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The realization that the Lyddane-Sachs-Teller (LST) relation can be presented in a particular
second-moment representation with the use of only sum rules and causality provides a new way to
characterize the electrodynamic response of disordered solids. In this paper we extend this idea in

three different directions. (1) The individual second moments of the frequency-dependent transverse
and longitudinal dielectric response functions are obtained for the case of multiple dispersion oscil-
lators in high-symmetry crystals, and the generalized LST relation is recovered. (2) The
fluctuation-dissipation theorem is used to show the connection between the second moments in or-
dered or disordered solids and the corresponding mean-square fluctuating polarization densities,
thus relating these fluctuations with the generalized LST relation. (3) The moment representation is

used to construct a wave-vector-dependent LST relation, applicable when the length scale of the dis-

order in an isotropic medium is smaller than that of the probing wavelength.

I. INTRODUCTION

Recently, it has been shown that the Lyddane-Sachs-
Teller (LST) relation'
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which describes the connection between eo, the dielectric
constant at low frequencies, e„, the dielectric constant at
high frequencies, and the long-wavelength lattice-optical
modes at co~ and co, in a diatomic insulating crystalline
solid, can be generalized to describe a corresponding con-
nection for disordered solids. The result makes use of a
moment representation to identify the important fre-
quencies of the system. Let

In terms of these quantities the general expression valid
in the lang-wavelength limit is

(4)

Since this expression has been obtained using only sum
rules and causality there is some interest in exploring the
implications of this general result. In this paper we ex-
tend the analysis in three different directions.

It is known that for a high-symmetry crystal with N
optically active modes the LST relation becomes '
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even if the crystal is anharmonic. ' Equations (4) and
(5) necessarily require that

and
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define these moments in terms of the appropriate longitu-
dinal (irrotational) and transverse (solenoidal) linear-
response functions, both of which are obtained from the
dielectric function e(co). In writing these equations we
have inserted e, describing the constant high-frequency
(e.g., static electronic) response, so that our expression is
specifically appropriate to degrees of freedom that are
well separated in frequency, such as the lattice response.

Section II of this paper is devoted to understanding and
interpreting this result. For the individual moments
defined by Eqs. (2) and (3), we obtain explicit expressions
in terms of the poles of the corresponding response func-
tions and show that the ratio of these expressions indeed
reduces to Eq. (6).

By the fluctuation-dissipation theorem there is a clear
connection between a fluctuating variable and the ap-
propriate response function, and in Sec. III we show that
at high temperatures the mean-square value of the fluc-
tuating variable can be rewritten in terms of the second
moments defined above, so that
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where P] and Pt are the polarization densities associated
with the longitudinal and transverse response.

Finally, in Sec. IV the possibility of extending the gen-
eralized LST relation to nonzero k is examined. In com-
posite or disordered media the k vector in the medium is
not a well-defined quantity. Because of the general validi-

ty of Eq. (4) in the long-wavelength limit, we suggest the
appropriateness of defining an co(k) dispersion curve in
terms of the analogous second-moment expression involv-

ing the nonlocal dielectric function.

II. (co )i AND (co ),
FOR MULTIPLE DISPERSION OSCILLATORS

To obtain explicit expressions for (co )1 and (co ), for
a high-symmetry crystal with X optically active modes, "
we write the long-wavelength dielectric function in its
product form:
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follows at once from the fact that the zeros of the latter
function are the roots of a polynomial of degree 1V. For
co~0, Eq. (8) reduces to Eq. (5).

Since e(co)/e„ is a causal response function, it obeys
the Kramers-Kronig (KK) relations. ' ' In particular,
the KK relation
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gives, for x =0,
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For simplicity we are just working in the small-damping
limit, in which case the [co,J ) and [coil] give the poles
and zeros of e(co). We recall that the equivalence of Eq.
(8) to its perhaps more usual form,

N

( co~& co&& )
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For the N= 1 case (e.g. , rocksalt), Eq. (14) reduces to
(co ),=co, . This result was also obtained in Ref. 4, by
direct integration of the N=1 version of Eq. (8) for
e(co)/e„.

Turning to (co ),, we note from Eqs. (2) and (3) that its
definition is the same as that for (co )„except that
e(co)/e„ is replaced by e„/e(co). [The minus sign is ir-
relevant for the ratio in Eq. (2).] But from Eq. (8), one
sees that this replacement is just equivalent to switching
the 1's and t's. Thus we have

N

co,',

When Eq. (15) is divided by Eq. (14) the rather complicat-
ed second factors on the right-hand sides are seen to can-
cel, yielding Eq. (6).

Bypassing the use of the KK transform by explicitly
performing the integrals in Eqs. (2) and (3) using the
dielectric function Eq. (8} leads to alternative, but
equivalent formulas for (co ), and (co ), in terms of the

f col. j and f co„]. However, by N=3 the direct reduction
of these more complicated expressions to Eqs. (14) and
(15) is algebraically tedious.

(14)
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III. RELATING THE MOMENTS
TO THE FLUCTUATION-DISSIPATION VARIABLES

Equation (7) follows from a standard application of the
Callen-Welton-Kubo fluctuation-dissipation theorem of
linear-response theory. ' ' Within the dipole approxi-
mation the Hamiltonian of a system in the presence of an
applied external electric field may be written as
H =Ho —M E'"'exp( —icot)exp(st), where M is the
system's electric dipole moment operator and c.~0+.
With the "external" susceptibility defined by the equa-
tion ( P )(t)= ( M )(t)/V =y'"'(co)E'"'exp( —icot)exp(et),
linear-response theory' gives

where Eq. (5) has been used. Moreover, the high-
frequency limit of Eq. (8), namely

g'"'(co)= — f dt([M (t), M])oe' 'e (16)
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combined with Eq. (10) in the same limit, leads directly to
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which is just the well-known f-sum rule' for the present
case. Hence (co ), defined by Eq. (3) is given by the ratio
of Eqs. (13) and (11),

where, as in Sec. II, we are working in the long-
wavelength limit for isotropic media. In Eq. (16), the an-
gle brackets denote an equilibrium thermal average over
a canonical ensemble for 80..
(O)0 —=Z 'Tr[exp( PHD)O], where P—=(k& T) ' and
Z =Tr[exp( —PHD )]. Also in Eq. (16),
M (t):—exp(itHO/irt)M exp( —itHD/fi) is M in the in-
teraction representation at time t, and the dot product is
to be taken in the commutator. Using the fact that M is
Hermitian, one easily obtains from Eq. (16) a standard
fiuctuation-dissipation theorem result
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dao 2n co +1 Imp'"' co = M M (17)

where n(co) is the Bose factor [exp( P—fico} 1—] '. In
obtaining this half-range integral form, one uses the iden-

tity n ( —co) = fn—(co)+1] and the fact that Imp'"'(co) is

odd in co.
To make contact with the generalized LST relation,

one must first reexpress Eq. (17) in terms of the appropri-
ate macroscopic response functions. Recall that the mac-
roscopic susceptibility g(co}, and the dielectric function
e(c0) = I+4ny(co}, are defined to give the local ratio be-
tween the macroscopic polarization density P, or electric
displacement D, and the macroscopic E: P =yE, D =eE.
For k~O there is no distinction between "longitudinal"
and "transverse" y or e. However, y'"' in the preceding
was defined by P=g'"'E'"', and g'"' will be different for
irrotational (i.e., longitudinal) or solenoidal (i.e., trans-
verse) external fields, even for k~O, since the induced
polarizations will differ in each case. Thus we will hence-
forth write yf"'(co) and g"'(co). We recall that in an
infinite medium a long-wavelength longitudinal polariza-
tion density P& produces a macroscopic electric field
—4mP&, whereas a long-wavelength transverse polariza-
tion density produces no macroscopic electric field' (we

are working in the electrostatic approximation here, so
that polariton effects' are not included). Hence in the
presence of a longitudinal external electric field, the mac-
roscopic electric field is E&=E& 4~P, whereas for a
transverse external field one has E,=E,'"'. The latter case
immediately gives y', "'=y(co) = [e(co)—I ]/4n For the.

longitudinal case, one has E~'"' =Ei+4n P~ =D, =eEi,
yielding the familiar "screening" result E~=Ei"'/e. This
gives yi"'(co) =y(co)/e(co) = [1—I /e(co)]/4m. Taking
imaginary parts, we have Imp"'(c0)=(4n) 'Ime(co) and
Immi"'(c0)=(4m) 'Im[ —I/e(co)]. Since E'"' couples to
the system via the term —M.E'"', we see that y,'"'(co) and
yf"'(co) involve just the corresponding components of M
or P. Hence Eq. (17) above leads to the ratio

co 2n co +1 Im
0

co 2n co +1 Im
0

(p, p, ),
( p p )

( 18)

valid for arbitrary temperatures, within the framework of
linear-response theory. For high temperatures,
n (co) =ks T/Ace, so that Eq. (18) becomes

~ cico E(cc))
Im
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(19}

f ~dCO

0 CO

IV. EXTENSION OF THE GENERAI. IZED LST
TO NONZKRO lt VECTOR

As long as the length scale of the disorder in a solid is
much less than that of the probing wavelength, it is useful

to identify an effective wave vector, k, in the medium.
The generalized LST relation suggests that the second-
moment representation offers a natural way to accom-
plish this, provided that Eqs. (2) and (3) can be extended
to finite wave vector.

For isotropic nongyrotropic media, the nonlocal dielec-
tric tensor may be written as'

eoii(k, co) = i(ek, cu) +e, (k, co) 5 ti— (20)

where e~(k, co) and e,(k, co) are the dielectric functions for
longitudinal and transverse probes. These quantities are
functions of just the magnitude of k, and for long wave-

lengths they are macroscopic dielectric functions, analo-

gous to the discussion given in Sec. III.
Generalizing Eqs. (2) and (3), we define the weighted

second moments of the longitudinal and transverse
response functions as

(co (k)),= f co Im
0 CO

e,(k, c0)

e,(k, oo)

and

e,(k, co)

et(k, oo )
(21)

going "soft," is more generally connected with a large
temperature-dependent increase in the thermal-
equilibrium transverse polarization fluctuations, even for
such highly disordered or overdamped systems that well-
defined collective modes do not exist.

In Ref. 4, the generalized LST relation given above in
Eq. (4) was derived from the KK relations (and sum rules
derived from them). Because the real and imaginary
parts of g'"'(co) of Eq. (16) satisfy the KK relations for all
temperatures, the left-hand side of Eq. (19), which is just
(co )~/(co )„ is equal to eo/e„ for all temperatures,
within the present context of linear-response theory. '

Hence it is interesting to note that the ratios constituting
the left-hand sides of Eqs. (18) and (19) above provide two
different exact characterizations of the dynamical behav-
ior of disordered (or ordered) media in terms of integrals
over the temperature-dependent dielectric function: the
ratio on the left-hand side of Eq. (18) is equal to
( P, P, )0/( P, P, )0 for all temperatures, while the ratio
on the left-hand side of Eq. (19) is eo/e„ for all tempera-
tures. In the high-temperature classical regime
kz T &&fuo, these separate equalities become equal, as we

have just seen.

By comparison with Eqs. (2) and (3), and use of the fact
that the nurnerators of these equations are equal, ' we see
that the left-hand side of Eq. (19) is just (co )~/(co ),.
This observation together with Eq. (4) establishes Eq. (7).
One can now see that ferroelectric behavior, which the
"crystalline" LST relation connects with specific modes

(~'(k) ),= f co'Im
0 CO

—ei(k, oo )

e~(k, co)
(22)
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where again we have assumed that the specific degrees of
freedom under investigation are well separated in fre-
quency so that the appropriate high-frequency response
e(k, ~ ) is independent of co.

The analytical properties of the nonlocal dielectric
response functions e,(k, co) and e& '(k, co) are such that
these functions generally satisfy the KK relations and as-
sociated sum rules for fixed k, in which case the deriva-
tion given in Ref. 4 for the generalized LST relation (4)
goes through for each value of k. In particular, the
equality of the "fsum rules"

f
—e)(k, ~ ) e,(k, co)

dco co Im
0 e)(k, co) e(k, ~}

(23)

is obtained from Eqs. (7.1) and (7.13) of Ref. 20, when we
include the high-frequency response. The inclusion of
Eq. (23) into the ratio of Eqs. (21) and (22}yields

(co'(k) ),

e(k, oc)
Im
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f ~dco
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and for k%0 the Kramers-Kronig relations give for zero

frequency

(ek, c}o

Im
o co e(k ~)

e,(k, O} —1
e,(k, ~} (25)

and
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77 0 6)
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Hence Eq. (24) reduces to the generalized LST relation
for finite k, which is

(co'(k}), e,(k, O) e,(k, O) e,(k, )—
(co2(k) ), e,(k, ~ ) e,(k, O) —e)(k, oo )

(27)

In the limit k —+0 the longitudinal and transverse dielec-
tric functions become identical, ' so that
e,(0,0)=e,(0,0)=eo and e,(0, ~ )=e,(0, ~ )=e„. Hence
Eq. (27) simplifies and Eq. (4), the LST relation in the
second-moment representation, is recovered. Equation
(27} shows that for k+0 the dynamical properties are still
directly related to the high-frequency and static response
of the system at that particular k value. The general na-
ture of this result suggests that a particularly useful single
frequency with which to characterize the response of a
disordered system to a particular probe (l,t) of wave vec-
tor k is [(co (k))&,]' . The effective dispersion curves
constructed in this manner would allow one to make con-
tact with the well-known theoretical description of the
long-wavelength behavior in single crystals. '

V. CONCLUSIONS

By focusing our attention on the electromagnetic
response of solids we have explored some of the
ramifications of a particular moment representation for
characterizing the dynamics. We have found that the
weighted second-moment descriptions of the transverse
and longitudinal responses for the case of multiple disper-
sion oscillators in single crystals are rather complicated;
however, the complexity is the same for both types of
response and drops out when ratio of the two moments is
considered. For disordered solids we have found through
the fiuctuation-dissipation theorem that the ratio of the
transverse and longitudinal mean-square polarization
fiuctuations is asymptotically equal to (co ),/(co ), in the
high-temperature limit. Hence the temperature variation
of the ratio of these dynamical quantities in the classical
limit is described uniquely by the temperature depen-
dence of the dc dielectric constant. Finally, we have
found that as long as the length scale of the disorder in an
isotropic medium is small compared to the wavelength of
the transverse and longitudinal probes, then in the mo-
ment representation a nonlocal LST relation can be con-
structed for finite wave vector. This relation involves just
the static and high-frequency response for that wave vec-
tor. Although our presentation has tended to emphasize
the lattice dynamics context since that is where the LST
relation was discovered, the results connect equally we11

the optical and static properties of other degrees of free-
dom such as the electronic interband transitions of or-
dered or disordered nonconductors. The long-
wavelength response of superlattice structures with
tetragonal symmetry can be included in this group, since
as long as the wave vector is along the tetragonal symme-
try axis our analysis in terms of scalar equations follows.

Because the derivations presented in this paper are
general and rely only on the KK relations and their asso-
ciated sum rules, or on the fluctuation-dissipation
theorem, this approach need not be restricted to the
analysis of the long-wavelength electromagnetic proper-
ties. The extension of our methods to other kinds of
probes (such as acoustic waves) in composite media and
disordered solids should be straightforward. More gen-
erally, if the response of an arbitrary system can be de-
scribed by a vector field whose irrotational and solenoidal
components are readily probed, then the weighted
second-moment representation provides a useful charac-
terization of the dynamics independent of the applicabili-
ty of a mode picture. Such a characterization preserves
the intimate connection between the dynamic and static
responses.

Note added in proof. We have recently become aware
of an interesting earlier paper in which the generalized
LST relation of Noh and Sievers, given here by Eq. (4),
was obtained for the explicit case of a classical harmonic
disordered solid [M. F. Thorpe and S. W. de Leeuw,
Phys. Rev. B 33, 8490 (1986)]. It should be noted that
the moments (co )„defined in that paper are the re-
ciprocals of the moments (co )„defined here in Eqs. (2)
and (3), with x = I, t. The work of both the present paper
and that of Noh and Sievers is more general than that of
Thorpe and de Leeuw, since it concerns any system de-
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scribed by a linear causal isotropic dielectric response
function satisfying the KK relations and associated sum
rules, as we have stressed in Sec. V.
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