameter. Further, we have used a form of f(x,y)
that accounts for the interference effects just mentioned.
This form is

2.1-

1.2-

O
Z

O.S—

1.9-
lL

C5

Q
Z
lO

0
C)

1.7-

0.8
0.00
InP

0.25
I

0.60
coMposmoN y

0.75 1.00
lnp {j3G8p4yAs

1.5
0.00 0.25

I

0.50
As COMPOSmON y

0.75 1.00

FIG. 3. CPA (solid curve) and VCA (dashed curve) energy-

gap variation with As composition y for In& Ga„AsyPl y
lat-

tice matched to InP (y/x =2.13). These are compared with
room-temperature photoluminescence data of Ref. 22.

Inp 52G8p 48P

FIG. 4. CPA (solid curve) and VCA (dashed curve) energy-

gap variation with As composition y for In& „Ga„AsyP] —y
lat-

tice matched to GaAs (0.42x —0.22y =0.20).



ALLOY DISORDER EFFECTS ON THE ELECTRONIC. . . 3589

0.0 1.7

CPA

O.oe-

1.2-

CO 0.04-

O
Cl

0.7-

0.02-

0.00
0.00 0.24 0.50

As COMPOSITION y

0.76 1.00

InP Inp 53Gap gyAs

FIG. 5. CPA (solid curve) and VCA (dashed curve) band-gap
bowing as a function of As composition y for In, „Ga„AsyP] —y

lattice matched to InP (y/x =2.13).

0.2
0.00

InAsp 32Sbp B8

0.24
I

0.60
Ga COMPOSmON x

0.75 1.00

GaAs

FIG. 7. CPA (solid curve) and VCA (dashed curve) energy-

gap variation with Ga composition x for In& „Ga„AsySb] y
lattice matched to GaAs (x =1.471y —0.471).

CPA bowing parameter is smaller by about 100 meV in
our case for reasons just discussed. The large deviations
between the band-gap bowing predicted in the VCA and
the CPA show again that alloy disorder effects can be im-
portant for this alloy.

In Figs. 7 and 8, we also show, respectively, the band-

gap and the bowing parameter variations with composi-
tion for InGaAsSb lattice matched to GaAs (O~x ~ 1,
0.32 ~y & 1). In this case, the relation between x and y is
x =1.471y —0.471. The size of the CPA bowing param-

eter here is similar to that for InGaAsP lattice matched
to GaAs, and the shape of both the VCA and CPA bow-
ing curves is approximately parabolic. The CPA band

gap at an As composition ofy =0.32 is 0.23 eV and when
extrapolated to room temperature, this is in reasonable
agreement with the data of Ref. 11. The deviation be-
tween the CPA and the VCA bowing parameters for this
alloy are even larger than for InGaAsP lattice matched to
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0.00
0.00

s0.32SbO.B8

0.26
I

0.60
Ga COMPOSITION x

0.76 1.00

GaAs

FIG. 8. CPA (solid curve) and VCA (dashed curve) band-gap
bowing as a function of Ga composition x for
In, „Ga„Asy Sb] y lattice matched to GaAs
(x =1 471y —0 471)



3590 EKPENUMA, MYLES, AND GREGG 41

TABLE II. Energy gaps (Eg) and band-gap-bowing parameters (b) calculated in both VCA and CPA for the four alloys
Al Ga ] Asy P ] —y Al Ga ] — Asy Sb ] y In ] Ga& Asy P ] —y and In ] „Ga„As~Sb ] ~ at various compositions x and p. All energies
are in electron volts.

Alloy

Alx Ga] —x Asy P ] —y b (VCA)
b {CPA)
Eg (VCA)
Eg (CPA)

0.25
0.25

0.01
0.02
2.77
2.75

0.25
0.50

0.00
0.03
2.49
2.45

0.25
0.75

0.01
0.03
2.21
2.16

0.50
0.25

0.00
0.01
3.00
2.99

0.50
0.50

0.00
0.03
2.77
2.73

0.50
0.75

0.00
0.01
2.53
2.52

0.75
0.25

0.00
0.00
3.23
3.23

0.75
0.50

0.00
0.00
3.04
3.04

0.75
0.75

0.01
0.09
2.85
2.73

Al„Ga] „Asy Sb] —y b (VCA)
b (CPA)
Eg (VCA)

Eg {CPA)

0.01
0.01
1.26
1.26

0.01
0.04
1.47
1.44

0.01
0.19
1.69
1.44

0.00
0.00
1.56
1.56

0.01
0.01
1.80
1.79

0.01
0.07
2.04
1.95

0.01
0.02
1.86
1.84

0.01
0.01
2.13
2.12

0.01
0.01
2.39
2.39

In] „Ga„Asy P]—y b (VCA)
b (CPA)

Eg (VCA)

Eg (CPA)

0.02
0.08
1.49
1.40

0.01
0.07
1.22
1.14

0.02
0.07
0.96
0.89

0.03
0.17
1.83
1.63

0.02
0.09
1.54
1.43

0.01
0.08
1.26
1.17

0.02
0.09
2.18
2.07

0.01
0.12
1.87
1.72

0.01
0.03
1.57
1.54

In& „Ga„AsySb] —y b (VCA)
b (CPA)
E (VCA)
ER (CPA)

0.02
0.07
0.43
0.36

0.02
0.08
0.51
0.43

0.02
0.07
0.60
0.53

0.02
0.09
0.60
0.50

0.02
0.09
0.72
0.62

0.02
0.04
0.84
0.82

0.02
0.12
0.78
0.64

0.02
0.07
0.93
0.86

0.07
0.13
1.09
1.02

GaAs, again showing that alloy disorder is a stronger
effect in the alloys containing Sb.

For the purpose of a general comparison, we display
the VCA and CPA energy gaps and bowing parameters
at similar compositions for the different alloys we have
considered in Table II. The alloy A1GaAsP shows the
least deviation between the VCA and CPA results, show-
ing that disorder should be the least for this alloy. The
maximum deviation in the energy gaps for this material is
0.06 eV at compositions of x =0.25 and y =0.75, and the
corresponding maximum bowing parameter is 0.029 eV.
These values are in good agreement with the size of the
self-energies and disorder parameters for this alloy. The
disorder in A1GaAsSb is larger than that in A1GaAsP,
with a maximum deviation of the VCA and CPA energy
band gaps of 0.16 eV at x =0.25 and y =0.75. The rela-
tive amounts of disorder in InGaAsP and InGaAsSb are
about the same and are traceable to the difference in the s
atomic energies between the cations In and Ga. These
two quaternaries show more disorder than AlGaAsP and
A1GaAsSb.

IV. CONCLUSION

We have presented a CPA formalism for the treatment
of alloy disorder effects on the electronic properties of
quaternary alloys with two disordered sublattices, and
have presented the results of the application of this for-
malisrn to the four quaternary alloys A1GaAsP, Al-
GaAsSb, InGaAsP, and InGaAsSb. The CPA results are
remarkably different from the VCA results, especially for
InGaAsSb and InGaAsP. This is due to the relatively
large alloy disorder in these alloys as characterized by

their CPA self-energies. We have found that the band-

gap bowing is greater in the InGaAsP lattice matched to
GaAs than in the InP lattice-matched alloy in agreement
with an earlier result. In general, the values of the bow-
ing parameters calculated here are small compared to
previous calculations because the effects of interference
between the scattering from one sublattice with the
scattering from the other sublattice, which serve to
reduce bowing, have been included in our results. Such
effects, which should be present even for the perfectly
random alloys we consider here, were neglected in previ-
ous calculations, where the scattering from the two sub-
lattices was assumed to contribute additively to the bow-
ing. Furthermore, we find that the CPA results are much
closer to experimental data, especially for such quantities
as the energy gap. This shows that the inclusion of alloy
disorder effects is necessary in the study of the materials
considered here.

From the discussion of the differences in s and p atomic
energies, and also using the values of the bonding and an-
tibonding energies from Table I for the antimonide and
phosphide compounds, it is expected that alloys contain-
ing Sb and P will show larger disorder effects than the al-
loys studied here. We have shown this to be the case in
calculations presented elsewhere.

As discussed above, the inclusion of off-diagonal disor-
der effects, which were neglected here, would certainly be
expected to change these results quantitatively. Howev-
er, such effects are unlikely to change the trends we have
predicted in the various properties as a function of the al-
loy compositions and from alloy to alloy. For example,
such effects should not alter the result that alloy disorder
effects are more important for the Sb containing alloys
than for the others.
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APPENDIX
Equation (8) of the text is in general a matrix equation.

However, the neglect of off-diagonal disorder means that

the self-energy matrix X is diagonal with matrix elements
cr . In the bonding-antibonding basis, we thus consider
only two scalar self-energies o.

b and o., for the valence
and conduction bands, respectively. Equation (8) then
becomes a scalar equation which can be expanded to ob-
tain

tx ( I V)(u Ac+ uBc )(eBD AD ) xV (uBD +u AD )(e Ac eBc ) V (u AD+u Ac )(eBc eBD )

++( AC+ BC+uAD+3 BD+ ~)+e(eAC+eBC+eAD+ eBD e) EBD(EAC+eBC+eAD))S(E)

+g ( )lxV AD(e Ac eBc)uBD+x(V l ) Ac(BBD e AD)uBc+V Ac(eBc eBD)u AD

+uBD(uBcu AD+ u Acu AD + u AcuBc )]g (E) u Acg (E)uBcg(E)u ADg( )uBD

where the u s and the g, 's are as de6ned in the text. The
above equation is a coupled, nonlinear, integral equation
which is quartic in 0. Also, since this equation has the

same form for both the conduction and valence bands for
reasons already discussed in the text, we have dropped
the subscript (j =b, a) for convenience and clarity.
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