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Electric polarizahility of small metal particles
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A semiclassical theory of collective excitations based on the Vlasov equation is applied to the
study of surface oscillations in small alkali-metal spheres. It is found that, when due allowance is
made for the electron "spill-out" and for the exchange-correlation part of the electron-electron in-

teraction, the polarizabilities given by the semiclassical Vlasov theory are similar to those yielded by
quantum self-consistent calculations. In particular, the enhancement of the static polarizability and
the red shift of the surface-plasmoa resonance with respect to the classical values can be reproduced
within the present semiclassical approach. Dynamic polarizabilities are evaluated for particles con-

taining from 20 to 2000 sodium atoms.

I. INTRODUCTION

Small particles of alkali metals are being studied both
experimentally and theoretically (see Ref. 1 for a recent
review of work in this field). Many experimental results
can be explained within the jellium model. This model is
essentially a mean-field approximation in which the con-
duction electrons are assumed to move in a potential well
of extension comparable to that of the particle.

By using the jellium model both static and dynam-
ic properties of small alkali-metal spheres have been
evaluated in a self-consistent approach.

An important result of the self-consistent ground-state
calculations is that, if the positive background occupies a
sphere of radius R, the conduction electrons extend up to
a radius 8+5 (the electron density does not drop
abruptly on the surface, however the parameter 5 gives a
rough measure of the "electron spill-out").

As far as dynamic properties are concerned, calcula-
tions have concentrated mostly on the electric dipole po-
larizability, which is dominated by the surface-plasmon
peak. Classically the surface plasmon of a metal sphere is
expected to be at the Mie frequency (in Ry)

2
M

(r, /ao)

Here r, is the Wigner-Seitz parameter of the bulk materi-
al and ao is the Bohr radius. For alkali metals, r, is relat-
ed to the radius R by

S

with W the number of atoms in the cluster.
The self-consistent calculations of the dynamic polari-

zability in Refs. 4—6 give a red shift of the surface
plasmon with respect to the value (1.1). This is consistent
with the "spill-out" of conduction electrons found in the
static calculations since, if the electrons occupy a sphere
of radius 8 +5, clearly their average density will be
smaller than in the bulk material and they will be more

adequately described by a modified Wigner-Seitz parame-
ter r,', with

R+S=r'X'" .S

Consequently the frequency of the surface plasmon co~
for a small sphere is expected to be shifted with respect to
the value (1.1):

' 3/2

(1.2)

For sodium clusters, both self-consistent calcula-
tions and experimental results' suggest that the pa-
rameter 5 should be of the order of 1 or 2 a.u. However,
a more detailed comparison between experimental data
and the results of self-consistent calculations shows that
there are still problems with the exact location of the
surface-plasmon peak and with its width.

The approach of Refs. 4—6 requires large-scale numeri-
cal calculations, therefore it is not easy to gain from it an
intuitive understanding of the most important physical
effects which determine the final result. For this reason it
is interesting, as pointed out in Ref. 8, to explore the pos-
sibility that simpler approaches might reproduce the
main physical results of the self-consistent theory. The
possibility of using more fiexible but sufficiently realistic
models might be useful for dealing with some of the prob-
lems which are still open in this field. '

In this paper we employ a simplified approach to study
the linear response of small metal particles. This ap-
proach is based on the kinetic equation with a self-
consistent field, or Vlasov equation. Bertsch has pointed
out that the Pauli principle can be easily incorporated
into the classical Vlasov theory, which then becomes
semiclassical and can be viewed as intermediate between
the quantum theory of Refs. 4—6, and the completely
classical hydrodynamic theory. Thus, from this point of
view, we can hope to gain an intuitive understanding of
the results of more complex quantum calculations and to
establish a link between the quantum theory of Refs. 4—6
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and more classical approaches, like that of Ref. 10.
The semiclassical theory we want to apply here to (not

too small) metal spheres has been developed recently for
the study of collective excitations in heavy nuclei. " This
theory gives results very similar to those of quantum
random-phase approximation (RPA) calculations, even in
nuclei as light as Ca. ' In fact, it can be shown that if
the quantum numbers involved are large enough, the
response function based on the Vlasov equation tends to
coincide with the quantum response function. ' The
same theory has also been applied to the study of photo-
absorption in atoms. '

The explicit evaluation of the response function in-
volves some numerical calculations even within the semi-
classical Vlasov theory, however the numerical effort re-
quired is much less than in the full quantum theory. For
this reason the present theory can be used also for rela-
tively large clusters (N~500) for which the numerical
burden of the quantum self-consistent approach tends to
become unmanageable. Indeed the semiclassical theory is
expected to become more and more reliable as N in-
creases.

Here we do not attempt a fully self-consistent calcula-
tion based on the Vlasov equation. Rather we assume
that the electrons in a small metal particle behave like an
interacting Fermi gas confined to a sphere of radius
8 +5. Through the parameter 5 we account empirically
for the electron spill-out found in the self-consistent cal-
culations. Also, we use the quantum results obtained by
Ekardt for sodium spheres containing up to 198 atoms
as a reference, which enables us to fix the value of param-
eters involved. Then we use the model for larger clusters
containing up to 2000 atoms.

II. FORMALISM

Following Ref. 11, in order to determine the linear
response of a finite many-body system within the Vlasov
theory, we need to solve the integral equation

direct part plus a zero-range exchange-correlation part

e
u(x, y)= —4me r„,5(x —y) .

In agreement with Ref. 4, we take'

(2.2)

xc 18
1.222+ 0.759

r, + 11.4ao
2

"s . (2.3)

+ f dk k Dc (q, k, co)u(k)
(2~)'

XDL (k, q', co), (2.4)

where L gives the rnultipolarity of the external field.
The interaction in momentum space

2

u (k) =4m. [1—G (k)]
k

(2.5)

contains a local-field correction G (k), which, in our case,
is given by

G(k)=r k (2.6)

This form of the local-field correction, which is associ-
ated with a zero-range exchange-correlation potential in
coordinate space, is not realistic for large k (see, e.g.,
Refs. 17 and 18). Also, when combined with the semi-
classical approximation, expression (2.6) gives rise to a
diverging integral in the perturbative expansion of (2.4).
For this reason we shall assume the following more
reasonable behavior for G (k):

Within our approximation of a uniform equilibrium elec-
tron density, the interaction (2.2) is a function of the
coordinate difFerence (x—y). In this case Eq. (2.1), for
the dynamic polarizability, is most conveniently solved in
momentum space. By taking the Fourier transform of
(2.1) and expanding in partial waves, we have

DL (q, q', n)=DL(q, q', co)

D(r, r', co)=D (r, r', cu)

+f dx f dy Do(r, x, co)u (x, y)D(y, r', ~) .
G(k)=

k +1/r„,
(2.7)

(2.1)

This equation is the classical equivalent of the integral
equation satisfied by the particle-hole Green s function in
the RPA (see, e.g., Ref. 15, p. 558). The function
D (r, r, cu) is the semiclassical analogue of the susceptibili-
ty A'(r, r', co) of Ref. 4. Similarly D (r, r', co) corresponds
to the single-particle susceptibility A (r, r', c0).

In the local-density approximation of Ref. 4 the in-
teraction two electrons is assumed to be the sum of a

I

C]early, for k « 1/r„„Eq. (2.7) reproduces the value of
(2.6).

Although in the Vlasov theory the basic integral equa-
tion to be solved is essentially the same as in the quantum
case; the advantage of using this semiclassical theory lies
in the fact that the function D is simpler to evaluate
than its quantum counterpart y . For a gas of zero-
temperature electrons confined within a square-well po-
tential of radius R'=R +6 we have, by taking the
Fourier transform of the quantity in Eq. (5.22) of Ref. 11,

o , 16 4m g„"'(A,, q) g„"'(A., q )

DL(q, q', ~)=
3 g g ~ Ycz(~/2, m/2)~ f dA, A[nm+N arccos(A/A)]

co co„~ A, +le)
(2.8)

In this equation X is the angular momentum of electrons
which are moving with the Fermi velocity U~ (in the
Vlasov theory only electrons on the Fermi surface can
contribute to the excitation process" ); the quantity A, is

l

the maximum possible angular momentum, which in our
case is clearly given by

k =Pal UFR
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n~+Na "F
~nN ~

sina R' (2.9)

where we have defined

with m the electron mass.
The frequencies of normal modes, which appear in the

denominator of (2.8},can be easily evaluated for a square
well

cosa:—A, /l, .

The Fourier coefficients Q„'g(A, ,q) which appear in Eq.
(2.8) are the classical limit of the quantum radial matrix
elements for the transition operator' . They are obtained
from Eq. (5.27) of Ref. 11 by taking the spherical Bessel
functions jI (qr) for the external field QL(r). For our
square-well potential these coefficients can be expressed
as

1

Q„'N'(A, , q) = f dx jr (qR'(cos a+x sin a)'~ )cos[(nn+Na)x Nar—ctan(x tana)] .
0

(2.10)

The quantity in Eq. (2.8) is already semiclassical since
it has been derived in the hypothesis that the equilibrium
distribution in phase space is of the (zero-temperature)
Thomas-Fermi type. " However, as discussed in Ref. 11,
we can easily make a further step towards quantum
mechanics by replacing the integration over angular
momentum in Eq. (2.8) with a sum over discrete values:
A, —+(I +—,

' )A' and
I

f d A(((, —hkg (1+—,') . (2.11)
0 1=0

Here l is the maximum integer such that l+ —,
' & X/R.

The imaginary factor iri in the denominator of (2.8) is,
in principle, infinitesimal; however, since we want to
compare our results with those of Ekardt, who gave a
finite value to the analogous factor in y, we will take g
small but finite. Actually we expect to need a slightly

I

I

larger value of g than that assumed by Ekardt in order to
reproduce his results. This is because, as discussed in
Ref. 11, the Vlasov theory does not treat the continuum
correctly. A somewhat larger value of g is a way of mim-
icking the escape width, which is automatically included
in the quantum Green's function of Ref. 4, but not in the
semiclassical expression (2.8}.

Once the noninteracting propagator D has been deter-
mined, we are still left with the problem of solving the in-
tegral equation (2.1) or (2.4). In general, this must be
done numerically. For this purpose we use the Lanqzos
method, which has proved to be very useful for solving
the RPA integral equation (2.1}both in its quantum' and
its semiclassical' version.

The Lanczos method gives a continued-fraction expan-
sion for propagator (2.4). The first few terms of this con-
tinued fraction are

D=
D1
DO

DO

(D/D) —(D/D)
(D /D ) 2(D /D )(D—'/D )+(D'/D )1—

(D2/Do) (D I/DO)2

(2.12)

where the quantities D' are the terms of order j in the
perturbative expansion of Eq. (2.4):

I

particle susceptibility D (r, r', 0) given by the Vlasov
theory reduces to a 5 function inside the sphere of radius
R'=R+5:

XDj '(k, q', co} . (2.13}

D/(qq ru) f, ',dk =k (qDIu& (k(kk(,
(2n. )' D (r, r', 0)= — 5(r —r')e(R' —r) .1 1

47Te P'yF
(3.1)

1 2I. +1
SL(q, co) = —— ImDL (q, q, co) .

4~
(2.14)

Once the solution of the integral equation (2.4} has
been determined, we can obtain the response function
corresponding to the multipolarity I. of the external field

by taking the imaginary part of DL ..

TABLE I. Static polarizability for spheres of N alkali-metal
atoms, in units of R'. Column 2, without electron "spill-out"
(5=0); column 3, 5=2ap' column 4, including exchange-
correlation effects. For each N the first row gives the analytical
result (3.3), while the second row is obtained from the numerical
solution of the integral equation (2.4).

Here we limit our calculations to the dipole response
(L= 1). The electric polarizability a(co) is given by

a(co) = —lim DL , (q, q, co) . —3 e
(2.15)

p-0 4m q~

III. RESULTS
First we briefiy discuss the static polarizability. For

u=O it can be shown' that the semiclassical single-

20

92

198

a/R '

0.69
0.70

0.80
0.78

0.84
0.85

a'/R '

1.18
1.18

1.11
1.08

0.96
1.09

a„,/R '

1.52
1.27

1.27
1.13

1.03
1.13
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FIG. 1. Imaginary part of the dynamic polarizability, in units
of R', for IV=20. The frequency co is expressed in units of the
Mie frequency (1.1), evaluated for r, =4. The solid line shows
the result of the present semiclassical calculation, while the
dashed line shows the quantum result of Ref. 4. The classical
Drude result of Ref. 4 is also shown for comparison (dot-dashed
line).

Here rTF is the Thomas-Fermi radius

FIG. 3. Same as Fig. 1, for N= 198.

Coulomb part, then, thanks to the simple form (3.1} of
D, the integral equation can be solved analytically for
co=0. The resulting static dipole polarizability, in units
of R, is given by

'2
Q ]+3

TF

R+5

rTF
4e 2~ 2UF

' 1/2

(3.2)
rTF R+5—3 cotanh

rTF

3

and e(x) is the usual step function.
Equation (3.1) coincides with the approximation used

by Lushnikov and Simonov for the polarization propaga-
tor. These authors have shown that, if the interaction
u(x, y) in Eq. (2.1} is assumed to contain only the

(3.3)

In Table I we show the polarizability calculated ac-
cording to this formula both for 5=0 (a) and for 5=2ao
(a ). Clearly, the polarizability is increased, mainly be-
cause of the factor (1+5/R) . However, we want to
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FIG. 2. Same as Fig. 1, for N=92.
FIG. 4. Same as Fig. 1 for N=500, except for the dashed

line, which shows now shows the single-particle polarizability.



3492 A. DELLAFIORE AND F. MATERA

10

10

N = 1000
R = 40.00

10
C9

10

10 I

0.4 0.8
l

1.2

+ jM

I

1.6

FIG. 5. Same as Fig. 4, for 1V= 1000.

2 2 1/2
"TF ("TF (3.4)

The result of including the exchange-correlation term
in the calculation of the static polarizability is shown in
the last column of Table I. Also shown in Table I are the
static polarizabilities obtained from the numerical solu-
tion of the integral equation (2.4). In the absence of the

stress here that a similar increase of the static polarizabil-
ity is also caused by the exchange-correlation part of the
interaction. The method of Lushnikov and Simonov can
be immediately generalized to the case in which the in-
teraction contains also an exchange-correlation term of
the kind given by Eq. (2.2). In fact it can be easily shown
that the polarizability is still given by Eq. (3.3), but with a
modi6ed Thomas-Fermi parameter

exchange-correlation terms the polarizabilities agree
within 1% or 2%, even if in the numerical calculation the
angular momentum has been discretized according to
(2.11). When the exchange-correlation interaction is tak-
en into account, our numerical polarizabilities are consid-
erably smaller than those given by Eqs. (3.3) and (3.4).
This is because in the numerical calculations we are using
the "softer" local-field correction (2.7) instead of (2.6).

Now we turn to the dynamic polarizability a(co). In
Figs. 1-3 we compare the result of our semiclassical cal-
culations (solid line) with the quantum calculations of
Ekardt (dashed line). Our results have been obtained by
taking a slightly modified version of Eq. (2.8) for D [the
sum over n has been truncated at n,„=10and the in-
tegration over A, has been discretized according to (2.11)].
The parameter rl in the denominator of (2.8) has been
given the value g=0.05 eV, while Ekardt has used
g=0.01 eV. The interaction in momentum space has
been taken of the form (2.5) with the local-field correction
(2.7). The integral equation (2.4) has been solved numeri-
cally by using the Lanqzos method.

It can be seen from Figs. 1-3 that our semiclassical
calculations give a red shift of the surface plasmon which
is similar to the shift obtained by Ekardt. The red shift is
due to both the electron spill-out and the exchange-
correlation interaction.

At large co our semiclassical polarizabilities display
secondary peaks in analogy with the results obtained by
Ruppin in a classical approach. ' The similarity between
the present semiclassical polarizabilities and those of Ref.
10 becomes more evident with increasing particle size, as
can be seen from Figs. 4—6, where our results for spheres
of N=500, 1000, and 2000 sodium atoms are shown.
However, contrary to the results of Ref. 10, in which a
blue shift of the surface plasmon is found, in our calcula-
tions the surface plasmon remains slightly red-shifted for
large N also. The maximum of the calculated polarizabil-
ity moves gradually from co=0.88co to co=0.98m~
when N changes from 20 to 2000.
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FIG. 6. Same as Fig. 4, for N= 2000.

IV. CONCLUSIONS

We have shown that a semiclassical theory based on
the Vlasov equation can give electric polarizabilities of
small sodium clusters in fair agreement with those ob-
tained from quantum calculations. In particular, the
enhancement of the static polarizability can be repro-
duced if the electron spill-out and the exchange-
correlation potential are taken into account. Within the
present semiclassical theory the static polarizability can
be evaluated analytically (if the angular momentum is
treated as a continuous variable) and the numerical effort
required by the calculation of the dynamic polarizability
is greatly reduced. As a consequence, calculations can be
extended to heavier particles and the cluster behavior can
be studied over a wide range of constituent atom number.

While the semiclassical point of view adopted here
does not solve any of the problems concerning the posi-
tion and width of the collective surface excitation, which
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have been left open by the quantum-mechanical self-
consistent calculations, nonetheless it can be useful in
further work on the subject since it offers a more agile
but sufficiently realistic approach to study the response of
metallic particles.
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