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Optical Stark effect of the exciton. II. Polarization effects and exciton splitting
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We show that a laser beam, tuned in the transparency region of a direct-gap semiconductor, not
only shifts but also splits the exciton levels. This splitting originates from the degeneracy of the
valence band as the (o+,o ) parts of the light are not similarly coupled to the various exciton com-

ponents. In the case of a fourfold-degenerate valence band, we find that, at large detuning, the shifts

of the (2X4) eightfold exciton are exactly the shifts of a (2+4) six-level atom. This is just the gen-

eralization of the simple band-structure case with one electron and one hole band in which the large
detuning excitonic shift has the same value as that of the two-level (dressed) atom. We give the
selection rules to observe the various shifted lines for typical pump-probe experiments. We also dis-

cuss the experimental conditions necessary to see an exciton red shift at the two-photon absorption
threshold, when the molecular biexciton is stable.

I. INTRODUCTION

A new field' of fundamental interest was opened three
years ago by the observation, in semiconductors, of opti-
cal changes induced by below-gap laser excitation. Until
that time, experiments were done with resonant or
above-band-gap pumping, creating real electron-hole
pairs. The observed effects are then caused partly by the
laser excitation, and partly by the created electronic sys-
tem, which evolves with time. The use of below-gap exci-
tation separates these two effects and allows the study of
purely laser-induced variations of the semiconductor
properties. The original experiment consisted of the ob-
servation of a blue shift of the exciton line. Such a blue
shift had been previously observed with above-threshold
excitation and was interpreted in terms of a screening of
the Coulomb interaction by the created electron-hole sys-
tem. In this new experiment, the laser beam alone pro-
duces such a blue shift. The physical origin here is simi-
lar to that of light shifts in atomic physics. These atomic
shifts were explained using the dressed-atom model and
are found to be proportional to the laser intensity.

In previous work, ' we have shown that, although the
problem is much more complicated in semiconductor
than in atomic physics, due to the great number of in-
teracting excitons, the exciton optical Stark shift reduces
to the two-level dressed atom one at large detuning. The
reason is that, at detuning large compared to the exciton
binding energy, the Coulomb interaction can be neglect-
ed, and the valence- to conduction-band transition in-
duced by the electron-photon coupling is similar to the
two-level (dressed-atom} problem. At smaller detuning,
however, the shift is modified. We have shown that the
exciton optical Stark effect comes, in fact, from interac-
tions between the two electrons and the two holes form-
ing the biexcitonic (bound and unbound) states. At small

detuning the Coulomb interaction dominates, while at
large detuning the shift results from Pauli exclusion.

Besides the great number of interacting excitons, the
problem is also more complicated in semiconductor than
in physics due to the complexity of the band structure.
This complexity usually leads only to more tedious calcu-
lations without introducing any new physical effect. It
turns out, however, that in the exciton optical Stark
problem, band structure induces quite a nice fundamental
effect. As the photon corresponds to a kinetic momen-
turn J =1,M =+1, the various conduction and valence
states are not affected similarly by the electron-photon
coupling, the conduction band being s like while the
valence-band results from a p-like state with spin-orbit
coupling. Consequently the exciton, which is a degen-
erate state when built from the bare conduction and
valence bands, not only shifts but also splits6 under
below-gap laser excitation, due to different changes in the
various conduction and valence levels. One finds, in par-
ticular, that the eightfold exciton line of bulk GaAs can
split into up to five lines depending on the pump and
probe beams. This result appeared, at first, in contradic-
tion with the experimental observation of a unique broad
shifted exciton line. However, this theoretical prediction
has been verified recently, using differential absorption
spectra and a precise analysis of the underlying com-
ponents of the exciton line. The experimental difficulties
in observing the various "bumps" in the exciton line pre-
dicted by the theory come from the fact that the original
exciton linewidth is larger than the laser-induced shifts
and does not allow direct observation of a split line.

This paper is organized as follows. In Sec. II, we estab-
lish, from first principles, the electron-photon coupling
including the kinetic momentum symmetries of the elec-
tronic system and the photon. Since this coupling is the
key part of this work, it is crucial to write it precisely.
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Even though its overall form is well known, the relative
signs of the various terms of Eq. (5) are not. They are of
importance in linear polarization cross effects. We also
give the form of the electron-photon coupling appropri-
ate to the optical Stark effect problem [Eqs. (8) and (13)].

In Sec. III, we give the notations for the electron sys-
tern and define the exciton state basis appropriate to the
optical Stark effect problem.

In Sec. IV, we derive the expression of the shifts for a
degenerate exciton level, closely following our previous
work' on the exciton optical Stark effect. As usual,
band-structure effects lead to much more tedious calcula-
tions, one term of our previous work now being replaced
by a matrix. We find that the exciton shifts appear as the
eigenvalues of an 8X8, or 4X4, matrix, depending on
whether the upper valence band is fourfold or twofold de-
generate. In order to get this matrix in its simplest form,
an appropriate basis for the exciton state is, indeed, of
importance. This is the reason for the introduction of a
particular hole basis [Eqs. (9) and (11)] in Sec. II, associ-
ated with the appropriate exciton basis defined in Sec.
III.

In Sec. V, we calculate the shifts at large detuning. We
show that (2X4) eightfold exciton (2 for the electron and
4 for the hole) splits into five levels, their shifts being ex-
actly those of a (2+4) six-level atom. This result is noth-
ing but the generalization of our previous results for sim-
ple band structure with one electron state and one hole
state: at large detuning, the exciton shift had the same
value as the one for a two-level dressed atom. This result
is also quite nice as it allows us to recover very easily the
structural symmetry of the polarization effects, avoiding
the exact treatment of exciton-biexciton coupling and
many-body effects. It also explains why the exciton basis
chosen previously is indeed the appropriate one.

In Sec. VI, we calculate the detuning dependence of the
shifts and show that, up to very small detuning, the sym-
metries of the shifted exciton levels are not affected by
the detuning. We find that the shifts are simply the large
detuning ones multiplied by (1+a/2+P/2), a and P be-
ing exactly the coeScients we introduced in the simple
band-structure case. ' This result is again the (nonobvi-
ous) generalization of our previous one: the large detun-
ing shift 2A, /0, becomes (2+a+P —y)A, /0, when the
detuning decreases. The part in y, however, cannot be so
easily extended, since in its expression, the true biexciton-
ic structure that is not 8 X 8 degenerate appears. In rela-
tion to this problem, we calculate the effect of a molecu-
lar biexciton on the excitonic shift, and give the symme-
try of the exciton component which red-shifts at the
exciton-biexciton resonance.

In Sec. VII, we give the various selection rules for
pump-probe experiments. They can be summarized by
saying that the best condition in which to see a11 the shift-
ed exciton lines on the same spectrum is to use circularly
polarized beams, propagating in perpendicular directions.
We also give the precise conditions necessary to see the
red-shifted line in pump-probe experiments.

In Sec. VIII, we treat the case of GaAs multiple quan-
tum wells separately and we explain the experimenta1 re-
sults obtained for linear polarized pump and probe

beams. This case clearly illustrates the analogy between
semiconductor and atomic physics: We found that, for
simple band structure, the large detuning exciton shift is
that of a two-level dressed atom. These two levels must
be understood to be valence and conduction bands, not
vacuum and exciton. Doing this, the results of all this
work on polarization effects are very easily recovered.
On the other hand, if one speaks in terms of vacuum and
exciton, one has to include the biexcitonic states, and all
the interactions coming from them.

In Sec. IX we give a summary of the main results of
this work.

The appendixes contain some more technical develop-
ments.

II. ELECTRON-PHOTON COUPLING

We first derive the electron-photon coupling when the
valence- and conduction-band symmetries are taken into
account. Since these symmetries are the key part of this
work, the precise expression of this coupling is of impor-
tance. It is why we have found it useful to establish it
from the very beginning.

A. General form

In the presence of a field vector potential A, the elec-
tronic Hamiltonian becomes

0'=(e/2mc)(P A+ A P)=(e/mc) A P (2)

if we choose the gauge such that V. A =0. We then write
the electronic part of the electron-photon coupling in
second quantification while treating the electromagnetic
field classically. This is appropriate if one is only in-
terested in laser intensities such that the classical limit for
the photon field is valid. The standard procedure for this
transformation gives

P. = & (,t)l P, ly. & b, b. +H c. , (3)

if one keeps only the terms associated with transition be-
tween conduction and valence bands; b, and bt are the
corresponding creation operators. Since the conduction
and valence bands are, respectively, S- and P-like, sym-
metry arguments imply that P couples the conduction
band only to a valence state with an x symmetry and that
the associated matrix element, P, is the same for x, y, and
z. This leads us to write, if b„creates an x valence state,

A P=Pb, (A„b„+A b + A, b, )+H.c. , (4)

A„„, being the vector-potential components. We will
choose them to be real. The conduction and valence
operators b, and b, have the same spin value, as the
operator A P acts only on the orbital space. One then
proceeds to a set of transformations from the conduction-
and valence-band basis to the tota1 electron-hole pair ki-
netic momentum basis. This is done in detail in Appen-

H =(1/2m)(P+e A/c) + Vc,„~+Vi,«,„.
Writing H as Ho+@; one deduces that the electron-
photon coupling, to lowest order in A, is
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dix A. One finally obtains for the e-photon coupling

)(I = W+ Wt,

W = g [W~(k)+ Wt(k)],

(5)
W (k)=(-')' '[A, B,(k) —

A, Bt,(k) —A+t(k)],

W (k) = —
( —')' [&+C)(k)—A, C )(k)—ApCpt(k)] .

83'(k) creates an e-h pair (k, —k) with total kinetic
momentum J =1,M, built from a J =

—,
' hole state, while

C3r(k } creates an e-h pair with the same kinetic momen-
tum J=1,M, but built from a J=

—,
' hole state. The fac-

tors I y p (e//mc)PA ~ p are related to the usual
coefBcient Ao= A, and

A~=2 ' (A„+iAy) .

Besides the factor 2' between the two valence sub-
bands, and the signs which may, at first, appear strange,
the expression (5) has an expected form. Indeed, if one
takes a circularly polarized beam, one knows that a o+
photon corresponds to a kinetic momentum J =1,M =1.
The absorption of such a photon should produce an e-h

pair with the same kinetic momentum. Since the absorp-
tion is ruled by the term e ' ' in the e-photon coupling,
one notes that for a o+ photon, only I,+ contains such a
term (as, for A„=a cosp3t, A =a singlet, A, =0, one finds
A -e *' '). Since the coefficient A, in Eq. (5) is in front+
of B& and C&, one concludes that a 0+ photon indeed
produces an e-h pair with kinetic momentum J= 1,
M = 1. Regarding the signs in Eq. (5), we can verify that
they have to be written that way for the sake of coher-
ence, in the particular case of a linear laser beam (see Ap-
pendix B). These signs are of importance in the case of
linear polarization cross effects.

In Eq. (5), the quantification axis for the kinetic
momentum of the created e-h pair is a priori arbitrary.
An appropriate choice may be along the photon momen-
tum. In this case, A,p=0, and the e-photon coupling, W~
or W&, reduces to two terms. However, in problems
dealing with pump-probe experiments, such a reduction
is not a priori possible for both photons, except when the
two laser beams are collinear. As we will see later, the
use of noncollinear beams allows us to obtain a wider ab-
sorption spectrum for the optical Stark effect.

We wish to note that one often chooses the
quantification axis along the k direction. This is, in fact,
the appropriate choice if one speaks of heavy- and light-
hole eigenstates as these states correspond simply in this
case to a valence kinetic momentum +—,

' and +—,'. How-
ever, for problems dealing with excitons, the k-
momentum direction is unimportant. Moreover, this
choice could not have been used for the electron-photon
coupling as the created e-h pair has an arbitrary k. In re-
lation with a quantification axis along k, we show in Ap-
pendix C how one recovers from Eq. (5) the well-known
fact that the heavy-hale creation is anisotropic, with a
sin 0 dependence, 0 being the angle between the hole
momentum k and the (linear) photon field A.

B. Appropriate form for the excitonic Stark shift

the coefficient A,o always being zero.
We have found that the e-photon coupling contains

two parts W= k~+ kc. However, for a detuning small
compared to the valence-band splitting, only one of the
two couplings, k~ or kc, will play a role in the exciton
shift. For materials such as GaAs, in which the upper
valence band is fourfold degenerate, we will have to con-
sider only ke, while for materials such as CuC1, we will

keep only kc, the upper valence band being twofold de-

generate.
Let us now consider the specific form of the electron-

photon coupling. Even if Wz appears particularly simple
in terms of the total e-h pair kinetic momentum operator
BM, it turns out that it is not the appropriate form to cal-
culate the optical Stark shift for excitons made from a
j =

—,
' valence band. As we will see later, the shifts appear

as eigenvalues in a [(2X4)=8]-fold subspace (2 for the
electron, 4 for the hole). The corresponding 8 X 8 matrix,
written in the ~J,M) basis, with J=1 and 2, contains
essentially no zero. So its analytical diagonalization is
hopeless. Instead, the calculation of the excitonic shift
appears particularly simple if one introduces a set of
canonical hole operators 8 (k), such that 8+3/2(k) are
the precise combinations of hole states which are coupled
to the electron states b+, /2(k). Namely, these hole
operators are defined such that the coupling Wz reads

W~(k)= b+b, /2(k)83/2( k)

+6 b j/2(k}8 3/2(
—k) ~ (8)

From Eqs. (5) and (A9), one can identify these operators
8+3/2 to be

8+3/2 —[X+C3/2 +.3/2 ( 3 ) X+C3/2 + 1/2 ]/4k1/2

The bare hole operator c- corresponds to a hole state
having a kinetic momentum (j,m ). The normalizing
coefBcients 6+ are

(10)

The two other hole states necessary to form, with the

In this paper we want to calculate the shift of the exci-
ton line induced by a pump beam tuned in the tran-
sparency region. For the sake of simplicity, we will
choose the quantification axis along the pump-photon
direction so that the electron —pump-photon coupling
equation (5) reduces to two terms (this will lead us to
keep possibly three terms for the electron-test-photon
coupling if the pump and test beams are not collinear).
As the photon absorption is ruled by terms in e ' ' in the
coupling Hamiltonian, the above choice of quantification
axis implies that the coefFicients A, + are, in the case of
usual polarizations,

A, +%0, I, =0 (0+ beam),

A, + =0, A, %0 (o beam),

A, + =A, , (linear x),
A, + = —

A, , (linear y),
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8+3/2, an orthogonal basis for the J=—', fourfold-hole

subspace, are easily found to be

8+i/z=[( —, ) A+ci/2 +3/i+k~c3/2 +i/i]/hg . (11)1/2

One can check that the set of canonical hole operators
8 (k) defined above are such that

[8 (k),B+(k'}]+=5 5i,i, . (12)

b,~ = + ( —,')' /(. ~ . (14)

III. ELECTRONIC SYSTEM

The Hamiltonian H of the electronic system is com-
posed of a kinetic part and a Coulomb interaction Vc,„&.
The kinetic part of a semiconductor valence band is
somewhat complicated. It results from the k p theory
and is given by the Kohn and Luttinger 6X6 matrix. It
can be separated into j =

—,
' and j =

—,
' states, the latter

having the heavy- and light-holes as eigenstates. As said
before, these eigenstates correspond exactly to
m =+—'„+—,

' when the kinetic momentum quantification
axis is along the hole moinentum k (and so changes with
k).

The eigenstates of H can be classified as follows: the
vacuum ~0); the one e-h pair, bound or unbound states
~X) that we call an "exciton. " They form a subspace
having a (2X6)=12 dimension; the two e-h pair, bound
or unbound, states ~XX) that we call a "biexciton. "
They form a subspace having a 12 X 12 dimension; and so
on.

Due to the presence of the Kohn-Luttinger valence
part in the Hamiltonian H, the e-h eigenstates are much
more complex than in the simplest case of one nondegen-
erate hole band. Besides the degeneracy of the corre-
sponding subspace, the precise eigenvalues and eigen-
functions are also much more difficult to obtain. Howev-
er, Baldereschi and Lipari have shown that, in the case
of the lowest exciton leve1, it is a good approximation to
replace the Kohn and Luttinger matrix by an average
hole mass [its particular value in terms of the heavy- and
light-hole masses being mi, =2(1/mH+I/mL) ']. This

We want to stress that the two hole states B+3/2 cou-
pled to the conduction band depend on the laser charac-
teristics via the coefficients A,+. In the particular case of a
0.+ beam, they reduce to the bare c3/2 3/2 and c3/p ]/2
hole states, as expected: These are the only states form-
ing with the b, /2 and b, /z electron states, an e-h pair
with total kinetic momentum equal to that of a o+ pho-
ton, i.e., J= 1, M = 1.

In order to have a similar form for the operator Wc,
coupling the conduction band to the j =

—,
' hole subband,

one can rewrite Eq. (5) as

8'c(k) =b, '+b, /i(k)C, /2(
—k)+b, ' b, /2(k)C —i/2(

—k),
(13)

where the operators C+, /2 are simply the bare hole
operators c i/2 +, /2 and the coefficients b, + are

with s =+—,
' and m =+—,', +—,'. The exciton creation

operator Bt (i) are expressed in terms of free e and h

operators as

&, (0= g P;(k)&, (k),
k

Bt (k)=b, (k)8 ( —k),
(16)

where the hole operators 8 are the appropriate com-
binations defined in Eqs. (9) and (11). P;(k) is the usual
exciton hydrogenlike wave function. The associated en-
ergy, in the rotating frame in which the electron-pump-
photon coupling is time independent, is in fact, the detun-
ing

0;=co;—co =(Fg —s;)—co~, (17)

where E is the band gap and co the photon frequency.
(ii) In the case of fourfold excitons, Eq. (13) for Wc

leads us to write the excitonic states as

~X„(i)) =C„.(i)~0), (18)

where s =+—,
' and s'=+ —,'. The exciton creation operator

is quite nice since, within this approximation, the one-e-
h-pair eigenstates of the Hamiltonian H appear simply as
hydrogenlike levels, associated with an unique reduced
mass ( I/m, +1/mz ) '. The 12D exciton subspace then
spreads into an eight-fold-degenerate subspace separated
from a fourfold one by a valence-band splitting h. The
physical idea behind this approximation is that bound ex-
citons are built from various hole states k, leading to
some kind of averaging over the hole masses. This ap-
proximation, which has been justified for the lowest exci-
ton level, is a priori not valid for the high-energy diffusive
states as, for these states; excitons appear rather like free
electrons and holes, and the holes are either heavy or
light. However, as the e-photon coupling creates e-h
pairs (k, —k) with every possible value of the momentum
k, it also induces some averaging over the hole masses.
This may justify the use of, in problems dealing with e-h

pairs created by photons, one averaged hole mass for all
exciton levels.

Consequently, and also for the sake of simplicity in an
already complex calculation, we will assume in this paper
that the valence band can be replaced by an average hole
mass. We will, however, keep the eightfold and fourfold
degeneracies of the original hole subspace and their ki-
netic momentum symmetries as they are the key part of
the polarization effects we want to derive.

The excitonic levels being eightfold or fourfold degen-
erate (if one neglects electron-hole exchange },' one can a
priori use for the excitonic states any 8D, or 4D basis.
Since we are interested in the optical Stark effect, we
choose the basis appropriate to the e-photon coupling
defined in Sec. IIB: more precisely, (i} in the case of
eightfold excitons built from j =—', hole states, the expres-
sion (8) for Ws leads us to write the excitonic states as
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Q;=(Es+b, —e;)—co =0;+5 . (20)

If we now turn to biexcitonic states, their exact expres-
sions are basically unknown as in the simplest case of one
nondegenerate hole band. We have, however, shown in
Ref. 5 that one can avoid using them in the calculation of
the exciton Stark shift, almost everywhere, by using the
Brillouin-Wigner form of the perturbation theory. They
appear, however, at small detuning, since the dominant
contribution to the Stark shift includes their exact forms.
We will come back to ~his problem in Sec. VI.

IV. EXPRESSION OF THE EXCITON SHIFT

The problem is calculating the energy change of the ex-
citon states IX, (i}) or IX„(i})defined in Eq. (15) or
(18), induced by the electron-photon coupling
@'=Ws++ Wc++H.c., Ws+ and Wc being given in Eqs.
(8) and (13). In this paper, we will only consider laser
beams with low intensity, tuned in the transparency re-
gion, far from resonance, such that the coupling @' can
be treated within perturbation theory.

The calculation basically follows that of Ref. 5. It is,
however, more complex as one has to include the exciton
degeneracy. For the sake of simplicity, we will calculate
the shift of the lowest exciton level. The case of an arbi-
trary level i can be easily obtained changing 1 into i.

The Stark shift of the exciton (i = 1) results from the
difference between the change of the exeiton energy 0',
and vacuum energy Eo induced by the e-photon coupling
lk As in Ref. 5, we will use the Brillouin-Wigner form of
the perturbation theory. In Appendix D, we derive its
expression for nondegenerate and degenerate states. This
leads us to write the change of the vacuum state energy,
to lowest order in k, as

Eo' Eo=&ol@'(Eo —H) 'O'Io& . — (21)

In the case of degenerate states, a similar procedure
gives, for the eigenstates IX'(1)) of the perturbed exci-
ton, a set of equations valid for any (s', m') (see Appendix
D},

0= g [(0',—Q, )5„5
s, m

+ &X„.(1)Ik(H —0, ) 'SIX, (1))]
x &x, (1)IX'(1)), (22)

5„.being the Kronecker function, 5„=1,if s =s', and
zero otherwise.

Equation (22) just means that the perturbed excitons

C„.(i) is expressed again in terms of free e and h opera-
tors as

C„(i)= g ((},(k)C„(k),
k

CL (k)=b, (k)Ct ( —k),
where (('i;(k) is the same excitonic wave function as in Eq.
(16), but the associated energy is now shifted by the
valence-band splitting 6:

IX'(1)) are the eigenstates of the operator
k(H —0, ) 'k, restricted to the degenerate exciton sub-
space IX, (1)); the perturbed energy being the associat-
ed eigenvalues.

If we now speak in terms of the exciton shift

5coi =(0', —Eo )—(Qi —Eo }, (23)

One indeed notes that the first matrix element of Eq. (25)
does not depend on the detuning, while the second one
goes to zero when the photon energy decreases.

Similarly the first operator of Eq. (24) can be identical-
ly written as

@'(Qi H) 'k—=—Qi '[ —[W, w ]+W H(0, —K) 'W

+W(20, —H)(Q, H) 'W'
J .—

(26)

Here again, the first term of Eq. (26} does not depend on
the detuning, the second one gives exactly zero when re-
stricted to the exciton subspace (as HWIX) -HIO) =0 if
ED =0), while the last term goes to zero when the photon
energy decreases (as W IX) —IXX) ).

Using Eqs. (25) and (26) into Eq. (24), the restriction of
the operator S to the exciton subspace reads

S=Qi '(T+T'},
T = —[w, w']+&oI[w, w']Io&s,
T'= W(20i —H)(0i H) 'W—

+&oIw(0, —a)a 'w'Io&r.

(27)

(28)

(29)

The T operator does not depend on the detuning, while
T', restricted to excitons IX, (1)),goes to zero when the
detuning increases. As T contains the commutator
[W, W ], which differs from zero due to Pauli exclusion,
this shows that the large detuning limit of the exciton
shift comes from Fermi statistics. This is exactly what
we have found in our original work without exciton de-
generacy. In this work, we also found that the correc-
tions to the large-detuning limit cancel exactly if the
Coulomb interaction is neglected. We will show that,

one deduces from Eqs. (21) and (22) that the Stark shifts
5', are the eigenvalues of the S operator defined as

s=k(Qi a) —'0'+&0I@'H '@'lo&r, (24)

restricted to the degenerate exciton subspace, I being the
identity (we have set ED=0}.

Following Refs. 1 and 5, we express the exciton Stark
shift as an expansion in binding energy divided by detun-
ing. In order to do that, we extract formally the large-
detuning behavior (obtained by replacing H in front of n-

pair states by n Qi ) by adding and subtracting it from Eq.
(24). This leads us to write, in the last matrix element of
Eq. (24),

&oI wa-'w'Io& =0-, '(&oI[w, w']Io&

+ & oI w(0, —a)a-'w'Io) ) .

(25)
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similarly, T' gives exactly zero for Vc,„&=0.
In the next paragraph, we will study the large-detuning

limit of the shift, i.e., the eigenvalues of T, and in the fol-
lowing one, we calculate its detuning dependence, i.e., the
contribution of T'. At this stage, it is useful to not that,
for detuning small compared to the valence-band split-
ting 6, one can only keep one of the two couplings JYz or
Wc in the calculation of the eight-fold or four-fold exci-
ton shift, within terms of the order of 0, /h.

V. EXCITONIC SHIFT AT LARGE DETUNING

We have shown in Sec. IV that the excitonic shifts 5',
at large detuning are given by the eigenvalues of the
operator 0, 'T restricted to the degenerate exciton sub-
space. We will consider separately the case of fourfold
and eightfold excitons.

A. Fourfold exciton

The matrix elements of the operator T restricted to the
exciton subspace IX„(1)) read, when one keeps only Wc
in the e-photon coupling,

T„„,= &X„(1)I TIX„(1)&

= &olc„(1)[w,, w,']c'„„.(1)lo&

+ (ol [w„w,']lo &5,„5,.„, , (30)

with s,s', r, r'=2 —,'. Noting that 5„5...= (Olcss C„„lo),
one can rewrite Eq. (30) as

T„„„=(OIC„(1)[C„„(l),[W, W ]]lo) .

Using Eq. (19), it is easy to show that

do not depend on k. Its precise calculation using Eq. (13)
for the coupling Wc(k} gives

Us 'rr' 5sr5 ' ' y ~k(5 kl/2 5 ' +1/2) (34)

with b,+ given in Eq. (14). Equation (34) shows that the
U matrix appears, on the IX„)basis, in a diagonal form,
its matrix elements being 2k+, 26', and 5++5', twice.

Since the excitonic shifts are the eigenvalues of the
operators 0, 'T=Q& 'U, it is straightforward to con-
clude that, at large detuning, the fourfold exciton splits
into three shifted lines which correspond to

26'+ /Qi, fol' IX1/3 1/3 )

2h' /n„«r IX 1/2, —1/2 & (35}

(5'++6, ' )/01, for IX+1/2 1/~& and IX—1/2, +1/2& ~
r

The two first states correspond to a total e-h kinetic
momentum M =+ 1 and —1 so they can be seen with a
probe beam collinear to the pump and having cr+ and cr

components, respectively. However, the last shifted lines,
which correspond to e-h states with M =0, can be seen
only with a probe beam not collinear to the pump.

It is interesting to note that a similar calculation for
the exciton IX„(i)) would give the same shifts, so that,
as for the simple case (i.e., without band degeneracy), one
finds that the large-detuning value of the exciton shift
does not depend on the specific excitonic level con-
sidered.

T„„„=g I((',(k)l'U„„, (k) = U„„,
k

(32)
B. Eightfold exciton

as the matrix elements U„.,„,
U„.,„.(k) = (OIC„(k)[C„,(k), [W (k), W~(k)]] lo),

(33)

We now perform a similar calculation for the eightfold
exciton, the coupling Ws being given in Eq. (8) and the
excitonic basis IX, (1)) in Eq. (16). The matrix elements
of the corresponding operator T read

T, , = (olB, (1)[B,', ,(I), [ws, ws]] 10& = y l({}1(k)I'U, ,, (k),

U, , (k)=(OIB, (k)[B, (k), [Ws(k), Ws(k)]]IO) .
(36}

As the hole operators 8 (k), defined in Eqs. (9) and (11),
also form an orthogonal set [see Eq. (12)], it is easy to
find,

2
Tsm, s'm' 5ss'5mm' g ~k(5s, + 1/2+5m, k3/2} ' (37)

We see that the T matrix 8 X 8 appears immediately in a
diagonal form, thanks to the use of the hole operators 8
which are indeed the appropriate ones in this problem.
We wish to note that unappropriate hole operators could
lead to an SX8 matrix without any zero, its eigenvalues
being then quite uneasy to obtain.

From Eq. (37), one deduces that the eightfold exciton

I

splits, under laser irradiation, into five shifted lines which
correspond to

2~+/II i o IX-1/2, 3/2)

2~' /II1 for IX1/3, —3/p)

(~'++~' )/Ili o IXi/2, 3/2& an IX-1/2, —3-/2&

b, +/0, , for IX,/~, /~) and IX 1/2, /2),
~'-/&1 «r IX1/2, 1/2 & and Ixl/2, —1/2) (38)

6+ being given in Eq. (10}. In the particular case of a o +
beam (i.e., A.+=A,, A, =0) these shifts are respectively,
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2A, /Q„—,'A, /Q, , ~4k, /Q„A, /Q, , —,'A, /Q, , while for a
linear beam (i.e., iL+=A, ) these five shifts collapse into
two different ones 2A, /Qi and A, /Qi.

Excitons IX, &=b, B IO& are built from the hole
combinations B defined in Eqs. (9) and (11). Going
back to the hole operators c, quantified along the
pump-photon momentum, we note that the states
IX-1/2, 3/2 &' IX1/2, —3/2 & IX—1/2, 1/2 & an IXi/2, —1/2 &

correspond to e-h momentum M =+1 so it is possible to
see these four shifted lines with a probe beam collinear to
the pump and having ca+ and o components. However,
the four other exciton states correspond to M=2 or 0
and so cannot be created with a probe photon collinear to
the pump. Consequently, such a probe cannot see the
shifted line (b,++6 )/Q, . We will come back to this
problem in Sec. VII and give the weights of the various
absorption lines for typical pump-probe experiments.

Here again one can note that the excitonic shifts do not
depend on the specific exciton level i, as in Ref. 5.

In our original work (Ref. 5) on the optical Stark shift,
without conduction- and valence-state degeneracies, we
also had an important conclusion for the exciton shift at
large detuning, namely, the value of the shift is the same
as that for the two-level atom, 2A, /Q, . We gave a physi-
cal interpretation for this result: at detuning large com-
pared with the exciton binding energy, the Coulomb in-
teraction can be neglected; one valence state is then cou-
pled to one conduction state as for a two-level system, so
one gets the same shift. This physical interpretation
should also be valid when the valence and conduction
band are degenerate. The corresponding result in the
case of four valence states and two conduction states
should be that the five shifts of the eightfold exciton,
given in Eq. (38), are nothing but the ones of a
[(2+4)=6]-level atom. We will show it below.

C. Six-level atom

(39)WJi(k) =b,+b, /2 A 3/2 d, b, /2 A3n—
where the valence-band operators A+3/2 are

A~3/2 —[k~b3/2 ~3/2
—( —,

')' k+b3/2 ~, /2]/h~, (40)

bj being the electron valence-band state, with kinetic
momentum (j,m). It is then easy to conclude that at

One can, at first, note that the above shifts are different
from the simple two-level value 2A, /Q„A, being the cou-
pling factor between these two levels. This comes from
the fact that the two electron states are not coupled simi-
larly to the various hole states. If all the couplings were
A, , the above calculation would have given the same shift
2A, /Q, for any exciton. In order to find the shifts [Eqs.
(35) and (38)], one has to take into account the exact
electron-photon coupling.

In order to speak in terms of valence and conduction
states, we first have to rewrite the e-photon coupling 8'~,
given in Eq. (8) in terms of hole operators B+3/2 in terms
of valence-band operators. Using Eq. (A7), one finds that
Eq. (8) becomes

b, +/Q, for A +»2~b 1/2 e. , IX-I/2, 21/2 &

~—/Qi for ~El/2~bi/2 1 e IX1/2, 21/2 & (41)

One verifies that these shifts are just those of Eq. (38).
(i) This result is physically very important. The fact

that the five shifts of the eightfold exciton are exactly the
ones of a six-level atom is indeed a very fundamental
proof of the idea that excitons appear like dressed-atoms
at large detuning.

(ii) This result is also very useful as it allows us to ob-
tain extremely easily the eightfold exciton shifts and the
corresponding correct polarization effects in pump-probe
experiments. It is all the more useful as the first correc-
tions to the large-detuning behavior of the shifts have the
same symmetries, as will be shown later.

(iii) This result is also useful as it allows us to under-
stand why the hole operators 8, which may have ap-
peared complicated at first, are indeed the appropriate
ones for the exciton Stark effect. As soon as one remarks
that the exciton shifts have to be those of a multilevel
atom, it is clear that the appropriate basis for this prob-
lem is the one in which valence to conduction-band tran-
sitions appear in their simplest form and not the one in
which the exciton-photon coupling is simple. It is why
the total kinetic momentum exciton basis, IXJM & with
J =2 and 1, which at first may have appeared a good
choice for the eightfold exciton, in view of Eq. (5) for the
electron-photon coupling, turns out to be a rather poor
choice for the expression of the matrix T.

-1/2

D/2 -i/2 1/2 3/2

FIG. 1. Shifts of the conduction and valence states 6, and
A (with s =+—' and m =+—,4 —'), defined in Eq. (40) induced

by the electron-photon coupling. 6+ are defined in Eq. (10) in
terms of the o.~ components of the light.

small laser intensity the conduction states b, &2 and
valence state A 3&2, being coupled by 8'~, are pushed
apart by a quantity 5+/Q„while the conduction and
valence states b]&2 and A3/2 are pushed apart by 6 /0,
(see Fig. 1). The valence states A+, /2 are not coupled to
the conduction band so they are not affected by the laser
beam. One then deduced the following shifts for the vari-
ous valence to conduction-band transitions:

26+/Qi f«& —3/2 b —1/2 1', IX-1/2, 3/2&

2~ —/Qi o ~ 3/2 b 1/2 e IXl/2, —3/2 &

(~++~ —)/Qi for ~3/2 b —1/2 1 e IX-1/2, —3/2 &

~ —3/2 b 1/2 e
I X1/2, 3/2 &
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For the sake of completeness, we have calculated in
Appendix E the exact six-level atom eigenstates for any
laser intensity.

As in Ref. 5, we write these matrix elements as an expan-
sion in binding energy divided by detuning. This is per-
formed by introducing the operator V, (1)defined as

VI. DETUNING DEPENDENCE
OF THE EXCITONIC SHIFT

[H, Bt (1)]=n,[B, (1)+V, (1)] . (43)
The problem now is to calculate the terms coming

from the part T' in the excitonic shift [Eq. (29)] restricted
to the degenerate exciton subspace. More precisely, in
the case of the eightfold exciton we have to calculate

T,', ~
= (0~ Ws tB,sr(1)(H —2Qi)(H —Q() 'B, (1)

5„5—~ (H —Qi)H 'I bio) . (42)

I

The explicit calculation of V, (1) is done in Appendix F.
The operator V, (1) which creates one e-h pair has the
same structure as the operator C ( I ) introduced in Ref.
5. It basically corresponds to Coulomb interaction be-
tween excitons, as seen later. Noting that

(H —2Q, )(H —Qi) 'B, .(1)=B,. (1)(H —Q, )H '+Qi(H —Qi) 'Vt (1)niH

the T matrix can be written, in the spirit of Ref. 5, as

T'= a+P r", —

where the a,P, r matrices are defined by

a. .. = (0~ Ws{B, (1)B, (1)—5„5 I (H —
Q& )H ' Ws ~0),

P, , =(Oi Wan, H 'B, (1)V, (1)niH 'bio),

(44)

(45)

(46)

(47)

r,.„.=«IwsniH 'V, (1)n,(H —n, )-'V,'.Q,H-'W,'~O) . (48)

In the first two terms, a and P, the Hainiltonian H acts only on one-e-h-pair states, allowing their exact calculation.
We will show that they can, in fact, be expressed extremely simply in terms of the T matrix. In the last term y, H acts
on two-pair states so the exact biexcitonic wave functions are needed to calculate it explicitly.

We have said in the last paragraph that T' gives exactly zero if the Coulomb interaction is neglected. It is already
obvious that P and r give zero if V, =0. We will show that a gives zero also.

A. Calculation of cz

Using Eq. (16), one can write the coupling Ws(k), given in Eq. (8), in terms of the exciton operators B, (i),

Ws(k) = g (();(k)Ws(i),

WB ( l ) =5+B 1 /2, , 3/2 ( i ) +5 B I/2, —3/2 ( i )

This expression W~ leads to

(H n, )H —'w,'lo&= yy((), (k)(n, —n, )n w,'(i)lo& .
i k

Using Eqs. (49) and (50) in Eq. (46), one finds

a, , = p p p;(k) g p,"(k')(Q, —Q))n, '(O~B, (1)[[Ws(k'), Wst(k')], Bt, ,(I )]~0) .
i k

(49)

(50)

(51)

riting B, (1) in terms of B, (k), one shows that this last matrix element is proportional to U. . .(k), given in Eq.
(34). It is then easy to conclude that the a and T matrices are proportional. More precisely,

a, , =(a/2)T,

a =2+(Q, —Q, )Q, ' g P;(k')P, (k)~P, (k)~2 . (52)
k, k'

It is nice to find that u is the same coeScient as the one
defined in the simple case, without valence- and
conduction-band degeneracy (Ref. 5). We recall that the
physical origin of this term is that the two excitons "feel" a„„„.=(a/2)T„„„. (53)

I

each other because they are not real bosons; in three di-
mensions, the variation of a with detuning goes from
4(s&/n&)' at large detuning to 5 at small detuning; if
the Coulomb interaction is neglected, the P's are plane
waves and a=0.

In the case of a fourfold exciton one finds the same re-
sult, namely
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B. Calculation of P

It is somewhat less easy to show (see Appendix G) that
one finds for p a result as simple as the one for a, namely

The three other exciton states

~+IXI/2, 1/2&+~ IX I/2, —I/2&

~XI/2, —I/2 &&

(58)

P, , =(P/2) T. (54)

p being the same coefficient as the one found in the sim-
ple case (Ref. 5) (see Appendix G). We recall that, at
large detuning, p goes to zero faster than a (which is then
the leading large-detuning correction), while, at small de-
tuning, p diverges as p»/fII, (with p»= —", e, in three di-
mensions) and so dominates.

Up to that stage, we find that the excitonic shifts,
which are the eigenvalues of

01 '(T+a+p) =01 '(1+a/2+p/2)T, (55)

are simply the large-detuning ones, multiplied by
1+a/2+ p/2. This result is just the nonobvious general-
ization of our previous one, with a simple band structure,
namely the large-detuning shift 2A, /QI transforms into
(2+a+p)A, /QI when the detuning decreases. This re-
sult is also quite nice as, the eigenstates being, of course,
the same as those for T, the selection rules for pump-
probe experiments are not affected by the first two
detuning-dependent terms. They are still simply the ones
for a six-level atom.

C. Calculation of P

~XII & +~ —I/2, —I/2&+~ —~XI/2, 1/2 & . (56)

The corresponding shift is

—
—,'A, y (QI —e )

being the molecular binding energy.

(57)

Unfortunately, this nice result does not apply to |/: the
matrix /is no't proportional to T. The main reason is
that a and P contain only the excitonic eigenstates which
are eightfold degenerate, while y deals with the true biex-
citonic eigenstates, which are not 8 X 8 degenerate. The
internal structure of biexcitonic states appear there.

As explained in our previous work, y along with p are
the dominant contributions to the excitonic shift at small
detuning. However, p gives a positive contribution to the
shift while y gives a negative one; so it is not clear wheth-
er the exciton red-shifts or still blue-shifts at resonance.
The small-detuning behavior is, in fact, clear only when
the biexcitonic molecule is well bound. y is then the only
dominant term at the two-photon biexcitonic resonance
and the exciton line clearly red-shifts.

We now consider this problem and concentrate on ma-
terials, such as CuC1, having a stable biexcitonic mole-
cule. Such materials have a J=

—,
' upper valence band so

that their excitons are initially fourfold degenerate. We
have already shown that, at large detuning, the fourfold
exciton splits into three blue-shifted lines [see Eq. (35)].
As shown in Appendix H, only one particular combina-
tion of the fourfold states is affected by the existence of a
stable biexcitonic molecule and red-shifts at the biexci-
tonic resonance, namely

are not affected by the existence of a stable molecule. So
only one of the four exciton lines red-shifts at the two-
photon resonance, flI =20„„=2(oI„„—co~ ) =201—E

By continuity, one expects that the exciton line which
red-shifts has the smallest blue shift at large detuning.
This can be easily checked in the simple case of a o+
beam; from Eq. (56), one sees that ~X I/2 I/2& is the
only state which red-shifts while from Eq. (35), it is the
only one which does not blue-shift at large detuning.

At resonance, 20„„=0, , the molecular biexciton is de-
generate with the four exciton states. Perturbation
theory done in this degenerate subspace easily shows that
the excitonic red-shift saturates to

I & XX
I ~C IXI/2 I/2 & I

+I&XXI~cIX I/2 I/2&I'= —y~, (59)

with a linear dependence in A, , i.e., a dependence in the
square root of the laser intensity, as expected for a reso-
nance.

VII. SELECTION RULES
FOR PUMP-PROBE EXPERIMENTS

In the preceding sections of this work we have found
that, under laser excitation, the degenerate exciton line
splits into various shifted lines. Let us now derive how
these lines can be seen with pump-probe experiments.

The absorption spectrum of a probe beam results from
the Fermi golden rule. The weights of the various shifted
lines are given by

U„=i&X„'iW,'iO&i', (60)

~X„' & being the eigenstates of the electronic system in
presence of a pump beam. Their expressions, on the exci-
tonic basis ~X, (1)&, are given in Eq. (35), for fourfold
excitons, and in Eq. (38) for eightfold excitons. We have
shown that the shifts corresponding to ~X„' & are up to the
y contribution, the large-detuning ones, multiplied by
1+a/2+p/2, i.e., up to very small detuning, the sym-
metries of the eigenstates are unaffected by the detuning
dependence; only the shifts vary.

The operator 8', is the electron —probe-photon cou-
pling. It has the same form as the electron —pump-
photon coupling equation (5), with three nonzero
coefficients p+,p, po if the probe beam is not collinear
with the pump.

We will consi. der separately the cases of fourfold and
eightfold excitons, and give in a third subsection the con-
ditions necessary to observe the redshift induced by an
excitonic molecule. General expressions will be given for
the weights of the various shifted lines including the
three components p+, p, and po of the probe. We will
give in Figs. 2 —4 specific results for typical pump-probe
experiments with a probe collinear or perpendicular to
the pump, both having either circular or linear polariza-
tions.
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A. Fourfold exciton

Using Eqs. (A10) and (5), one finds

+ I0&=/, IX1/21,2&
—P lX 1/2, —1/2&

PO( ~X1/2, —1/2 )+ ~X—1/2, 1/2 & ) (61)

I2+ for 2b, '+2/0, ,

/2' for 2h'/0, ,

p,o for (b, '++5' )/Qi .

Let us consider these results in some particular cases.

1. o+ pump beam

(62)

For a 0+ pump beam (see Fig. 2), b,
' =0 so that the

shifts are, respectively, 2b, ' /Q„O, and b' /Q„with
6 ——', A..

1 2

From the eigenstates of the split exciton, given in Eq.
(35), one deduces the following weights for the three
shifted exciton lines:

(i) A cr+ probe beam, collinear to the pump, corre-
sponds to p =go=0. With it, one can see only the line
2A' /0&. Similarly a 0. probe sees only the unshifted
line.

(ii) A linear probe beam, parallel to the pump, corre-
sponds to p+=+p, @0=0. With it, one sees the two
lines 2A' /0& and 0, with the same weight.

(iii) The third line, b,
' /01, can be seen only with a

probe beam not collinear to the pump. If the probe beam
has a linear polarization parallel to the pump-photon
momentum, one only sees that third line (@+=@, =0,
po%0). If the polarization is perpendicular to the pump-
photon momentum, one sees only the two other lines.

The best experiment to see the three shifted lines on
the same spectrum is to use a circularly polarized beam,
propagating perpendicularly to the pump (in this case
/2+ =/2 2 — Po)

2. Linear pump beam

For a linear pump beam, 5'+ =+5', the three exciton
lines are equally shifted and the pump photons do not
split the exciton degeneracy. This unique unsplit shifted
line can, of course, be seen with any probe beam.

B. Eightfold exciton

Using Eqs. (A9) and (5), one finds that

~t ~0& (3 / )(/ + ~x —1/2, 3/2 &+8' —~x1/2, —3/2 & )

11

I

'4g
I

0 1

where

~x, &=b,'c'„2 ~0& .

2 P(+~ xi 2/, 1 2/& +a-lx-1/2, —1/2 & )

+2 '
/2o( lx 1/2, —1/2 &

—lx 1/2, 1/2 & ),

(64)

1/2

0 1 2

1 2

1(2

It is useful to note that these ~x, & states differ froin the
exciton basis ~X, & used previously, the states ~X, & be-
ing expressed from the appropriate combination 8 of
hole operators c3/2, defined in Eqs. (9) and (11). Keep-
ing this in mind, one easily deduces the following weights
of the five shifted lines, obtained in Eq. (38):

(3iip++A, p )
for 2b+/0, ,

126+

(3A, p +A+/i+ )
for 2b, /0, ,

126

1/4

P 1

I

1/4

2

po A.

+
g2 g2

Q2 ++2
for

1

(A, /i+ k+/2 ) A, /io+ for
46+ Q)

(65)

FIG. 2. Possible spectra for pump-probe experiments in the
case of a fourfold exciton made from a J= —' valence band. The
shifts are in units of 6' /OI. The pump has a circular polariza-
tion. The pump- and probe-photon momenta are either parallel
or perpendicular. The probe polarization is either circular or
linear. A11 three shifted exciton lines are seen only on the last
spectrum, when the two laser beams are circularly polarized
and propagate in perpendicular directions.

(k P+ A, +/2 ) A, +/lo+ fol
4h Q)

One can check that the sum of these five weights gives
p++p +po, as expected. One also notices that one of
the lines, (62++6 )/II1, can be seen only if the probe
and the pump are not collinear (as go&0). I.et us now
consider some particular cases.
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I. cr+ pump beam

For a u+ pump beam (see Fig. 3), A, + =A, , A, =0, i.e.,
6+ =k, 5 =k /3, the above results give

3/8

0 2/3 413,

3p, + /4 for 2A, /Q &,

p+/4 for 2A, /3Q, ,

po/2 for 4A, /3Q&,

i '/4 for X'/Q, ,

3p /4+@0/2 for A,~/3Q, .

(66)

a. Pump and probe collinear. A u+ probe, p =p0=0,
"sees" only the two first lines, with relative weights —,

' and

/
or

/

/

/= 0

I

2/3 4/3

3/4
1/4
I

2/3 4/3

2. Linear pump beam

For a linear pump beam (see Fig. 4), A, +=I, , i.e.,
b, + =b, =2k, /3, the five exciton lines collapse into two

1/4
I I I I I

0

1/4
I I I I

2

3/8
1/8 1/8

I I i s

1 2

7he

I

2

ge Qs
I

1

3/)6

1

4'
A o probe, p+ =0, "sees" the last two ones with rela-

tive weights —,
' and 4.

A linear probe, p, +=kg, @0=0, "sees" four of the
five lines with relative weights —'„—,', —,', and —', .

b Pump . and probe perpendicular. A linear probe, with
a polarization parallel to the pump-photon momentum

(@0%0, p,„=@~=0)"sees" the two lines 4A, /3Q& and
A,2/3Q, with the same weights.

Here, again, the five lines can be seen with a circularly
polarized probe, perpendicular to the pump
(p+ =p, =p„/2=@0/2); the relative weights are —,'„—,'„

and —.1 1 7
4~ 16~ 16'

FIG. 4. Same as Fig. 3 for a linearly polarized pump beam.

lines. From Eq. (65), one finds

(5p, ++5p +6@+@ )/8+pa/4 for 4A, /3Q, ,
(67)

3(p, + —p ) /8+3@0/4 for 2A, /3Q, .

a. Pump and probe collinear Acirc. ular probe "sees"
the two lines with relative weights —,'and —,'.

A linear probe, parallel to the pump (p+ =p ), "sees"
only the first line.

A linear probe, perpendicular to the pump
(p+= —p ), "sees" both lines, with relative weights —„'

and —'.4'
b. Pump and probe perpendicular Alinear . probe with

polarization parallel or perpendicular to the pump polar-
ization "sees" the same results as above (as expected).

A circular probe also "sees" the two lines, but with rel-
ative weights —,

' and —', .

C. Excitonic red shift

We have found previously that, in material having a
stable biexcitonic molecule, such as CuCl, one component
of the fourfold exciton red-shifts for Q&=20„„, i.e.,
co +co =2'„„. This resonance corresponds to the
creation of a biexcitonic molecule from a pump photon
co~ and a probe photon creating the exciton. As the mol-
ecule has a symmetric orbital part, one expects this reso-
nance to be observable if, from the probe and pump pho-
tons, one can produce an antisymmetric spin part. In
particular, we do not expect to see the red-shifted line
from pump-probe experiments where both beams have a
0+ polarization. Let us show it in more detail.

The exciton eigenstate which red-shifts at the biexci-
tonic resonance, is given in Eq. (65). Since the weight of
the probe-photon absorption line is

Ug = l&&g I
II IO&l'/&&a IX~ &, (68)

where 8',tl0& is given in Eq. (61), one finds

Ua =(A,+p +A. p+) /(++& ) (69)

FIG. 3. Same as Fig. 2 in the case of eightfold exciton made
from a J=

2 valence band. The shifts are in units of A, /0, . All

five shifted exciton lines are seen when the two laser beams are
circularly polarized and propagate in perpendicular directions.

One concludes that the red-shifted line can be observed
(i.e., URAO) using a o+ pump and a o or linear probe.
In the case of a linearly polarized pump beam (A, + =A, ),
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the red shift is seen with a circular probe or with a linear
probe having the same polarization as the pump one
(v+ =v-).

VIII. GaAs MULTIPLE QUANTUM WELL

We end this work by considering separately the case of
GaAs multiple quantum wells. The first experiments on
the excitonic optical Stark effect were done in this materi-
al using linearly polarized pump and probe beams. The
experimental absorption spectra are found to be indepen-
dent of the relative polarizations. It has been argued at
first that these spectra should depend on polarizations,
using the following naive argument: an x-pump photon
is coupled only to an exciton having an x symmetry, so
that only the x exciton should be shifted. An x-probe
beam "sees" such a shifted exciton while a y-probe beam
would see only an unshifted state.

We now explain why the experimental results are
indeed the expected ones and why the above argument
fails. In order to show it as simply as possible, we use the
fact demonstrated above, that up to the very small detun-
ing y contribution, the symmetries of the various shifted
exciton lines can be obtained from a multilevel atom, for
which the correct electron-photon coupling symmetries
are, however, included. The problem is similar to the one
of bulk GaAs with a j =

—,
' valence band. One has, how-

ever, to include the fact that the heavy- and light-hole de-
generacy is lifted in multiple quantum wells. Using Eqs.
(39) and (40), the electron-photon coupling reads, in
terms of conduction and valence operators,

~B 1/2(~ —b3/2, 3/2 ~+ ~3/2, —&/2)
—1/2

+b —1/2(~+ 3/2, —3/2 ~— b3/2, 1/2 )

One deduces (see Fig. 5) that the shifts of the two conduc-
tion states (+—,') are (A, ++A+/3)/0„ the shifts of the
two valence states (+—,

'
) are A, + /0&, and the shifts of the

two valence states (+—,') are A, +/30&. A linear pump
beam, A, + =+X, does not differentiate the two conduc-
tion or valence states, the above shifts being, respectively,
2k /30&, P /20&, and P /60I. Consequently, a probe
beam, which induces a valence to conduction-band tran-
sition, sees only one fourfold heavy-hole exciton line,
with a 2A, /3Q, +A. /20, =7k, /60, shift and one four-
fold light-hole exciton line with a 5A, /6Q& shifts, whatev-
er the probe polarization is. On the other hand, for a cir-
cular pump beam, the various valence and conduction
levels are shifted differently, inducing a splitting of the
fourfold exciton level. This induces different absorption
spectra depending in the probe polarizations.

IX. ANALOGY WITH ATOMIC PHYSICS

The above example illustrates clearly how the analogy
between semiconductor and atomic physics should be
made. Due to the fact that in the absence of band-
structure degeneracy the large-detuning exciton shift has
the two-level dressed-atom value, one may think that
these two levels are either the valence and the conduction
bands, or the vacuum and the exciton. One might, how-
ever, expect some problems with a naive use of the
second picture, as the e-photon coupling would imply not
only transitions between exciton and vacuum, but also
transitions between exciton and biexciton, so that the
coupled system is not simply "two levels. " On the other
hand, if one keeps in mind the physical origin and the
large-detuning value of the shift, 2A, /0&, as being a free-
particle limit, one can easily identify the correct "two lev-
els" as being the valence and conduction bands. It is then
straightforward to generalize the calculation of the exci-
tonic shift to the case of a degenerate band structure: An
exciton made from a twofold conduction band and a
fourfold valence band, should have the shift of a (2+4)-
level atom (as far as the internal structure of the true
biexcitonic states does not play a role, i.e., not for very
small detuning). We wish, however, to say that, even if
the above analogy is of great help in simply understand-
ing the dressed-exciton problem, it was not, a priori, en-
tirely obvious. It is why the theory exposed in this work
starts with exciton states and their couplings with vacu-
um and biexcitons.

X. CONCLUSION

~~ ~ I ~ ~~

FIG. 5. In the case of GaAs multiple quantum well, the vari-
ous valence and conduction states are coupled differently to the
o.+,o. components of the pump, inducing different shifts.

In this work we have done the following.
(1) We have rederived from the start the electron-

photon coupling taking into account the syrnrnetries of
the photon and of the electronic system.

(2) We have used it to calculate the optical Stark shift
of the exciton, taking into account the band-structure de-
generacy.

(3) We have shown that a laser beam, tuned in the tran-
sparency region of a semiconductor, not only shifts but
also splits the exciton line. More precisely, a fourfold ex-
citon, built from the j =

—,
' valence band, can split into up

to three lines, while the eightfold exciton, built from a
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APPENDIX A: DERIVATION
OF THE ELECTRON-PHOTON

COUPLING EQUATION (5)

From the values of the Yl (8,91) functions,

Y, 0(H, Ip)=( —,
'n. )'/ cos8=[(—,3m)' 'p ']z .

Y, ~1(0,y ) = ( —', n. )
I /

( + sin8 e —+'~)
(A 1)

j =
—,
' valence band, can split into up to 6ve lines.

(4) We have given the conditions to observe these shift-
ed lines in pump-probe experiments.

(5) We have discussed the observability of the exciton
red shift caused by the existence of a stable biexitonic
molecule.

(6) We have shown that up to very small detuning the
exciton shifts can be easily understood in terms of the
shifts of a multilevel atom, two levels for the conduction
band and four (or two) levels for the valence band. As an
illustration, we have explained the experimental result in
GaAs multiple quantum wells, obtained with linear pump
and probe beams.

IJ =-' k-') =( ')'"Io y ) +( )'"lyl + )

IJ —-' + I
& =+(-')'"I+1 + I

& ~(1)I"lo*I &,

one finds that, in 8', A, + is the prefactor of

(A5)

s —l, s b —I /2b3/2, —3/2
s =%1/2

+b I /2 [4 }' "b
3/2, —I /2

b I/2, - I/2] ~

2 1/2 (A6)

where b t creates a valence state (j,m } with
j=—m=+ —+—or j=—m =k—.' —3 — 3 1

' —1 — l
27 2' 2 2' 2

The last step is to transform electron-valence operators

bJ into hole operators c in order to obtain the
electron-photon coupling in terms of electron-hole pair
creation. The rule for this transformation is to change
the electron momentum k into —k and the electron ki-
netic momentum m into —m. There is also an alterna-
tive sign change in the transformation. (This sign change
is indeed necessary to recover the exact total e-b pair ki-
netic momentum states [Eq. (A9)].} One finds

having a kinetic momentum change +1,0.
The next step is to write the ll;s ) valence states on the

valence kinetic momentum basis, Ij=
—,', m ) and

Ij=
—,', m ). From the usual relations for kinetic momen-

tum summation,

lj =-'„+-', &=lI =+1;s=+-,' &,

one deduces

=[(—'m)' p ']2 ' (+x —Iy), c I/2, 1/2(k } b I/2, —I/2(

C I/2 I/2(k) = bI/2 I/2(
—k);—

&=2 '"(—ll &+I —1&),

ly & =12 '"(
I
l &+ I

—1 & ),
Iz&=lo& .

(A2)

c, , (k)=b, , ( —k),
c, 0(k) = —b, 0( —k),

cl 1(k)=b, , (
—k);

(A7)

This transforms Eq. (4) into"

A P=Pb, ( A+b I
—/1 bl + A Obo)+H. c. , (A3}

W = g bt(7I+b I, —
A. b, ., +A,obo, ),

s =+1/2

(A4)

where A, + o=(elmc)P/I+ 0. The operator b, creates a
conduction electron with spin s, while bI, creates a
valence electron with spin s and orbital momentum
1,l =+1,0. Note that A, + 0 are associated with transitions

I

where bI creates a valence electron in an orbital state
1, / =+1,0 and 3+ have the usual definition [Eq. (6)].

The operator A.P, acting only on the orbital space,
couples conduction and valence states with the same spin
value, so that if one adds the spin part, the electron-
photon coupling in Eq. (2) reads

W=8'+ W

3/2, 3/2(k} b3/2, —3/2(

C3/2, 1/2(k) b3/2, —I/2(

C 3/2, —I/2(k ) b3/2, 1/2(

C3/2, —3/2(k) b3/2, 3/2( k)

and so on. This leads us to rewrite Eq. (A6) as

s —l, s [ T I/2 3/, I/ —I/2 3/2, 3/2 ]1/2

21/2 t
( 7 ) b I /2C I /2, I /2 (AS)

The term in the square bracket of Eq. (AS) can be
identified with the cration of an e-h pair with total kinetic
momentum I

J= 1, M = —1), made from j=
—,
' and s =

—,
'

states. More precisely, using the total kinetic momentum
summation

IJ =1 M =+1&=+(-')'"lm =+ s =+ I &+ I I+ I +-')

l~= 1 ~ =o) =(-')'"(I-,', —
—,') —

I

—-'+-'&)
(A9)
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for —,
' and —,

' momenta, and

IJ=1,M=kl& =lm =+—,'; s =+—,
' &,

IJ=1,M =0& =(—')' (I1' ——'&+
I

——' —'&)

for —,
' and —,

' momenta, one obtains for the factor of A, + in 8't, Eq. (Ag).

[( 4 )1/2Bt1(k) (
z )1/2Ct(k)]

(A 10)

(Al 1)

Doing a similar procedure for the factors of A. and A,o, it is then easy to deduce the electron-photon coupling given in

Eq. (5).

—
A,OBO

——A B, (Bl)

APPENDIX B: SIGN COHERENCE IN EQ. (5)

Consider a linear beam with A„Ay 0 Az A The
electron-photon coupling, Eq. (5), gives

C +3/2 ) 1S

—( —')' [sin8e '~b t, /2C3t/2

+sin8e' b, /2c 3/2)+iq (C4)

APPENDIX C: ANISOTROPIC CREATION
OF HEAVY AND LIGHT HOLES

From the Fermi golden rule, one finds that the proba-
bility to create a heavy hole is proportional to

l(sMI w'lo& I', (Cl)
S =+1/2 M =k3/2

IO& being the vacuum. Heavy holes indeed correspond to
M =+—,

' if one chooses the quantification axis z' for S and
M along the momentum k of the created hole. Let
(x',y', z') be the associated basis. For a linearly polarized
beam, the e-photon coupling reads —LOBO= —ROB, with
the z axis along the field potential A. If (8,y) are the
Euler angles of A in the (x',y', z') basis, the operator B,
reads in terms of Bz y z

B,=sinL9 cosy B .+sin8 sing B +cos8 B,.

One can then write Bz y
~ in terms of B+& 0 using Eq.

(A2). One finds

B~= —2 ' sing e ''PB)~+2 ' sin8 e'+B'
)

+cosO Bo (C3)

Using the decomposition of IJ=1,M& states on
I
J =

—,', M;S =
—,',S & states given in Eq. (A9) one finds that

the part in B, corresponding to heavy holes (i.e., terms in

using Eq. (6) for the relation between the (J =1,M) states
and the (x,y, z) basis. If one now considers a new axis
(x',y', z') such that x' is along z, the satne linear beam
corresponds to A, .= A and Ay. = A, .=0, i.e.,
A'+ = A' =2 '/ A and AD=0. Within this new basis,
the e-photon coupling, Eq. (5), reads, using Eq. (A2),

A'+B1 —
A,

' B 1-2 'A( —Bt.—i'. ) —2 'A(B„.—iB .)

A Bx' (B2)

As x' lies along z, this is nothing but —A B„i.e., the ex-
pression (Bl) of the e-photon coupling found in the first
basis (x,y, z). This shows that the signs in front of A, +,

, and ko are indeed coherent.

It is then easy to conclude from Eq. (Cl) that the prob-
ability to create a heavy hole is indeed proportional to
sin 0, 8 being the angle between z and z', i.e., the linear
field A and the hole momentum k.

APPENDIX D: BRILLOUIN-WIGNER FORM
OF THE PERTURBATION THEORY

FOR NONDEGENERATE AND DEGENERATE STATES

1. Nondegenerate state

In the case of a nondegenerate state, such as the vacu-
um lo&, the closure relation

1= Io& &ol+P„
used in the definition of the perturbed vacuum lo' & gives

(D 1)

0=(H+ k E11)lo'&-
=(Eo+@'—E11)Io&&oIo'&+(H+@'—E11)P0210'&.

0=Pa, @'lo&&olo'&+P02(H+ k E11)Paulo'& (D3)

as P01 l0& =0. We now invert the operator (H + 4 Eo)—
restricted to the subspace orthogonal to lo&. As
Poj =P01, Eq. (D3) gives

P lo'& = [P (H+ O' E—' )P ] 'Po @—'Io&(OIO'& .

(D4)

Going back to Eq. (D2), projected over (Ol and using Eq.
(D4) in the last term of Eq. (D2), one obtains the
Brillouin-Wigner form for the perturbated energy

E,'= E,+ & olklo &

—(ol kPO~[Poj (H +@'—Eo )Po~] 'Poj @'Io&,

(D5)
as (Ol(H Eo)Poj =0. Equat—ion (D5) is an exact equa-
tion for Eo This equatio. n, written to lowest order in k,
gives Eq. (21), the state W Io& being unambiguously or-
thogonal to l0 & as &creates or destroys one e-h pair.

(D2)
Multiplying Eq. (D2) by Po~, the projector orthogonal to
IO&, one obtains
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2. Degenerate state

In the case of degenerate states IX, (1)&, having all
the same energy Q&, a similar procedure leads us to use
the closure relation

1= y lx,.(1)& &x,.(1)l+P„ (D6)
s, m

in front of the perturbed exciton IX'(1)&, defined by

o=(H+ )Iv —Q', ) lx'(1) &

Noting that Eq. (D7) leads us

P„lx'(1)&
= —y [P„(H+}(v—Q', )P„]-'

s, m

xP, Wlx, (1)&&X, (1)IX'(1)&,

(D8)

= y (Q, —QI+)jv)IX, (1)&&x, (1)lx'(1)&
s, m

+(H + 4 QI )Pi3 IX'(1) & . (D7)
I

the projection of Eq. (D7) over any exciton state
&X, (1)l gives

(Q' —Q )&x, (1)lx'(»&

s, m

(1)I"'Ix„(1)& —&X, I
~'Pii[P|g(H+" —QI}P|g] 'Pgg@'Ix„(1}&)&x„(1}lx'(1)&,

(D9)

which is, for a degenerate level, analogous to Eq. (D5).
Equation (D9}, written to lowest order in @", gives Eq.
(22).

Here again the states @'IX, (1)&, being either vacuum
or two-pair states, are indeed orthogonal to the exciton
subspace.

APPENDIX E: SIX-LEVEL ATOM SHIFTS

Without Coulomb interaction, it is easy to diagonalize
exactly the total Hamiltonian H,' =H, + 8'z+ Wz where
the bare Hamiltonian H, is

H, =(E,+Q, } g b, b, +E„g A A
s =+1/2 m

(El)

and m =k —,', k —,'. For simplicity we set the valence ener-

gy E, =0. One 6nds

the small —6+ limit of Eqs. (E3) and (E4) give back the
low-laser-intensity results given in Eq. (41), while, at reso-
nance, the shifts are linear in b+, i.e., proportional to the
square root of the laser intensity, as expected.

APPENDIX F: CALCULATION OF THE OPERATOR
V, (1)DKFINKD IN KQ. (43)

The Hamiltonian H is composed of a kinetic part Hk;„
and a Coulomb interaction between two electrons, V„,
two holes, Vh&, and one electron and one hole, V,I, . From

[b, (k+q)b, (k), B, (1)]
= g P;(k')[b t(k+q)b, (k), it(k')B ( —k')],

Hg = E+ bi/2bi/2+E++b' i/2b' i/2

lf+E——~ 3/2~3/2+ E + 3 —3/2~ —3/2

where the eigenvalues are given by

E .=[Q +n(Q +46 )' ]/2, (E3)

=5„$,(k)b, (k+q)Bt ( —k),
one easily deduces that

[H„;„,B~ (1)]=Q (e,„+E„l,)p, (k)Bt (k),
k

(F1)

(F2)

n and n' being either + or —.The corresponding eigen-
states are

b 1/2 (E+ b ~1 2+/b, A 3/2 )/(E+ +5 )'
(E4)

A 3/2 (E b, /2 +b, A 3/2 )/(E +6 )

where c,k and czk are the free e and h energies.
Using Eq. (F1), one also finds

[V„,B, (1)]=g V gg&(k)b, (k)B ( —k —q)
q k

X g b, , (k'+q)b, .(k') (F3)

and similarly for b', /2 and A'
3/2 The states A+, /2,

not being coupled to the conduction band, are still not
affected by the laser beam. It is then easy to check that

s', k'

and a similar result for Vzz. Turning to V,z, Eq. (Fl)
leads to

[V,„,Bt (1)]=g V P, (k+q)Bf (k)+ g V bt(k+q)8 ( —k)
q, k q, k

M, kS,k
X P,(k+ q) g bst(k —q)bs(k)+ P,(k) g BM(k —q)B~(k) (F4)
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As H =Hi„.„+V„+Vi,
~
—V,s, Eq. (F2) plus the first term of Eq. (F4) restores in the commutator [H,St (1)], Eq.

(43), the exciton part 0,8, (1). It is then easy to check that the other terms lead to the following value of the operator
V, (1):

Q, Vt (1)= g V g [P,(k) —P, (k+q)]b, (k+q)8 (
—k) g b, (k' —q)b, (k') —g 8 ( —k' —q}8 ( —k') . (F5)

qXO k k's' k'm'

APPENDIX G: CALCULATION OF THE g MATRIX

We derive here Eq. (54). We first replace Ws in Eq. (47) by its expression (49) in terms of Wa(i), so that H gives

0, '. The P matrix then reads

p= g(0, /0, 0 ) g p(,k, )p;(k2)p (i'j,),
kl, k2

(61}
P,', (i,j)=(0~8, (1)Wa(i)Q,Vt (1)Wst(j)~0),

where Ws(j) contains the exciton operators 8, (j). The next step is to show, using the expression (F5} for V, . (1}$)Nl )

that

Q,V, (1)B, (j)~0)

= g V~ +[(P,(k') —P,(k'+q)]g[{{}„(k,) —P, (k, —q)]bf(k'+q)Bt ( k')bt (k—, —q}Bt {—k, )~0) . (G2)
qXO k ki

Using this expression in P ' and writing 8, (i) and Ws(i) in terms of the 8(k)'s, there appear in P ' matrix elements
such as

( —k)b, (k)8 ( —k2)b, (k2)b, (k'+q)8 t
( k')b t (k'——q)8 t

( —k, )~0), (63)

where (S,M) or (S',M') are only (k —,', 6—,'). This matrix element differs from zero either if k=k'+q=ki=k2+q and

s =s', s, =sz, m =m„m'=m2, or if k=k'=k, —q=k2 —q and m =rn', rn, =m2, s =si, sz=s'. Due to the only pos-

sible values of (S,M) in Ws, s =s' implies m =m' so that m, =rnid This sho. ws that the matrix P '
appear diagonal also

on the exciton basis 8, . More precisely, from Eq. (49) for Wa, one finds that the kinetic momentum part of P,
'

leads to

5„5 ~ g 5~(5 ) +5,), (G4)

which is exactly the matrix element of T. Following the k part of the matrix element (65), one finds in front of it, for
any (ss', mm'), a coefficient

g (n, /n, n, ) vy, (0)y;(0)g v„, „[y,(k) —y, (k')]y', (k)[y, (k) —
{(},(k')]y;(k'), (65}

which is exactly the coefficient P/2 appearing in our previous work. If one writes it in r space, one finds

p=ni g p(J/0;Qq,
I,J

P;.=2/ (0)P,'(0)J V 'd r d r'd pd p'Pi(r p)P;(r' p')— —

X [ V(r' —p)+ V(r —p') —V(r —r') —V(p —p')]pi (r —p')p;(r' —p),

(G6)

(67)

where V is the sample volume which cancels the translational invariance of the system. From the terms in the square
brackets of (67), one sees that P corresponds to Coulomb interaction between electrons and holes of two-pair states.

APPENDIX H: EXCITONIC RED SHIFT

The simplest way to find the effect of a biexcitonic mol-
ecule on the exciton shift at small detuning is to come
back to the original expression (24) for the shift and to
look for the pole (0,—20„„) ', 20„„being the biexciton
energy in the rotating frame, 20„„=2{co„„—co&). This
pole appears only in the first term of S,

S„„„-(X„(1))Wc(xx)(xx[{0, H) '(XX)—
x (XX i

wt [x„„.(1))

= ( 0,—20„„) 'D;, D,„. ,

D„,=(XX~ W,'~X„.(I)) .

(H 1)

(H2)

The matrix elements D„. are calculated noting that the
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exciton operator can be expanded on creation operators
in real space as

Cf„(1)=fd rd pg((r —p)V ' b, (r)C, .(p) . (H3)

Similarly, the biexciton state reads

IXX&=4 ' f d'r, d'r, d'p, d'P, F(r, ,r„p„p,)

X b, n(, )b, /2 (rz )

X Cl/2(P1)C )/2(p&) Io & ~ (H4)

X [6'+b (/2(r')C u2(p }

+6 b 1/2(r')C, /2(P')] (H5)

This finally gives, for the matrix element D„., the follow-

ing value:

In Eq. (H4), we have used the well-known fact that the
orbital part I' of the molecular wave function is sym-
metric so that the kinetic momentum part has to be an-
tisymmetric with respect to the permutation (r, , r2) or
(p„p2). This implies that the two electrons and the two
holes have difFerent momentum.

Using Eqs. (H3), (13), and the analog of (49), one can
write the coupling 8'z as

gg(b;(k) f d r'd p'P;(r' p')V—
k i

have led us to calculate

D,', =&xxlvt, n, H -'Ivctlo&, (H7)

in which the Coulomb interaction appears explicitly via
V„. We now show that, close to resonance, Q„„=Q,,
the two quantities D„.and D,', . are opposite.

Using the definition Eq. (F5) of V„, one can rewrite
Eq. (H7) as

D,', =
& xxI[(H —n()Bt, (1)—B„(1)H)
XH-'w,'Io&,

= (n„„—n, )&xxIB,', .(l)H 'w,'Io&

—&xxIB,', ,(1)w,'Io& . (H8)

The first term of (H8) goes to zero at resonance, and so
does not contribute to the pole, while the second one is
just —D„., as B and 8' commute. A calculation, simi-
lar to the one done for D„.leads to a coefficient y having
the form of Eq. (H6) with an extra factor which is exactly
the (Coulomb) terms in square brackets appearing in P,"
[Eq. (G7)]. This shows that the coefficient y in Eq. (H6),
is nothing but the coefficient —y„& defined in our previ-
ous work.

Going back to the (4X4)S matrix, one deduces from
Eqs. (Hl) and (H6) that the divergent part of the biexci-
tonic resonance reads

(H6a)

XP, (r' p'}V' F'(r, r—',p, p') .

D„=y(~'+fi„(/2~, —(/2+~—fi„(/2' —', 1/2}

y= gP; (r=o)f V 'd r d pd r'd p'P (r)—p) r'
Qi —20„„

gi2 0 0

0 0

0
0

(H9}

(H6b)

V ' cancels the translational invariance of the problem,
while V'/ is the usual normalization factor in the biexci-
tonic wave function so that y is indeed volume indepen-
dent.

We now show that the coefficient y defined above is
nothing but our coefficient y„&, defined in our previous
work, which contains explicitly the Coulomb interaction.

We could, as well, have calculated the contribution of a
biexcitonic molecule from y„„„[Eq.(48)]. This would

the exciton basis being, respectively, IX,/2»2 &,

Ix-1/2, —1/2 & Ix(/2, —1/2 & and Ix —1/2, 1/2 &

As the excitonic shifts are the eigenvalues of the S ma-
trix, one easily concludes that there is only one combina-
tion of the fourfold exciton which red-shifts at resonance
n1=2n„„, the one given in Eq. (56). The three other ex-
citon states are not affected by the 0& —20„„pole. Not-
ing that from Eq. (14), 6'++6, ' =

—,'(X++A, )=—,'A, , A,

being proportional to the laser intensity, it is easy to
check the value of the associated eigenstate [Eq. (57)].
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