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Transformation of the two-dimensional decagonal quasicrystal
to one-dimensional quasicrystals: A phason strain analysis
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The transformation of the two-dimensional (2D) decagonal quasicrystal to various 1D quasicrys-
tals has been studied from the vie~point of linear phason strain theory and compared with experi-
ments. This theory accounts well for the shifts of electron-diffraction spots during this 2D-1D
quasicrystalline transformation. In some cases five 1D quasicrystals can grow along the five twofold
directions of the 2D decagonal quasicrystal as fivefold twins, and their composite electron-
diffraction pattern has been simulated.

I. INTRODUCTION

After the first discovery of the icosahedrally related,
two-dimensional (2D) decagonal quasicrystal in Al-Mn
(Refs. 1 and 2) and Al-Fe (Ref. 3) alloys, many new ones
have been found in other Al-M alloys, where M stands for
transition metals including the platinum group metals.
This 2D decagonal quasicrystal displays tenfold rotation-
al symmetry in a quasiperiodic plane and is periodic
along the tenfold axis perpendicular to this aperiodic
plane. If one of these two quasiperiodic directions be-
comes periodic, a 1D quasicrystal, i.e., periodic in two
directions with the third one remaining aperiodic, will be
resulted. This is indeed the case found recently by He
et a/. in rapidly solidified Al-Ni-Si, Al-Cu-Mn, and Al-
Cu-Co alloys. In addition to such 1D quasicrystals,
artificial superlattices consisting of two different semicon-
ductor or metallic layers with a thickness ratio close to
the golden mean have also been synthesized.

Immediately after the discovery of 3D icosahedral and
2D decagonal quasicrystals, deviations from the perfect
fivefold or tenfold symmetry were noted. The diffraction
spots are either not lying on straight lines ' or not ar-
ranged strictly in Fibonacci sequence. The ten weak
spots originally on a circle are now shifted to lie on an el-
lipse and in some cases the spots in the twofold direction
become equally spaced. The latter was further proven by
the equally spaced lines of image points in the high-
resolution electron microscopic image. Such a
phenomenon was interpreted as the presence of local
periodical translation '" or linear phason strain. ' As a
matter of fact, they are somewhat equivalent if one intro-
duces, as Elser' did, a flip-flop of two different tiles and
considers this tiling mistake as a kind of phason strain. '

For instance, the Fibonacci sequence of long (L) and
short (S) intervals LSLLSLSLLSLLS. . . has a tiling
mistake (underlined) or phason strain and becomes
LSLLSLSLLLSLS. . . , then the three successive L's will
form a local periodic translation order. However, the
phason strain conception is theoretically more rigorous
and practically more convenient to treat the spot-shift
problem. '

Evidently, this kind of local periodic translation order
can perhaps be considered as a kind of embryo of a crys-
talline phase in the icosahedral matrix. " Recently, Mai
et al. ' '5 have treated the continuous quasicrystalline-
to-crystalline transformation by the successive increase of
linear phason strain in a quasicrystal. Following these
works, we discuss the continuous transformation of the
2D decagonal quasicrystal into the 1D quasicrystal from
the phason strain point of view and use simulated results
to explain some observed experimental phenomena.

II. LINEAR PHASON STRAIN AND BRAGG
PEAK SHIFT

Phonon and phason strains in a quasilattice have been
discussed explicitly from the unit cell point of view by
Socolor et al. ' and this exposition of phason strain is
rather convenient in handling the peak-shift problem of
electron diffraction. ' ' The readers are recommended to
consult these papers and in the following we shall only
give a brief introduction and the main conclusions.

In a quasicrystal there are more than one unit cell and
in the case of 2D decagonal and 1D quasicrystals there
are t~o unit cells arranged quasiperiodically forming a
quasilattice. However, the density wave expression is still
the same as that in a crystal:

i (G r+P~)p(r)= Xpoe
G

except that the phase term Po is now given by

(()o=u(r) 6"+w(r). G

A linear phonon strain u, as in a crystal, only gives rise to
a pure translation of the quasilattice or a distortion of the
unit cells but it will not change the configuration of the
unit-cell arrangement. On the contrary, a linear phason
strain w will produce a rearrangement of unit cells but no
distortion or uniform translation of them. This is called
phason simply because mathematically the w variable is
analogous to the phason degree of freedom in an incom-
mensurate modulated crystal when this is treated in a
high-dimensional superspace.
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is a second-rank tensor and M.G gives the shift of a
Bragg peak. Then by the action of this phason strain the
diffraction spot will occur at the end of G~~:

G~~ =G~+M G
FIG. 1. Reciprocal vector bases of the 2D decagonal quasi-

crystal.

The u.G" term also occurs in a crystal and we call the
G a reciprocal vector in the real or physical space,
whereas G that in the complementary, perpendicular, or
pseudospace. In other words, in a high-dimensional su-

perspace,

Obviously the shift of spot is controlled by the vector
G (i) Shifts in spots will be along the phason strain
direction; (ii) the magnitude of the shifts will be propor-
tional to ~G ~; (iii) since the intensity of a spot decreases
roughly with increasing ~G ~, the faintest spots will be
shifted the most. If there is also nonlinear phason strain,
there will be spot broadening as well in the strain direc-
tion.

G=Gii+G' .

J =1 —1

5
G~= g n, e, , e; = Icos(4j n )/5, sin(4jm/5) I,

(4)

j=i —1. (5)

If the phason strain is approximately linear in a small
region of a quasicrystal, it can be written as

The 2D decagonal quasilattice or the Penrose pattern
can best be described by the five vectors directed toward
the vertices of a pentagon in a 2D plane, ' and the corre-
sponding reciprocal bases are shown in Fig. 1. They are

5
Gil= y n;el), ell= Icos(2jm/5), sin(2jn/5)I,

III. RESULTS AND DISCUSSION

The 2D decagonal quasicrystal in the A1-Cu-Co alloy is
rather perfect as evidenced by the large number of sharp
diffraction spots in the tenfold electron-diffraction pat-
tern (EDP) shown in Fig. 2(a). This was further proven
by the ten symmetrical Kikuchi bands in the convergent
beam EDP. Figure 2(b) is the simulated diffraction pat-
tern of the 2D decagonal quasilattice (Penrose pattern) by
the cut-and-projection method. The match between Figs.
2(a) and 2(b) is reasonably good, especially the concentric
sets of decagons of weak spots marked with arrows. The
spots along one of the ten twofold P directions in Fig.
2(b) is reproduced in line diagrams in Figs. 5(a) and 6(a)
and it is clear that the intervals between two neighboring
spots are in the ratio of I:r:2obeying the Fibonacci r re-
lationship.
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FIG. 2. (a) Experimental and (b) simulated tenfold electron-diffraction patterns of the 2D decagonal quasicrystal. The ten weak
spots lying on a circle around a strong spot are marked with an arrow.
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FIG. 3. (a) ExPerimental and (b) simulated pseudotenfold electron-diffraction patterns of the 1D quasicrystal. The ten weak spots
lying on a circle in Fig. 2 are now on an ellipse, also marked with an arrow. The spots lying in the horizontal p direction are periodic
giving a periodicity of 13 X0.3=3.9 nm [there are thirteen spots between the central beam and the spot marked with an arrowhead
corresponding to (0.3 nm) ]. This line of spots is shown in Figs. 5(a) and 6(a) in line diagrams.

In some of the specimens heated to 800'C for 40 h, the
ten weak spots in the tenfold EDP are shifted to lie on an
ellipse with the long axis in the D direction. They are
also marked with an arrow in Fig. 3(a) in order to be
compared with their counterparts in Figs. 2(a) and 2(b).
Moreover, the spots along the horizontal twofold P direc-
tion now become equally spaced and there are altogether
thirteen spots between the central transmitted beam and
the strong spot marked with an arrowhead in Fig. 3.
Tilting 90' brings the pseudotenfold axis down to the
plane of Fig. 4 and lying in the vertical direction. This
pattern is quite similar to the D EDP of the 2D decagonal

quasicrystal with the six very strong spots forming a hex-
agon. In this case the equally spaced spots in the P direc-
tion become more evident. The strong spot marked with
an arrowhead is (0.3 nm) ' from the center and this
shows the periodicity in the P direction in the real space
being 13X0.3=3.9 nm. Figure 4 shows clearly the 2D
periodicity and proves that the quasicrystal in question is
a 1D one. In addition to this 1D quasicrystal, He et al.
have also reported other 1D quasicrystals with a periodi-
city of 3X0.3=0.9 and 5X0.3=1.5 nm, respectively.
They suggested that these periodicities are the various
approximants of the Fibonacci series (1,2, 3, 5, 8, 13, . . . )

(o)

(c)

FIG. 4. The twofold D electron-diffraction pattern of the
same 1D quasicrystal as in Fig. 3, showing clearly its 2D period-
icity (Ref. 5).

FIG. 5. Calculated positions and intensities of diffraction
spots along the I' direction, the element a of the phason strain
tensor having a negative sign. (a) 2D decagonal quasicrystal
with a =0. Small arrowheads show the shift directions of spots
in (b)—(d). (b) a = —0.01; shifts in weak spot become obvious.
(c) 1D quasicrystal with a= —0.02; medium-to-strong spots
start to move, becoming periodic and thirteen in number be-
tween the central beam to the strong spot marked with a big ar-
rowhead. (d) 1D quasicrystal with a = —0. 145; only 6ve strong
spots appear periodically within this range.
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(b)

(c)

(d)

FIG. 6. Same as Fig. 5 except a is positive. (a) 2D decagonal
quasicrystal with a =0. The shift directions of strong spots are
reversed comparing with Fig. 5; (b) a =0.04, spot shifts are ob-
vious; (c) 1D quasicrystal with a =0.055, spots become periodic
and are eight in number within this range; (d) 1D quasicrystal
with a =0.38, only three strong spots appear periodically within
this range.

and that these 1D quasicrystals are transformed from the
2D decagonal quasicrystal.

In order to verify and follow the continuous transfor-
mation from the 2D decagonal quasicrystal to various 1D
quasicrystals, we have introduced gradually the phason
strain into the 2D decagonal quasicrystal. Looking at
Fig. 3(a) carefully, all weak spots, except those in the
vertical D direction, are shifted somewhat in the horizon-
tal direction, but the shifts are not significant for medium
to strong spots. This implies that the shifts in spots agree
with the existence of a rather weak phason strain in this
direction. The shifted spots are symmetrical with respect
to the vertical D direction, which seems to be a mirror.
This requires that the second-rank tensor M be symme-
trical too.

First we chose the a element of M to be —0.01, all oth-
er elements being zero, and the distribution of spots along
the P direction shown in Fig. 5(b) was obtained. Compar-
ing with the corresponding 2D decagonal case shown in

Fig. 5(a), the directions of movement of some of the spots
are arrowed in Fig. 5(a). With a being further increased
to —0.02, the simulated pseudotenfold pattern is shown
in Fig. 3(b) and the distribution of spots in the twofold P
direction in Fig. 5(c). Now the spots in the latter are
equally spaced and are thirteen in number from the
center to that marked with a big arrowhead. The ten
weak spots marked with an arrow in Fig. 3(b) are on an
ellipse almost identical to those marked also with an ar-
row in Fig. 3(a). The ten strong spots are more or less
still lying on concentric circles in agreement not only
with the experimental observation but also with the
phason strain theory. With further increase of the
phason strain the shifts of spots proceed further along the
directions shown in Fig. 5(a) until a = —0. 145, then
another 1D quasicrystal with a periodicity of 5 X0.3= 1.5
nm in the P direction is obtained, as i11ustrated in Fig.
5(d). Now only five equally spaced strong spots remain in
the P direction; all weak spots either coincide with these
strong spots or disappear in the background.

In order to simulate the spot distribution in the 1D
quasicrystal shown in Fig. 6(c), the sign of a should be re-
versed, since now the strong spots in Fig. 6(c) are lying in
the reverse directions of the corresponding spots in Fig.
5(b) compared with those in Figs. 5(a) or 6(a). This is
verified by using a =0.04 as shown in Fig. 6(b) and again
the directions of spot shifts are marked with arrows in
Fig. 6(a), which are in the opposite direction as those
shown in Fig. 5(a). With further increase of a=0.055,
Figs. 6(c) and 7(a) are obtained. The latter is the simulat-
ed pseudotenfold pattern of another 1D quasicrystal with
a periodicity of 8X0.3=2.4 nm along the P direction.
This 1D quasicrystal has not been found yet, but it be-
longs to the missing link among the 1D quasicrystals
with periodicities of 13X0.3, 5X0.3, and 3X0.3 nrn in
the P directions found earlier. The ten weak spots in
Fig. 7(a) shown by an arrow again lie on an ellipse similar
to those shown in Fig. 3, but the shifts in spots in the
present case are more obvious than in Fig. 3 and it can be
seen easily through the arrowed twofold direction that
the spots are not lying on a straight line. However, since
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FIG. '7. Simulated pseudotenfold electron-diffraction patterns of two 10 quasicrystals. (a) a =0.055, periodicity along P is 8X0.3
nm. The ten weak spots lying on an ellipse still can be observed. The spots are lying on horizontal "layer lines" following the Fi-
bonacci sequence. (b) a =0.38, periodicity along P is 3 X0.3 nm. Only the strong spots are left.
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Fpg. 8. (a) Tenfold electron-diffraction pattern of the Al-Ni-Si 2D decagonal quasicrystal. Each group of spots consists of five

spots forming a small pentagon (Ref. 17). (b) Simulated pattern of 1D quaslcrystal with a =d =0 38 b =c=0 Only strong spots are
eft. (c) Five such patterns superposed at an angle of 72' between two patterns. The composite pattern matches the observed

electron-diffraction pattern in (a) fairly well, implying that the latter is a composite pattern of five differently oriented 1D quasicrys-
tals.

the shift of spot is in the horizontal direction, all spots in
Fig. 7(a} are still lying on a set of horizontal "layer lines"
following the Fibonacci sequence in the D direction. This
exhibits the 1D quasiperiodic translational order.

Further increasing the phason strain to a =0.38 results
in the 1D quasicrystal with a periodicity of 3X0.3=0.9
nm, as shown by the simulated patterns in Figs. 6(d} and
7(b}. The ellipse consisting of weak spots no longer ex-
ists, and neither do all the other weak spots. Now even
the sets of ten strong spots are lying on an ellipse in Fig.
7(b), implying that the presence of severe phason strains
produces significant shifts of all spots, including the
strong ones. The number of spots is also reduced materi-
ally and their quasiperiodic "layer lines" characteristics
become more obvious.

Thus we have simulated the pseudotenfold EDP's of all
the observed 1D quasicrystals by successively increasing
the magnitude of only one element a of the phason strain
tensor. However, we need to have both positive and neg-
ative signs of this element to recover the EDP's of this
series of 1D quasicrystals. These are the more ideal cases
and reality is more complex. For instance, Fig. 8(a) is a
tenfold EDP frequently encountered in the Al-Ni-Si
quasicrystal' and many "spots" with a pentagonal shape
are in fact groups of five spots forming small pentagons.
This indicates that this EDP may be a composite one re-
sulting from five superposed EDP's, as it has been found
and explained before in the distorted tenfold EDP's of an
icosahedral quasicrystal. ' " This was experimentally
proven by using microdiffraction with a focused beam. "
In a small region of several tens of nanometers, only one
variant or two difFerently oriented variants of this 1D
quasicrystal existed and the EDP looked more or less
similar to that shown in Fig. 7(b). The periodicity in the
twofold P direction is the same but the shifts of other
spots are more pronounced. After several trials, Fig. 8(b)

was obtained, which is almost identical to the
microdiffraction pattern and in this case both the diago-
nal tensor elements a and d are 0.38. A superposition of
five such simulated patterns with an angle of 72' between
the two neighboring ones is shown in Fig. 8(c). The
match between Figs. 8(a) and 8(c) is good enough to show
that Fig. 8(a) is a composite EDP of five twins of the 1D
quasicrystals transformed from the 2D decagonal quasi-
crystal along its five twofold P directions. This may also
serve to prove the success of applying linear phason
strain to account for the shifts in spots in an EDP and to
follow the continuous transformation of 2D quasicrystal
into a 1D one.

From the simulation and discussion presented above it
becomes clear that the 1D quasicrystal is only an inter-
mediate stage of the continuous transformation of the 2D
decagonal quasicrystal to a related crystalline phase. The
1D quasicrystal must have a certain rnetastability so that
EDP's of it have been frequently observed. However, just
as it has been proven that the Al-Mn 3D icosahedral
quasicrystal can transform either directly to a related
crystalline phase or through the 2D decagonal quasicrys-
tal as an intermediate state, ' the 2D decagonal quasi-
crystal can also transform either directly to a related
crystalline phase or through the 1D quasicrystal as a
metastable intermediate state. In any case, the possibility
of such a direct transformation should exist and we have
already found some evidence of such a direct transforma-
tion. This and the 1D quasicrystalline-to-crystalline
transformation are now under investigation.
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