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Electronic spectra of crystals with a subzone resummation technique
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A very accurate method is presented for the continued-fraction expansion of the electron
Green s-function propagator in crystals. The novelty consists in implementing the recursion tech-
nique in decoupled subzones of the first Brillouin zone, rather than in the whole Brillouin zone or in

real space. With this procedure a very large number (of the order of a hundred or more) of
continued-fraction steps becomes easily accessible. Our resummation technique is applied to a num-

ber of elemental and III-V semiconductors; in particular, results for silicon, germanium, gallium ar-
senide, and aluminum phosphide are presented as an example. We also discuss the problem of
asymptotic behavior of continued-fraction coefficients.

I. INTRODUCTION

The continued-fraction formalism' in the study of the
electronic spectra of periodic solids, as well as
aperiodic solids and stochastic systems, has become a
valuable tool. The standard procedure' begins in gen-
eral with a localized-orbital representation of the one-
electron crystal Hamiltonian, considers a cluster as large
as possible with appropriate boundary conditions, and
performs recursions in real space starting from an initial
state of interest. The basic diSculty when operating in
real space is the relatively small size of the clusters that
can be actually dealt with (10 —10 sites or so) because of
computer storage limitations; thus in most practical situ-
ations the encounter of the border of the finite cluster re-
stricts the number of exact iterations actually accessible
at no more than 10—20 steps. This is in general unsatis-
factory both for a good representation of the Green's
function and for the application of a suitable asymptotic
truncation; in fact, experience shows that it would be in
general desirable to reach at least 50—100 exact pairs of
continued-fraction coeScients before some termination
for the asymptotic can be safely exploited.

In the case of periodic structures" '" instead of finite
clusters and localized orbitals it is possible to perform the
standard unitary transformations to itinerant basis func-
tions of Bloch type. Although the number of basis func-
tions (or degrees of freedom) in real or reciprocal space is
of course unchanged, and also unchanged is the general
strategy of the recursion procedure, there are several dis-
tinct advantages in performing calculations in k space.
The first attempt to use the recursion method in connec-
tion with a plane-wave representation of the electronic
states in pseudopotential calculations is due to Brustel
et al. " The implementation of the recursion method in
reciprocal space with delocalized functions is rather re-
cent and opens interesting perspectives.

The first recognizable advantage has been pointed out
by Anlage et al. ;' these authors show how to exploit
point-group symmetry considering an appropriate set of
k points in the reduced part of the Brillouin zone, thus

combining the recursion method with the special lt points
technique. ' ' Notice that exploiting the point symme-

try of regular clusters is not so straightforward, although
it is possible. ' However the most important perspec-
tive' ' consists in treating separately subzones of the re
ciprocal lattice and then resumming the partial contribu-
tions. This last point is the key novel improvement of our
method with respect to the literature. The basic idea is
the full development of k-space separability. One starts
by dividing an arbitrary large k-point cluster into a num-

ber of smaller subzones that can be tridiagonalized one by
one. Once the recursion method is applied independently
on each subzone, we obtain a set of (semi-infinite) linear
chains representing them. No problem of computer
memory limitation is encountered because we can choose
each subzone made by a limited number of k vectors.
Due to the independence of the linear chains so generat-
ed, we can now process thetn using again the recursion
method on the space made by the states by the previous
recursions on the separate subzones.

Our procedure opens the road to an unprecedented
number of recursion steps; it has been briefly outlined in
a recent report, ' where it was confined only to an ideal
fictitious system known as cubium. The purpose of this
paper is to show the actual implementation of the pro-
cedure in a variety of semiconductors described by a real-
istic Hamiltonian represented on a localized basis set.
Notice that the accurate knowledge of the one-electron
Green's function for the perfect crystal is of interest not
only for the perfect crystals, but also in several other
areas of active research, ' ' including the electronic
structure of impurities, heterostructures, alloys and disor-
der systems.

In Sec. II we consider the basic concepts and the most
relevant features of our decoupling subzone resummation
procedure. In Sec. III we consider several semiconduc-
tors (in particular silicon, germanium, gallium arsenide,
and aluminum phosphide) described microscopically
within the realistic and by now familiar s,p,p„,p„s
model, ' and we report detailed results of Green's func-
tion and electronic spectra; the very large number of ac-
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cessible iterative steps allows us to discuss also some as-
pects of the asymptotic behavior of continued fractions.
Section IV contains the conclusions.

II. THE R-SUBSPACE RECURSION
PROCEDURE FOR PERIODIC STRUCTURES

In the literature the recursion method is usually imple-
mented without exploiting explicitly the symmetry prop-
erties (if any} of the system under study; of course, in the
case in which the starting seed state belongs to a given ir-
reducible representation of the symmetry group of the
Hamiltonian, all the other states of the hierarchy generat-
ed in the recursion procedure will also have the same
symmetry. In the case of periodic structures, we discuss
how to combine from the very beginning the recurrence
concepts with the symmetry properties of the system; the
resulting procedure turns out to be stable from a numeri-
cal point of view and allows us to reach an unprecedent
number of recursion steps.

Consider a general periodic structure, with translation
vectors r and basis vectors d„. We describe microscopi-
cally the crystal in terms of localized basis function
P(r r —d„—}. The translational symmetry of the system
is embodied passing to the itinerant Bloch sums:

4&„(r)=, g e P(r r ——d„) .
(N3)1/2

The one-electron crystal Hamiltonian H on this basis can
be written in the standard form:

BZa= y y ~C„„&M„„,(k)(e„„,~, (2)

k
(3)

where c&'=1/(N )'~, N being the number of k points
in the Brillouin zone. We wish to implement the re-
currence procedure with the Hamiltonian (2} and the ini-
tial state (3). Essentially we are tridiagonalizing the one-
electron crystal Hamiltonian (2), whose representation in
k space is already factorized into small matrices. This
problem can be solved with the standard recurrence con-
cepts, the expansion coeScients ck"„+"and the couple of
parameters a„+„b„+,for the (n + 1)th step are given by
the recurrence relations

where p„p'= I, . . . , n, with n number of independent or-
bitals per unit cell, and the matrix M„„(k) can be ex-
pressed in terms of phase factors and a (small) number of
independent parameters, that can be either calculated or
determined semiempirically. We can now select a state of
interest

~ fo ), which is any desired linear combination of
~4z„), and we can start the recurrence relations in k
space, with the Hamiltonian H represented by Eq. (2). It
is apparent that in this representation the Hamiltonian is
block diagonal at each k site, the blocks M» (k} being
matrices of order n equal to the number of basis orbitals
centered in the atoms within the unit cell.

In general, the initial state
~ fo) of interest is a local-

ized orbital of the form

P
BZ

$2 y y C~n+&~ C(n+1)
k p

(n+1) C~n+ &)

&P b kP
n+1

BZ

a„+,= g Q cq„H» (k)cI,"„+",
k pp'

(4)

The Green's function can then be expanded in the form

G~(z)=(f, ~l/(8 —H)~ f0&

1

b2
E —a—0 b2

E —a—
1 E —a —'

2

The basic difficulty of Eq. (4) is the simultaneous pro-
cessing of the k points over the whole Brillouin zone;
with a standard uniform mesh, (2N}3 k points are re-
quired in order to evaluate X pairs of exact coefBcients;
the use of special points is of help but the third power law
dependence still remains. Our basic novelty is to aban-
don this simultaneous treatment of all the Brillouin-zone
points and to split them into smaller subsets that are han-
dled separately; then the partial continued fractions so
obtained are appropriately resummed and this procedure
allows us to achieve hundreds (or more} exact pairs of
coefficients, thus making the asymptotic region readily
accessible.

Operatively we achieve our goal in the following way.
Let us introduce an arbitrary division of the Brillouin
zone into subzones S&, . . . , S and a correspondent set
of seed states ~fo" ), . . . , ~fo '):

with c&' = 1 if p =v and k CS, . We can now generate a
continued fraction starting from each of the

~fOJ' ). The
set of these partial chains is nothing but a representation
of the Hamiltonian (2) in the particular subspace S . At
this point the relevant information out of the very large

F00 0

~ . ~ . . p0I3I3

FIG. 1. Schematic representation of the resummation tech-
nique. In the left part of the figure the k points of the Brillouin
zone are indicated by dots. For the sake of clarity the whole
Brillouin zone is partitioned only into two subzones; each of
them gives rise to a continued fraction. The two partial chains
are resummed into the final one.
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[see Eq. (9)] versus the coefficient index n for the s-orbital pro-
jected density of states of Ge.

and

A, = —(g+a), A2=ga —(W +6 )/2,

A, =(g —a)( W' —6')/2,
24=(g —a)(aW2 —gG2)/2 —

( 8'2 —62) /8 .
The sp s' hybridization model, although simple,

reproduces a number of relevant physical features of IV
and III-V semiconductors, in particular direct and in-
direct gaps; however, some dispersions of the electronic
states in the highest conduction bands are not correct {in
particular spurious, although small, gaps in systems such
as silicon or aluminum phosphide occur). We have calcu-
lated the density of states projected on single orbitals for
several semiconductors. In Fig. 2, for instance, we report
the total density of states for Si (s and p} calculated with
150 pairs of coefficients. Note that a calculation of the
same level, but with simultaneous processing of the whole
Brillouin zone, would have required the processing of an
impossible giant cluster of 150 k points and 10X150
states. The comparison between our results and indepen-
dent calculations made by means of Gilat-
Raubenheimer integration for s- and p-projected silicon
densities of states shows a very good agreement. Also for
the other semiconductors the electronic properties are
well reproduced by our calculations. Figures 3, 4, and 5
provide the total density of states summed over s and p
orbitals with 100 pairs of coefficients for Ge, GaAs, and
Alp, respectively. For Figs. 2-5 the termination of the
continued fraction is the "two-band model" proposed in
the paper of Turchi et al. , where the widths of the two
bands are deduced from the corresponding values of the
valence and conduction regions.

A central point in our analysis is just the achievement
of the asymptotic region of the continued fractions. In
fact, the problem of the representation of the Green's
function with a continued fraction can be considered
solved only if one obtains a sufficiently large number of
coefficients to enter the asymptotic region; in our case a
mathematical and/or numerical determination of the tail
is now possible in principle, although it is not certainly a
trivial problem. In Fig. 6 it is clearly shown how the
shape of the density of states depends on the number of
coefficients used: one hundred or more exact steps are
necessary to obtain a satisfactory density of states avoid-

The coefficients a„,b„, and the band edges E&, E2 E3,
and E4 are connected by relations of the type

b„b„+,=( A3a„—A4)/2 . (8}

obtained from the exact coefficients evaluated versus the
index n. According to (8}such a quantity should be zero
in the asymptotic region, and in fact it presents damped,
though irregular, oscillations as n increases.

When a large number of coefficients of the continued
fraction is available a not-too-elaborate procedure of ter-
mination can also give good results. In our particular
case we found that physical features of the systems in
study were well preserved by the two-band terminator of
Turchi et al. However, there are in literature numerous
efforts for alternative terminators; in particular the pro-
cedure of Luchini and Nex proposes a linear interpola-
tion of the coefficients between their exact and their
asymptotic values. Incidentally, we verified that a phase
shift between the two sets of coefficients can sensibly im-
prove physical results, but a systematic analysis of the
asymptotic behavior of the continued-fraction coefficients
needs further work.

IV. CONCLUSIONS

In this paper we have presented a new subzone itera-
tive procedure for obtaining the Green's function of the
one-electron crystal Hamiltonian in periodic structures.
The procedure fully exploits the decoupling in k space by
a process of successive hierarchical ordering and elimina-
tion. It has been successfully tested for a number of semi-

With the help of Eq. (8) we can analyze the asymptotic
region. In Fig. 7 we show for Ge the quantity

h=b„+b„+i+a„+22+

gaia„
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conductors; to obtain comparable results in real space,
one would have to handle impossibly huge clusters up to
a hundred million centers. The importance of an accu-
rate determination of the Green's function is not confined
to perfect crystals, but it is of relevance also in a number
of related problems, such as the electronic structure of
impurities, self-consistent approaches, and homogeneous
disorder. Similar techniques could also be extended to
the study of layered systems, where a mixed real-

space —reciprocal-space representation is very precious.
All these fields of research should benefit from the con-
cepts and techniques presented in this paper.
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