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Doping of charge density wave in Ba, „K„Bi03
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We study the formation of charge density waves (CDW) in Ba& K Bi03 within a tight-binding
model proposed by Prelovsek, Rice, and Zhang. Light doping leads to the formation of immobile

bipolarons. The charge density wave amplitude diminishes gradually as doping concentration in-

creases and disappears at about 35% doping. We have calculated the density of states and optical
properties for various doping concentrations. We also present corresponding results in two dimen-

sions that are applicable to a CDW system with the La2Cu04 geometry.

I. INTRODUCTION

The discovery of the new copper-free high-T, com-
pound' Ba& „K„Bi03provides a very interesting con-
trast to the copper oxides. ' There is evidence that anti-
ferromagnetism is linked to superconductivity in the cu-
prates. ' It is therefore natural to speculate that CDW
is related to superconductivity in potassium com-
pounds. "

In this paper we undertake a mean-field-theory study
of the CDW formation utilizing a model proposed by
Prelovsek, Rice, and Zhang (PRZ). The Hamiltonian is
introduced in Sec. II. We first solve the model in two di-
mensions numerically for various doping levels. Inhomo-
geneous solutions are found in the lightly doped case cor-
responding to the formation of polarons and bipolarons.
These localized objects are pinned by the discrete lattice
for realistic parameter values. As the doping increases
the bipolarons merge into domains of CDW with alter-
nate signs. The average CDW amplitude varies smoothly
with doping concentration as it would be in a homogene-
ous solution. After a critical concentration is reached,
the charge density wave disappears completely. The
two-dimensional results are presented in Sec. III.

The results in three dimensions (Sec. IV) are similar.
The bipolarons are pinned. There is a critical concentra-
tion for the CDW to exist. As doping progresses the
electronic gap is gradually reduced. It disappears before
the critical composition is reached.

To monitor the electronic properties we have calculat-
ed the optical absorption spectrum corresponding to vari-
ous doping concentrations. Comparison with existing
data on Ba] K Bi03 will be made. Finally we briefly
discuss possible relevance of CDW to superconductivity
in Sec. V.

II. MODEL HAMILTONIAN

Following PRZ we first consider a square Cu02 lattice
with one electron state per Cu. By assuming a
deformation-potential-type interaction between the elec-
tron and the breathing mode of 0 atoms, one obtains the
following Hamiltonian:
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where x;,y, denote displacements of both 0 atoms in the
unit cell, and i =(i„i). For later applications it is useful
to regard the local single-electron state as a Wannier
state consisting of the antibonding combination of the Cu
orbital and the four surrounding oxygen orbitals.

To solve the model in the adiabatic approximation, we
numerically iterate the Hartree equations corresponding
to Hamiltonian (1). Periodic boundary conditions are
used.

As it stands there are three parameters t, V, and K in
the Hamiltonian (I). By rescaling the oxygen displace-
ments one parameter can be eliminated.

, =u;; ( —1)" (2)

in Fig. 1 for various filling fractions p. The size of the
lattice is 10X10. For p= —,

' there are 100 electrons. By
taking out one electron, a localized polaron solution is
formed. For two holes the minimum energy
configuration is a bipolaron [Fig. 1(a)]. There seems to be
a tendency for the bipolarons to cluster as seen in the 6-,
14-, and 16-hole configurations [Figs. 1(b)—(ld)]. At 20%
and 24% doping [Fig. 1(e) and 1(f)], the normalized order
parameter actually becomes —$.0, i.e., a half of the sys-
tem is close to one of the degenerate ground states at

III. T%0-DIMENSIONAL CDW

For the two-dimensional calculations, we set t =1 cor-
responding to a bandwidth of 8. The coupling constant is
so chosen that the energy gap E at half filling (p= —,

'
) is

3.0.
To see the effect of doping on the CDW we plot the

staggered displacement
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FIG. 2. Density of states corresponding to various number of
holes on a 10X10 lattice. The arrow indicates the position of
the Fermi energy.

In the lightly doped systems polarons and bipolarons
are the elementary excitations. ' It is of central interest
to study their individual properties and their interactions.
In this context the first thing to note is that we are deal-
ing with a discrete lattice so both polarons and bipola-
rons require some activation energy to move continuous-
ly from one site to another. We estimate the activation
energy by rigidly shifting the polaron or bipolaron profile
continuously and calculate the total energy for each lat-
tice configuration. The result is shown in Fig. 3 for
several values of the energy gap. The activation energy
for a bipolaron (the upper curve) is much larger than that
of a polaron, and both activation energies could be a sub-
stantial fraction of the energy gap E . For example, with

Eg =1.5 eV the bipolarons are practically pinned at room
temperature.

Turning now to the interaction, Fig. 4(a) shows the po-
tential energy between two polarons as a function of their
distance. In calculating the potential energy one polaron
is placed at the origin, while the other polaron is dis-
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FIG. 4. Potential energy between (a) two polarons, (b) two bi-

polarons, and (c) a polaron and a bipolaron plotted as function
of the separation between the two objects. (The curve a refers
to a separation in the [10]direction, b in the [11]direction. )
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FICx. 3. Activation energy for the motion of a bipolaron or a
polaron on a two-dimensional lattice vs energy gap.

placed in a diagonal direction. There is a strong attrac-
tive interaction. The potential energy reaches a rnax-
imurn at about d =5 because of the finite-size effect. The
lattice pinning energy is also clear from the potential en-
ergy curve. Similarly, Fig. 4(c) depicts the interaction be-
tween a polaron and a bipolaron. Figure 4(b) is for two
bipolarons. There is a relatively weak attraction between
the bipolarons.

Optical absorption provides another way to monitor
the change induced by doping. Figure 5 shows the opti-
cal density for various numbers of holes. Note that even
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FIG. 7. Profiles of a polaron and a bipolaron. The staggered
order parameter is plotted as a function of the radial distance r.
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FIG. 5. Optical density for various number of holes on a
10X 10 lattice.

at 6% doping there is a substantial absorption within the
gap.

To end this section we present the CDW pattern
viewed in perspective for various doping levels in Fig. 6.
The sawtooth background represents a uniform charge

IV. THREE-DIMENSIONAL CDW

To discuss the CDW in Ba& K„Bi03we simply gen-
eralize the two-dimensional Cu02 geometry to the three-
dimensional Bi03 geometry. Unlike the two-dimensional
case it is not easy to present the results in graphs. We
have to rely more on verbal descriptions.

FIG. 6. Perspective view of CDW pattern corresponding to various number of holes on a 10X 10 lattice.
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For the three-dimensional calculations we have pri-
marily taken the gap to be E =4, which is about a quar-
ter of the bandwidth. This ratio is about the same as that
inferred from the optical data on BaBi03 by Tajima
et al. " ' The calculations are done on a 6X6X6 lat-
tice with periodic boundary conditions.
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FIG. 9. Total energy of the homogeneous solution (upper
curve) and the inhomogeneous solution (lower curve) as a func-
tion of the number of holes on a 6X 6 X 6 lattice.
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FIG. 8. Potential energy between (a) two polarons, (b) a pola-
ron and a bipolaron, and (c) two bipolarons plotted as function
of the separation between the two objects in the [110]direction.

Just as in two dimensions, light doping leads to forma-
tion of polarons and bipolarons. The size of a polaron or
a bipolaron is very small as shown in Fig. 7. Essentially
it is a depression of the order parameter on a single site.
For that reason the activation energy for the motion of a
bipolaron is very large as can be seen from the potential
energy curve for a pair of bipolarons [Fig. 8(c)]. The
strong binding energy of a bipolaron is depicted in Fig.
8(a). Figure 8(b) shows that there is a hard-core repulsion
between a polaron and a bipolaron. The same goes be-
tween two bipolarons.

As doping proceeds, clusters or domains are formed.
At around 30% doping, which is a critical concentration
for an uniform CDW to exist, domains with both positive
and negative staggered order parameters are present.
This type of fluctuations persists to 40% doping, beyond
which the lattice is completely undistorted. The
difference between a homogeneous solution and an inho-
mogeneous solution is also shown in Fig. 9 in terms of the
total ground state energy.

The change in the density of states induced by doping
is qualitatively the same as the two-dimensional case.
Gap states appear and substantially perturb the gap
structure long before CDW is destroyed (Fig. 10). This
effect is also reflected in the absorption spectrum (Fig.
11). The significant subgap absorption at a low doping
level is a key signature of polaronic objects. ' Such a
feature is not found in the optical data" ' on
Ba, Pb Bi03 and Ba, ,K„Bi03.A more sophisticated
model is probably needed to fully explain the observed
absorption spectra.

We conclude this section by mentioning that we have
tried to calculate the effective mass of a bipolaron by es-
timating the kinetic energy of the atoms associated with
the motion of a bipolaron. Due to the strong localized
nature of the bipolaron, the effective mass depends on
where the center of a bipolaron is. For a bipolaron cen-
tered on a lattice site, the effective mass is comparable to
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FIG. 11. Optical density for various number of holes on a
6X6X6 lattice.

FIG. 10. Density of states corresponding to various doping
concentrations on a 6X6X6 lattice. The arrow indicates the
position of the Fermi energy.

the oxygen atomic mass. From that we have found that
the quantum lattice effect is negligible.

V. DISCUSSION

It is clear from the preceding sections that a bipolaron
Bose-Einstein condensation is unlikely. We must there-
fore consider other explanations for the observed high
T, . Machida' has proposed a density-of-states enhance-
ment mechanism. He argues that a preexisting CDW
with the gap edge singularity helps to increase the density
of the states at the Fermi level and therefore enhances T, .
For his argument he assumes a uniform CDW. As we see
from both Figs. 2 and 10, in an inhomogeneous CDW the
density of states at the Fermi energy is not singular. On
the contrary it is likely to be smaller than that of an
undistorted lattice. So we do not think his argument
holds. Besides, the optimal T, is found at a composition
in which there is no long-range CDW order. '

In the absence of a quantitative calculation of the su-
perconducting properties of the model, some speculation
is not completely out of order. As we have seen, near the
metal-insulator transition the CDW is weak and the
domains are quite extended. In such a CDW background
the charge carriers should be mobile. With some CDW
fluctuations around, certain attractive interactions be-
tween the mobile carriers could still be induced. In other
words we favor a picture in which the T, is enhanced by
residual CDW fluctuations that can exist only in an inho-
mogeneous solution.
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