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Effects of the indirect transitions on optical dispersion relations
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We report generalized expressions for the indirect-band-gap contribution to the real (e&) and

imaginary parts (e&) of the dielectric function of semiconductors. The e& spectrum is assumed to
yield a continuous absorption obeying the well-known power law of (%co—Eg") and have a steep
high-energy end at the high-energy cutoff E,. The corresponding e& spectrum shows no clear struc-
ture at the Eg" edge, but a strong negative peak at the E, . Analyses are presented on the optical
dispersion relations of InP at 30 K, and results are in satisfactory agreement with the experimental
data over the entire range of photon energies (0—6.0 eV). With use of this model it is possible to an-

alyze the optical dispersion relations in a large number of semiconductors, such as Si, GaP, A1Sb,
and CdSe.

I. INTRODUCTION

In a series of earlier papers' we have demonstrated a
method for calculation of the dielectric function,
E(co ) =E)(co)+i e2(co }, of the diamond-type (Si, Ge, and
a-Sn} and zinc-blende-type semiconductors (GaP, InAs,
Al„Ga, „As, In, „Ga„As P, , etc.). An excellent
agreement has been achieved between our model and ex-
perimental data over the entire range of photon energies
(E =0—6.0 eV).

We have also studied the excitonic effects on the opti-
cal spectra in semiconductors of GaAs (Ref. 8} and InP.
Excitonic states should exist at each type of critical
points (CP's), since the Coulomb interaction is always
present between the electrons and the holes. The effects
may profoundly modify the CP singularity structure
especially at low temperatures. It has been found ' that
the inclusion of the excitonic effects in the one-electron
band model corrects the strength of the e(co) peaks in the
correct direction with the experimental information.

It is well known that not only the direct transitions at
the CP's but also the indirect transitions at the indirect
band gap influence the optical dispersion relations of
semiconductors. The indirect transitions in indirect-
band-gap materials (e.g. , GaP) take part at energies below
the onset of the direct transitions, and vice versa at above
the onset of the direct transitions in direct-band-gap ma-
terials (e.g. , InP). Because the indirect transitions are
higher order in the perturbation than the direct ones,
their strength is usually very weak, and it can only expect
to realize them in a spectrum below the direct threshold
as a tail of the direct absorption edge in the indirect-
band-gap materials. Our previous works, ' however, re-
quired a considerable strength of the indirect-band-gap
contribution for the analyses of the e2(co) spectrum both
in the indirect- and direct-band-gap materials. Unfor-
tunately, at that stage we did not have any expression for
the contribution to e, (co) of the indirect transitions, and
thus we took into account its contribution only to ez(co),
but not to e, (co).

II.MODEL

A wide variety of theoretical calculations and experi-
ments have given detailed information about the electron-
ic energy-band structures of semiconductors. We repro-
duce in Fig. 1 the energy-band structure of InP calculat-
ed by an empirical nonlocal pseudopotential method
[Chelikowsky and Cohen (Ref. 10}]. The lowest direct
absorption edges of InP are 1.415 eV (Eo) and 1.521 eV
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FIG. 1. Electronic energy-band structure of InP along
several lines of high-symmetry directions [Chelikowsky and
Cohen (Ref. 10)].

In this paper we obtain an analytical expression of the
indirect-band-gap contribution to e, (co} in semiconduc-
tors. Although its contribution to e2(co) (or absorption
coefficient) is well authorized, an expression for e, (co) has
not yet been reported to our knowledge. We analyze the
optical dispersion relations of e(co} for InP (at 30 K} and
obtain an excellent agreement between our model and the
experimental data over a wide range of the photon ener-
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(Eo+b,o) at 30 K. The lowest indirect absorption edges

Es (I s~L &} and Es (I s~X6) are, respectively, 2.05 and
2.21 eV (see Fig. 1). The indirect transitions in InP thus
take part above the onset of the lowest direct transitions.

The optical transition mechanism at the indirect band
gap, E', is expressed by a second-order process in the
perturbation. " This perturbation gives the contribution
of the indirect transitions to ez(co) as

with
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In Eq. (2) H,a is the electron-radiation perturbation, H,L
is the electron-lattice perturbation, ~0& is the electronic
ground state, ~a & is the intermediate state in the conduc-
tion band (k =@i and energy E ), and the ~P & is the final
state in the conduction band (k =kz). The mechanism
considered is that the valence electron is scattered to the
conduction state and a photon of energy Am and a pho-
non of momentum q =kz —k i (and energy fico ) are both
absorbed. The phonon-emission process remains possi-
ble, however, the only difference from the above case is
the sign of the phonon energy.

The parabolic bands extending to infinite energies im-
plied by Eq. (1) should be nonphysical. We thus modify
the model by taking into account a cutoff at the energy
E, . This modification provides

with

(X~—E"+X~ )'e(1 —x )e(1—x, ), (5)
)2 s 9 s

x, =fico/E, .

Assuming that the strength term D is independent of
the photon energy, the Kramers-Kronig transformation
of Eq. (5) gives
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The et(co) spectrum of Eq. (7) exhibits a divergence at
E, (see Fig. 2). We thus introduce in this expression a
lifetime broadening effect in a phenomenological manner
by replacing fico by fico+iI . The contribution of the in-
direct transitions to e(co } is finally written as

FIG. 2. Line shape of the indirect-band-gap contribution to
e(co) for InP [Eq. (8)] with two different broadening parameters
[I =0 eV (dotted lines) and 0.04 eV (dashed lines)]. The solid
line represents the dependence of e2 on co with high-energy
cutoff correction in Eq. (5).
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E(co)=[—Six,~ ln(1 —x,d) 82x,,din(1 —xii,d)—],
where

x,d=(fico+i I )/Ei,

x„d =(iiico+iI )/(E, +b i) .

(10)

We show in Fig. 2 our calculated e(co) spectra of Eqs.
(5) [ez(co): solid line] and (8) [e,(co) =Ree(co);
e2(co) =1m'(co}, dotted (I =0 eV) and dashed lines
(I =0.04 eV)]. The numerical values used in the calcula-
tions are as follows: Eg =2.05 eV; E, =3.20 eV; and
D=46.3. It is evident from the 6gure that the e& spec-
trum exhibits no clear structure at the E~ edge, but a
strong negative peak at the cutoff energy E, . It is also
noteworthy that in the limit I ~0 the e2 spectrum of Eq.
(8) exactly agrees with that of Eq. (5) (solid line).

The E, and E& +6, transitions in Inp may take place
along the (111& directions (A) or at L points in the Bril-
louin zone. These transitions are of the three-
dimensional (3D) Mi [or two-dimensional (2D} Mo] type.
The contribution to e(co} of this type of one-electron
model is given by (Refs. 1 —7)
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In Eqs. (9}—(11), the B's are the strength parameters of
the one-electron model at the 3D-M& (2D-Mo) CP's and

I is a lifetime broadening parameter.
Excitonic states should, in principle, exist at each type

of CP, since the Coulomb-like interaction is always
present between the electrons and the holes. Optical
spectra in the E, /(E, +b &) structure region of InP be-

come sharp when the temperature is lowered. ' Such
spectral change cannot be explained within the frame-
work of the one-electron approximation with lifetime
broadening corrections. This fact clearly suggests an evi-
dence for the contribution of excitonic effects to the
E, /(E, +b, ) transitions. There may be only two analyt-
ical equations which enable us to treat the excitonic
effects at the E, /(E, +5, ) spectral region: (i) the
effective-mass (EM) approximation' ' and (ii) the
Koster-Slater (KS) method. ' ' Not only the EM ap-
proximation but also the KS method dramatically modify
and sharpen the E, /(E, +b, , ) CP structure. However, a
degree of the sharpness is larger for the EM approxima-
tion than for the KS method. We can find a better fit
with experiment using the EM approximation than the
KS method.

In the case of the 3D-M, CP's (i.e., saddle-point exci-

tons or hyperbolic excitons), the EM equation is much
more difficult to solve. However, in the limit mL '=0
(mL . the longitudinal effective mass) the equation gives a

series of the 2D Wannier-type exciton (discrete exciton}'

Xe(x, .—1}], (16}

e, (co) = AEO "[f(xo)+ —,'[Eo/(Eo+60)] "f(x, , )),

where C is the strength parameter, and y is the broaden-
ing energy divided by Eo (i.e., y = I /Eo, where I is in
eV).

Many-particle effects on CP's in the interband continu-
um of semiconductors have been treated with their de-
tailed electronic-energy band structures. ' ' Results
have shown that the absorption at the Eo (Ei} CP is

markedly weakened with no drastic change in its shape
by introducing the excitonic interaction. Unfortunately,
however, it seems that no analytical line shape suitable to
fit the excitonic-effect-influenced Eo line shape is reported

up to date. We found that for GaAs and InP the DHO
model is a good representation for the Eo (Ei } CP both
with and without the presence of the excitonic interac-
tion. '

The Eo and Eo+60 transitions in the diamond- and
zinc-blende-type semiconductors occur in the center of
the BZ. These transitions are of the 3D-Mo CP's. As-
suming the bands are parabolic, and using the Kramers-
Kronig relations, we obtain the contribution of these
band gaps to Ez(co) and e&(co) (Refs. 1 —7):

e2(co) = [ A /(fico) ][(iiico—Eo) 8(xo —1)

+ —'(Ac@—Eo —60)2

En (En ) g2D/(ii 1 )2 (12)
with

(17)

where E,", (E„"~} is the exciton energy, and R is the ex-

citon Rydberg energy. The contribution of the 2D-
exciton transitions to e(ro) can now be written with
Lorentzian line shape as

e(co)= g [B",„(E,+E„", %co iI —)—
n=1

+B"„(E,+6,+E„" %co iI —) ']—, (13)

C
e(co) =

(1—xi ) ix2y—
with
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x 2
—Am/Eo,

where 8 &„and Bz„are the exciton strength parameters
at the E, and E&+5] CP's, respectively. The 2D EM ap-
proximation also gives the continuum part of the exciton-
ic states. ' However, one can consider that the contribu-
tion of this part is similar to that of the one-electron ap-
proximation [i.e., Eq. (9)]. We thus neglect the
continuum-exciton contribution to e(co) in the present
analysis.

The more pronounced structure found in InP in the re-
gion higher in energy than E, is labeled Eo (Eo+ho).
The nature of the Eo transitions is more complicated,
since it does not correspond to a single, well-defined CP.
Because of this fact, we shall characterize the Eo struc-
ture as that of a damped harmonic oscillator (DHO)
(Refs. 1 —7):

xo =fico/Eo,

x, , =Aro/(Eo+b, o),

(21)

(22)

where m * is the combined density-of-states mass, P is
the squared momentum matrix element, and H is a func-
tion defined by Eq. (4).

It is well known' that the discrete lines and continuum
excitons in the neighborhood of the lowest direct band
edge (3D-Mo CP) dramatically change the optical spec-
trum. However, the discrete-exciton states are present
only in the limited region close to the Eo edge and their
strength is considerably weaker than those of the ensur-

ing E, , E, +5,, and Eo. Also, the continuum-exciton
transitions at the 3D-Mo CP behave like the one-electron
characteristics [Eqs. (16) and (17)]. The excitonic effects
at the Eo/(Eo+6p) edges are thus not so important and
can be neglected in the following analysis.

III. COMPARISON OF OUR MODEL
TO EXPERIMENTAL SPECTRA

The model given in Sec. II can be used to fit the experi-
mental dispersion of e2 and E'& over most of the spectral

A =—'( —'m')' P
3 2

f(x )=x [2—(1+x ) —(1—x )
' 8(1—x )], (19)

f (x, , ) =x, , [2—(1+x,, )

(20)
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range (0—6.0 eV). The parameters, such as A, 8„and C,
can be commonly used as adjustable constants for the cal-
culation of both e2 and E, .

The fit with our model to the experimental e2 of InP at
30 K is shown in Fig. 3. The solid line is obtained from
the sum of Eqs. (8) (I =0.04 eV), (9), (13), (14), and (16).
The dashed line is the result of the sum of Eqs. (9), (13),
(14), and (16) [i.e., without taking account of Eq. (8)
(indirect-band-gap contribution)]. The numerical values
used in the calculations are as follows: E~ =3.28 eV;
E, +b, , =3.42 eV; B,=3.6; B2=0.9; B,„=1.0 eV;
Bz„=0.25 eV; R =0.02 eV; I'=0.08 eV [Eqs. (9) and
(13)]; Ec=4.75 eV; C(Eo ) =1.191; y(EO) =0 070;
Eo+ho= 5.01 eV; C (Ez+ bz) =0 306;. y(ED+ 6 0)
=0.053; ED=1,415 eV; ED+60=1.521 eV; and A =5.4
eV' . The indirect-band-gap (Ez ) parameters are the
same as those used in Fig. 2. The E transitions may also
take part at energies above E (=2.21 eV). However,
the energy difference between E and E is relatively
small ( =0.16 eV). This assures that the strength param-
eter D (Es ) can take over the Es gap strength. Because
of this, we considered only the E gap contribution as the
indirect-band-gap ones. The solid circles are the experi-
mental data taken from Ref. 12.

30

25- E,

20-

15-

Eo 4

E E'

10-
/ Io~

rl r 4 ~
~ + ~

~ ~
~40 ~ 0

E' b'

0-

Inp

-10—

-15-

-20
0

I I I

2 3 4
( eV)

FIG. 4. e](co) spectrum of InP at 30 K. The solid line is ob-
tained from the sum of Eqs. (8), (9), (13), (14), and (17). The
dashed line is taken by the sum of Eqs. (9), (13), (14)„and (17)
[i.e., without taking account of Eq. (8) (indirect-band-gap contri-
bution)]. The dotted line is also taken by the sum of Eqs. (9),
(14), and (17) [i.e., without taking account of Eqs. (8) and (13)
(saddle-point excitons)]. The solid circles are the experimental
data taken from Ref. 12.

10-

E

In

0.1—

0.01
0

I I I

2 3 4
( eV)

FIG. 3. e& spectrum of InP at 30 K. The solid line is ob-
tained from the sum of Eqs. (8), (9), (13), (14), and (16). The
dashed line is the result of the sum of Eqs. (9), (13), (14), snd (16)
[i.e., without taking account of Eq. (8) (indirect-band-gap contri-
bution)]. The dotted line is also obtained from the sum of Eqs.
(9), (14), and (16) [i.e., without taking account of Eqs. {8) and
(13) (saddle-point excitons)). The solid circles are the experi-
mental data taken from Ref. 12.

There is an accumulation of interband CP's in the en-

ergy region of 4.5-5.5 eV. This accumulation consists of
the Eo and E2 multiplets. We considered only two
DHO s in this region. The dotted line in Fig. 3 is also ob-
tained from the sum of Eqs. (9), (14), and (16) [i.e.,
without taking account of Eqs. (8) (indirect-band-gap
contribution) and (13) (saddle-point excitons)]. It is evi-
dent from the figure that the inclusion of this exciton
contribution (dashed line) is a great improvement over
the one-electron approximation (dotted line). If we do
not take into account the indirect-band-gap contribution
(dashed line), the fit with the experimental data becomes
very poor in the 2 —3-eV region. There is a possibility of
various indirect-band-gap transitions in InP: they are E
(r; L.;, r7 L6), E (rs X6, I'7 X6), etc. (see
Fig. 1). The lowest indirect band gap of this material is
E =2.05 eV (I s~L6). By taking into account this in-
direct band gap, we can achieve an excellent agreement
between our calculation (solid line) and the experimental
data over a wide range of the photon energies.

A comparison of our calculated e, (co) to the experi-
mental data of InP at 30 K is shown in Fig. 4. The solid
line is obtained from the sum of Eqs. (8) (I =0.04 eV),
(9), (13), (14), and (17). The dashed line is taken by the
sum of Eqs. (9), (13), (14), and (17) [i.e., without taking
account of Eq. (8)]. The dotted line is also taken by the
sum of Eqs. (9), (14), and (17) [i.e., without taking ac-
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count of Eqs. (8) and (13)]. The numerical parameters are
the same as those used in the case for e2(co) (Fig. 3). The
solid circles are the experimental data taken from Ref.
12.

As seen in the figure, the dotted line provides a poor fit
with the experimental data in the energy region at or
below the E, /(E, +b, , ) edges. When we put I =0 eV
into Eqs. (9) and (13},the calculated spectrum exhibits a
divergence at the E

~
l(E, +6& ) edges. ' A properly

chosen value of I can decrease the strength of the
E~ l(E~ + I'& ) peak and leads to a correct direction which
is coincident with the experimental verification. Howev-
er, the calculated E'& value with I =0.08 eV at the E,
edge is 22.4 (dashed line) while the experimental one is
18.1 (i.e., the calculated e& peak is considerably larger
than the experimental one). As in the case for e2, such a
disagreement can be successfully removed by taking into
account the indirect-band-gap contribution [Eq. (8)] in
the calculation for E'& ~ This result is shown in Fig. 4 by
the solid line. If we consider the excitonic states at the
Ep l(Ep +5p) edges, the fit may also be greatly improved
especially in the spectral region near these edges.

IV. CONCLUSIONS

%e have obtained generalized expressions for the
indirect-band-gap contribution to the real (e, ) and imagi-
nary parts (e2) of the dielectric function of semiconduc-
tors. The model is based on the Kramers-Kronig trans-
formation and assumes that the e2 spectrum yields a con-
tinuous absorption obeying the well-known power law of
(fi~ Eg

—) and a steep high-energy end at the cutoff en-

ergy E, . The corresponding e, spectrum shows no clear
structure at the E' edge, but a strong negative peak at
the E, . Detailed analyses are presented on the optical
dispersion relations of InP at 30 K, and results are in sa-
tisfactory agreement with the experimental data over the
entire range of photon energies (0—6.0 eV}. This model
can also be applicable to other semiconductors, such as
Si, Gap, AlSb (Ref. 20), and CdSe (Ref. 21).
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