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We have obtained the once and thrice energy-weighted moments of the random-phase-

approximation (RPA) response to q-dependent excitation operators of type jL(qr)YLD for metal

spheres described within a spherical jellium model. These two moments, in conjunction with the
Thomas-Fermi estimation of the RPA inverse energy-weighted moment, are used to study the

response of these systems as a function of q. For small values of q, we recover the surface-mode sys-

tematics, whereas for large q s the response is mainly determined by electron-hole excitations. For
intermediate q values, bulk oscillations are found and their connection with the hydrodynamical-

mode predictions is established. In the limit of a big sphere, we have obtained an improved bulk-

plasmon pole approximation for the dispersion relation which includes in a very easy way exchange
and correlation effects. We have found that these corrections are not negligible. The moments of
the response corresponding to a plane wave e' ' are also discussed. Numerical applications to the
case of Na spheres whose ground-state structure is described by models of different complexity (con-

stant electronic density, Thomas-Fermi or Kohn-Sham) are presented.

I. INTRODUCTION

A considerable amount of work has been recently de-
voted to the study of the response of metal clusters to
electromagnetic fields, and especially to the characteriza-
tion of surface collective excitations (see, for example,
Refs. 1 —8 and references therein). For small clusters, the
increasing surface-to-volume ratio has suggested that the
response would be dominated by surface-type qxcitations.
However, recent electron-energy-loss-spectroscopy exper-
iments on metallic spheres have shown that, contrary to
what was expected, significant bulk scattering occurs
even on 50-A diam spheres.

Bulk collective excitations of metallic spheres have
been theoretically described using a nonlocal dielectric
function, a hydrodynamical model, ' and a self-
consistent time-dependent local-density approximation. "

Recently, some of us have carried out rather detailed
random-phase-approximation (RPA) sum-rules (SR) cal-
culations of the response (strength) function to multipole
operators r YLO, where YLO is the spherical harmonic
function, that generate surface collective oscillations on
these spheres. ' In spite of the fact that the method only
gives an average picture of the strength, a great deal of
information could be obtained from a careful examina-
tion of the numerical results.

To explore the nonlocal response of the system, in the
present work we extend our previous calculations ' to q-
and L-dependent operators of the kind jL(qr)Yt0, where

j t (qr) is the spherical Bessel function of order L We will.

see that this operator generates bulk as well as surface
and electron-hole excitations in different proportions de-

pending on the value of q. Thus, selecting the appropri-
ate q, information about bulk collective modes can be ex-
tracted and compared with the predictions of other mod-
els.

As in Refs. 8 and 12, we employ the spherical-jellium
model to describe the neutralizing positive background.
The valence-electron cloud of the unperturbed cluster is
described either in the Kohn-Sham (KS) or in an im-

proved Thomas-Fermi —vonWeizsacker (ITFW) plus a
local-density approximation (Dirac-Wigner) for the ex-

change and correlation effects.
This paper is organized as follows. The RPA sum

rules m, and m3 pertaining to the operator jL (qr) Yto are
deduced in Sec. II. In Sec. III we use the ITFW method
of Ref. 12 to obtain the m

&
SR. The numerical results

corresponding to jL (qr)YLo are presented in Sec. IV. In
Sec. V, the preceding results are employed to obtain
m &, m &, and m 3 for the plane-wave operator e'q', and
in Sec. VI we draw our conclusions. Finally, we present
in the Appendix the exact expressions of m, and m 3 for

jI (qr) YLp corresponding to a constant ground-state (g.s.)
electron density.

II. RPA SUM RULES

A. General description

RPA sum rules are described in detail in Refs. 13 and
14 (see Refs. 8, 12, 15, and 16 for applications to metal
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clusters). Here, we just recall the definitions and funda-
mental results we shall use in this paper.

Sum rules mk are moments of the strength function

S(E)= +5(E E„—)l&n IQIQ&l

where the sum (integral in the case of continuum spec-
trum) extends over all the excited states of the system. Q
is the external field acting on the system; E„, In &, and

IP& are the excitation energies, the excited states, and the
g.s. of the system, respectively. By definition

mk= J E"S(E)dE= gE."1&n IQIP&l' (2)

=-,' &41[Q, [» Q]] I& &,

m3=-,'&0l[[» [» Q]], [» Q]]le&

(8a)

(8b)

The linear energy-weighted SR is easily evaluated from
Eq. (8a) when Q only depends on the position. The cubic
energy-weighted SR is easier to obtain by scaling lg &.

Defining the scaled many-electron wave function

I y &
=e p(H Ql y & (9)

m, and m3 RPA can be obtained as expectation values
on the KS g.s. IP& of suitable operators. For Hermitian
operators Q we have'

The mean energy E and the variance cr read

E=mi/mp,

o =m2/mp —(m, /mp)
(3)

Among these moments, the ones with k = —1, 1, and 3
play an important role in the application of SR to the
study of collective resonance states of the system. First
of all, they can be obtained with RPA precision from
Kohn-Sham calculations, essentially involving g.s. expec-
tation values. Secondly, they can be used to estimate E
and o . Indeed, defining Ek=(mk/rnk 2)' it has been
shown' that

we get

(10)

If [H, Q] is a one-electron operator lgv& is still a Slater
determinant and m3 is obtained with RPA precision. We
define the scaled particle and kinetic-energy densities

n„(r)=&/„lR'lp„& =n +rln&+i) nz+ .

r,(r}=&y„lrly„& =r+rI~, +g'r, +

where

fi'= +5(r —r, },
E

o (E3 —Ei )/4 .

If most of the strength is in a narrow energy region, as is
the case for some resonance states, E, and E3 are good
estimates of E. Conversely, if E& and E3 are close, we

may infer that some strength is concentrated around
these values.

The inverse energy-weighted SR

and

r= g V;5(r —r;)V, ,

n =-,'&Pl[[fi', [H, Q]], [H, Q]]14&,

(12)

(13)

m-i= g E l&nIQIW&l'
n n

(5)
with similar expressions for ~, ~, , and ~2. Notice that our
particle, and kinetic-energy densities are defined as

is closely related to the static polarizability a, a =2m
It can be obtained from constrained KS calculations.
Indeed, solving in the KS approximation the problem

H+A, Q,
where I, is a (small) constraining parameter, it is possible
to show' that m, RPA may be evaluated as

1 d&Q&„1 d'&H&

2 dA, 3 p 2 dA, 3 =p

n=yly, l',

Developing the expectation value (10) in powers of i),
the above expressions alow for a straightforward (but)
cumbersome) evaluation of m 3.

General expressions for n, , n2, ~„and ~2 have been re-
cently obtained. ' For velocity-independent potentials
and r-dependent operators Q, which is our case, one can
show' that ~, does not contribute to m 3 and that

n, = —iriV(nu}= —fiV'(nu'),

n, = —
—,'iiiV(n, u) = —

—,'AV'(n, u'),

(14)

(15)

~2 =
—,
' ~ I

—u "(V"V'u ') + ( VJu ') [V'u '+ Vju '] ) + —,
'

( V"Vju J )[V'V "(nu ")]
+ ,'(V'n )(V V—"u")[V'u +V u']+ —,'(2~ —3A, )[Sk(V u")(V'u I+V u') u "S; (V'V"u —)), (16)
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where V' means the Cartesian i-coordinate derivative and
a sum over repeated indices is understood. u is the col-
lective velocity field

(8a) yields

g2
m, = f dr(VQ} n (r)

2m

u= —VQ,
m

S; is the second-rank symmetric tensor

(17} fi f ~
d 2 ., )i L(L+1) .i

2m 0 T

(23)

Xg XJ.
~i~2 35V '

T

and A.(r) is the "centrifugal" kinetic-energy density

fq.(r) f'
A(r)= +2(21 +1)1 (I +1)

4n.r

(18)

(19)

where n (r) is the g.s. unperturbed KS electron density, j
is a short notation forjL (qr), and j ' denotes the r deriva-
tive ofjL (qr).

The evaluation of m~ is straightforward, but tedious.
%e have repeatedly used that

b [jI (qr ) Yl.o] = q Jl ( qr )YL o

where p (r)/r is the one-electron radial wave function.
In the fi Thomas-Fermi (TF) approximation one has
A, =2m/3. We refer the interested reader to Refs. 17—19
for further details.

m3(cx, corr)=— $2 f dre2(n}n, (r}bQ
2m

T

2
2

For electron-density terms, like E,„orE„„,we get

B, m ] and m 3 for JL ( gp) YL 0 operators

(20)

As in Ref. 8, we have considered an electron-energy
density functional consisting of a kinetic term (T}, a
Coulomb direct term (E, ), a Coulomb exchange term of
Slater type (E,„}

' 1/3

E,„=——— f dr[n(r)]—:f dre, „(r),3 3

2 m

where we have defined

g(r)=—n'j' qnj—

and

8 E.
ei(n) —= n

n

1@P2+q jg P, 24

a correlation term of Wigner type (E„„) Thus, for the Coulomb exchange term we have

1/3

E„„=—a r —= r c.„„rn (r)
b+r, n

(21)
1 3

ez(n }=——
3

n 1/3 sex(n) (25)

E,,= f dr VJ(r)n(r), (22)

where V (r) is the jellium Coulomb potential and R is the
radius of the jellium sphere. A direct evaluation of Eq.

where r, (n)=[3/4irn (r)]' is the local radius per elec-
tron, and a jellium-jellium term [E/J = ,'(Ne) /R] an—d a
jellium-electron term (E., )

and for the correlation term

2a b +2r, (n)
ez(n)= — r, (n) =—e2""(n) .

[b+r, (n)]
(26)

(In all the formulas, a prime will denote the r derivative,
and 5 the Laplacian of the corresponding function. )

The kinetic contribution reads

3
1 fim&(T)=—
2 m f dr [—,'r (hA, +3Aq + ,'bnq ) 4(r) —,'r b4—(r) r—4'(r)] (j')—+ — j

——'q f dr r jg(r)+34(r) r (j ") +L (L +1) ~+(j') — jj'—'2 2 ~ '
2 p

(27)

where we have defined N(r) =w —3A, /2. In the iii TF approximation, rn3(T) is considerably simplified by the fact that
A, =2w/3.

The electron-electron (e-e) and jellium-electron (j-e) Coulomb contributions are
'2

m3(e-e)=2m'e f g(r)dr f 'ri g(r&)dr&+ f g(r)j'dr f 'n(ri)ri dri
m 2L +1 o p~

2
$2

m 3 (j-e)= —2ire (29)
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where

nJ(r)= n+9(R —r) (30)

III, m
&

FOR J'L (gr) YL 0 OPERATORS

To solve the constrained KS problem, Eq. (6), is a for-
midable task because in almost all cases of practical in-
terest, the external Geld breaks the spherical symmetry of
the unperturbed sphere. However, in contradistinction
with the m3 case already discussed, the TF model can be
used to obtain good estimates of m, (Refs. 12, 14, and

]

Pd f P 2 "o df P L(L+1) «o
4 dr 4 r no dr ' r no

with R =r,A'', r, being the radius per valence electron
of the bulk monovalent metal, X the number of atoms in
the sphere, and n + the positive background density,
n + =3/4~r, . We will refer to the sum m 3(j e)-
+m3(e-e) as m3(C).

Equations (23)—(29) are the sought after ones for m,
and m 3. It is important to realize that they only depend
on the particle and kinetic-energy densities (and on some
of their r derivatives) of the unperturbed sphere. Conse-
quently, both sum rules can be obtained with RPA pre-
cision by numerical quadrature after carrying out a rath-
er simple KS calculation.

The simple structure of Eqs. (23)—(29) offers the possi-
bility of obtaining accurate numerical estimates of m

&

and m3 RPA by semiclassical models, provided that they
yield good g.s. densities, as is discussed in Ref. 8. It
would have been wrong, however, to start from a TF en-
ergy density functional and then to perform the scaling
indicated by Eq. (9). In particular, the basic kinetic-
energy contribution to m3, Eq. (27), would have been
missing. A detailed discussion of this point can be found
in Ref. 20.

For L %0, in the limit q —+0 we recover the expressions
derived in Ref. 8 for surface modes. Indeed, since

(qr)
(2L +1)!!

the operator jL(qr)YLo is proportional to r YLo when

q ~0. It is easy to check that, apart from the overall fac-
tor [q /(2L + 1)!!],Eqs. (24) —(29) reduce to the ones de-
rived in Ref. 8. Notice in particular that if b Q =0, as it
is for Q = r YLo, m 3 has no explicit contribution from
exchange and correlation energies in the local-density ap-
proximation, see Eq. (24). These energies do influence
m 3 through self-consistency because they play some role
in the determination of the g.s. densities n (r), r(r), and
A,(r).

16) provided, of course, it is able to reproduce fairly well
the global properties of the unperturbed sphere. To this
end, we have used the following ITFW energy density
functional (in atomic units):

&(n) =
2yn—

' + 8P C„n-(Vn ) an
n

" b+r, (n)

+, n (r)n (r')
/r —r'/

(31)

4m 3
n+

3 r
r~R .

The value of the coefficient p in Eq. (31) has been fixed so
as to reproduce the RPA E3 energies corresponding to
r YLo operators. ' For Na spheres, its optimum value
is 0.5. '

To obtain m, in the ITFW approximation, we have
solved the constrained problem

E[n]= f dr (ne)+A, f dr Qn(r), (32)

where Q =j L (qr) Yt o, and A, is a small parameter. In or-
der to find the equilibrium density n (r), one has to solve
the Euler-Lagrange equation

5e(n)
+A,gL(qr) Yc.o=p

5n
(33)

where p is the chemical potential. Since we are interested
only in A, '-order changes in n (r) with respect to the un-
constrained equilibrium density [that will be called no(r)
in this section to avoid misunderstanding], we can write
without loss of generality

n (r) =no(r)+5n (r) =no(r)+A f (r) YLo (34)

with f (r) an unknown function that depends on L and q.
Substituting Eq. (34) into Eq. (33) and using the equilibri-
um condition for A, =O

5e(no)

Sn,
(35)

we get the following integro-difFerential equation for
f(r):

I 2
no

no

where y=3/5(3m ), C„=3/4(3/m. )', a =0.44 and
b =7.8, and V is the jellium Coulomb potential

2K +2n r —2wR n+, r~R
3

4m. no f(r, )
+nojt (qr)+ dri ri+ f(r, )+nor dri

2L +l r +' o r r
(36)

After determining f (r) we have

(Q)&= f drjL(qr)YLon (r)= f drjt (qr)YLo5n(r) .

Thus,

m, = —
—,
' f dr jt (qr)r f (r) . (37)

0

Equation (36) has been solved in Ref. 12 for r YLo opera-
tors. We refer the reader to this reference for more de-
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tails concerning the ITFW method and the practical solu-

tion of that equation, as well as a discussion of the prop-
erties of its solutions.

A technical question arises for the operator jo(qr) Y~.
In this case, the condition

f 5n(r)dr=0

is not automatically fulfilled. Put it in a different way,
the chemical potentials p, in Eqs. (33) and (35) are not
identical to first order in A, and the right-hand side of Eq.
(33) has to be written as p+k5p. Correspondingly, the
right-hand side of Eq. (36) is no5I' instead of zero, and
one has to iterate on the unknown 5p to enforce particle-
number conservation.

IV. RESULTS FOR jl (qr) YL, O OPERATORS

A. Finite spheres

0.5-

-0.5
0.5

q (a.u.)

Na92 L =1

We have applied the method described in the preceding
sections to Na spheres for which we have taken r, =4 a.u.
[we shall use atomic units (a.u. ) in the numerical applica-
tions]. Figures 1 —3 show for Nas2 and L =0, 1, and 5,
the contribution to m3(RPA) of the different terms enter-
ing its definition, Eqs. (24) —(29). Each contribution has
been normalized dividing it by the total m3. We stress
again that to obtain m3(RPA), we have used in Eqs.
(24) —(29) the KS g.s. densities n(r), ~(r) and A(r).

These figures show that for small values of q, we recov-
er the behavior corresponding to surface modes: For
small L values, m3 is dominated by the (j-e) and (e-e)

Coulomb contributions. The local Coulomb exchange
(cx) and correlation (corr) contributions are small and
negative, the latter contribution being always negligible.

Coulomb (Q and kinetic (Q contributions equalize at a
value of q close to q, =co /vr=0. 45 a.u. , where co

=(4nne2/m )'~ =0.217 a.u. is the plasma frequency and

FIG. 2. Same as Fig. 1 for Na9$ L = 1.

vr=kqrlm =Pi(3m n)' /m =0.48 a.u. is the Fermi ve
locity. For larger q values, m3 is eventually determined
by the kinetic contribution.

This cutoff q, is a lower bound approximation to the
Landau damping onset momentum. The transition from
a collective to a single electron-hole excitation is related
to the increasing contribution of the kinetic energy to m 3

for large values of q and independently, for large values
of L as can be seen form Fig. 3. That was already shown
in the case of surface oscillations in Ref. 8, where follow-
ing a similar reasoning, it was found an upper bound of
the critical angular momentum for which collective exci-
tations can be sustained by a given sphere.

Figures 4-9 collect the basic numerical results of this
work. We have represented there the ITFW E, and E3

Na9~ L=0

Nag~ L =5

05-

0.5-

-0.5
0 0.5

q (a.u.)
-0.5

0 0.5

FIG. 1. q dependence of the m3 (RPA) relative contributions
of the diff'erent terms entering its definition [Eqs. (24)-(29)] for
the case Na92 L =0.

q (a.u.)

FIG. 3. Similar to Fig. 1 for Na92 L =5.
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Na92 L =0 Na9, L=2

0.5- 0.5-

O.i

0.25 0.43

0.5

060 0,78

O.i
0.5

q (a.u. ) q (a.u. )

FIG. 4. Na» E& and E3 ITF%' energies vs q for L =0. The
arrows indicate the first four roots of Eq. (38). All the quantities
are in atomic units.

FIG. 6. Same as Fig 4 for Na» L =2.

energies (solid lines) corresponding to the Na92 L =0—5

modes. These energies have been calculated from the
m

&
obtained according to the method of Sec. III and

from Eqs. (23)—(29) of Sec. II, putting 4(r) =0 in Eq. (27)
and using the ITFW densities n(r), ~(r), and A(r), i.e.,
after m, and m3 have been deduced in the RPA frame-
work, as we have indicated at the end of Sec. II. Let us
comment on the more salient features of these figures.

One can first observe that the difference between E3
and E, increases when q increases; the electron-hole
(noncollective) contribution becomes the main excitation
mechanism for values of q ~ q, .

Apart from L =0, all the other modes have a region at
small values of q for which E, and E3 are rather q in-

dependent, tending to the q =0 surface-mode value. This
means first, that the excitation is mainly of surface type
and second, that the energy of the single (one for each L
value) surface modes obtained in Ref. 8 for the step
electron-density model,

g2ro2 g2ro2 + & irr2(2L + I )(L —1 )
L p2

~ 2L+1 R

where PF=( ', )' UF—, has no extra q dependen-t correction
term. For Na9z, the surface-dominated region extends up
to q-0. 1 for L =1 and up to q-0. 2 for L =5. After
this flat region (which is absent in the L =0 mode), the
response starts being dominated by bulk modes, and both
energies increase rapidly.

Na~) L =1

Na9) L= 3

0.5-
0.5-

O.i
0 0.5

q (a.u.)

O.t I

0.5

q (a.u. )
FIG. 5. Same as Fig. 4 for Na» L =1. The dashed line is the

result corresponding to the step-electron-density model. FIG. 7. Same as Fig. 4 for Na» L =3.
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JL+)(qR) =0 . (38)

0.5-

NQ~) L =4
[Actually, Eq. (38) is exact only for L =0 modes; for
L ))I it is a good approximation". ] In Fig. 4 we have
indicated by arrows the first four roots of Eq. (38) corre-
sponding to R —18.06, which is the Na9z jellium radius.
To a good approximation, it is also the equivalent sharp
radius of its valence-electron density R, defined as

g2 s(„2)

where

(r ) =—f drr n(r) .
1

0.1
0.5

q (a.u. )

FIG. 8. Same as Fig. 4 for Na92 L =4.

To give an idea about how these results depend on the
ITFW approximation, for E3 L =5, we show in Fig. 9
the TF result, i.e., the result obtained using in the RPA
expressions the ITFW densities, as well as the full RPA
result obtained using in the RPA expressions the KS den-
sities. One can see that the agreement between both cal-
culations is excellent (see also Refs. 8 and 12). For small-
er values of L, barely can one tell the difference between
both models.

It is also worth noting the structures along the E,
curves which are also present in the E3 curves, although
less marked. They are clearly visible along the L =0 E&
curve (Fig. 4). The maxima of these structures corre-
spond to the q-quantized bulk modes in the hydrodynam-
ical approximation. Indeed, for a constant g.s. electron
density, these modes are excited at discrete values of q
such that

For Na92 we have R, —18.29. The agreement between
the values of q furnished by the hydrodynamical model
and the ones corresponding to the maxima is remarkable
(see also Ref. 11),allowing us to interpret these structures
as bulk modes which are preferentially excited at selected
values of q.

It is also interesting to observe in Fig. 4 that E, and E3
get very close at the first volume mode. This gives a hint
about its collectiveness, which is more pronounced than
for the other L =0 bulk modes.

For q )q, and all L values, the spectrum is dominated
by electron-hole excitations. The energy and momentum
are so large that the excited electron is quasifree, and its
dispersion relation is -q l2. This parabolic behavior is
a common feature of Figs. 4—9.

In the case of L =0, we also have a bulk mode at q =0
that can be excited by the operator Q = r (Ref. 8). Its
energy usually lies above the energy of the surface modes,
tending to co when the radius of the sphere goes to
infinity. For L & 1, the q =0 mode is of surface type and
its associated induced electron density is peaked at the
surface. Indeed, when q ~0 we have from Eq. (14)

Na92 L=5

0.5-

0.43
/

/

/q =0.60

0.1 I

0.5
10

r (a.u. )

20 30

q (a.u. )

FIG. 9. Same as Fig. 4 for Na92 L =5. The dashed line is the
full RPA result obtained from KS densities.

FIG. 10. Induced electronic-density functions (in arbitrary
units) corresponding to the first three E l local maxima
displayed in Fig. 4. The vertical line and arrow labeled R show
the position of the jellium surface.
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0.25-

0.5
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0.25-

'II

0.5
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FIG. 15. Same as Fig. 4 for Na&pp.
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FIG. 14. Same as Fig. 4 for Na2p.

peak to higher values of q when L increases. That can
also be seen from Figs. 4-9, and it is in qualitative agree-
ment with the results of the hydrodynamical model [see
Eq. (38)].

For a given sphere, the number of volume modes of L
type that can be excited with appreciable strength, i.e.,
the number of maxima along the E curves, depends on
how many of the selected values of q given approximately
by Eq. (38) can be found before the corresponding excita-
tion energy lies in the electron-hole strongly damped ex-
citation region. For small spheres, the first bulk L mode
occurs at a rather high q because R is small. Thus, al-
though their electron shell structure is such that the typi-
cal electron-hole energies are large, only one harmonic is
appreciably excited because the second one already has

q -q, . This is illustrated for Nazo L =0 in Fig. 14. For
large spheres, the first bulk L mode lies at a rather small

q and consequently, there is room enough to accommo-

date many harmonics before q
~ q, . However, since the

electron-hole energies are also small for large spheres, it
might well happen that, for a given L, the high-order har-
monics will also be strongly damped. This is not com-
pletely so in our model, as can be observed from Fig. 15,
where we have plotted the results corresponding to Nas~
L =0. The number of peaks has increased with respect
to the Na2o and Na9z cases. As in Figs. 4 and 14, we have
indicated the position of the first bulk modes predicted by
the hydrodynamical model. Notice again how close EI
and E3 are at the first maximum. The structures we find

along the EI and E3 curves in our ITFW model have
been confirmed in a full RPA calculation using the KS
densities. ' For q-q„E, (KS) is lower than E, (TF} by
about 10%%uo, whereas E3(KS)=E3(TF) as we have already
shown in Fig. 9.

Figure 16 shows the E& and E3 Na92 average energies
at the first (q, ) bulk mode as a function of L. For com-

pleteness, we also show the L =0, q =0 mode value
(lower triangle and dot points at L =0}. We have the
general trend already obtained in Ref. 7 using a nonlocal
dielectric function and also in Ref. 4 using the hydro-
dynamical model. The only significant difference between
our results and those of Refs. 4 and 7 is the existence of a
minimum in E(L) at L = 1. We attribute the existence of
this minimum to the contribution of the low-energy sur-
face L mode to the auerage. This effect is more marked
for L =1 since the corresponding surface energy is the
smallest. Very likely, it is also present in all the other L
modes. This is not a surface-diffuseness effect; indeed, we
have found a similar result using the step-density model.

Figure 17 shows the E, and E3 energies versus N for
L =0 and 1 corresponding to the first maximum ql. For
small spheres, the location of the L = 1 maximum is rath-
er uncertain and this is the reason for the error bars,
which have been roughly estimated. We have not found
any convincing explanation of the L = 1, EI, curve.
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0.15
0

& E3

~ E

Na9
response. To our knowledge, Eq. (41) has not been pre-
viously obtained. We would like to emphasize that it has
been derived with RPA precision within the spherical-
jellium model and that the basic approximations we have
made are first, to neglect electron surface diffuseness and
second, to consider the limit of a large-radius sphere.

It is interesting to estimate the contribution of the ki-
netic, Coulomb exchange, and correlation energies to the

q term in Eq. (41) (the q term has a pure kinetic origin).
Using for a and b the values given after Eq. (31), we have
that for r, =4, the kinetic, exchange, and correlation en-

ergy contributions are 0.138, —0.051, and —0.004.
Thus, altogether exchange and correlation are 40% of the

q kinetic-energy contribution. For Al (r, =2) the corre-
sponding figures are 0.552, —0.102, and —0.002. In this
case, the correction is of 20%. We conclude that these
contributions (Coulomb exchange mostly) are important
and should be taken into account.

FIG. 16. Na» El and E3 energies (in a.u. ) as functions of L,
corresponding to the q& bulk mode. For L =0, the lower circle
and triangle represent the q =0 mode. The arrow labeled co~ in-

dicates the plasma energy.

Apart from it, the E3 energies show the proper decreas-
ing behavior with N of the hydrodynamical mode.

B. Infinite systems

Let us come back to Eqs. (39) and (40). Introducing
the plasma frequency co and the Fermi velocity UF we
have (in atomic units)

V. THE m &, m &, and m 3 MOMENTS
FOR THE PLANE-WAVE OPERATOR e''i'

It is straightforward to obtain the m, , m, , and m3
moments for the operator e'q' from the previous results.
If one is not interested in the incident direction, averag-
ing on the q angles, one has

m&= E n e'q'
4m.

(42)

where q is a unit vector in the q direction. Using the ex-
pansion

e' '=4m. gi jI.(qr)Yr'M(q)Y , rM(r)
LM

m3
N

m&

3 UF 4,

~2+ v2 +ecorr q2+ 'q

5 3a 4
and the imposed spherical symmetry of lP ), we get

mz = + 4m(2L +1)g E„"I& n jlI (qr)Yr. olf )l (43)
where the term —v~/3m. is just the local exchange contri-
bution cz". This formula is a generalization of the disper-
sion relation for bulk modes of an infinite metal given by
the plasmon-pole approximation for the electron-gas

Thus,

m„(e,'q')= g 4~(2L +1)mk(jr (qr)Ylo) .
L=0

(44)

0.26

0.24—

Na

For m
&

it is again easy to find a compact expression in

the case of Q =e'q', although some attention has to be
paid to the fact that Q is not Hermitian. For non-
Hermitian operators, Eq. (8.1) becomes

0.22—

0.23—
L=1

E,

, =
—,'&Pl(Q+[K Q] —[K Q+]Q)ld&

and due to the angular averaging,

(45)

(46)

0.21—

0.19
100 200 300 400

For the plane wave, it reduces to

dq $2 2

m, = drn r Ve '' Ve''= Ã.
4m 2m 2m

(47)

FIG. 17. ql-bulk-mode El and E3 energies (in a.u. ) for Na
spheres of di8'erent numbers of atoms. The upper curves corre-
spond to L =0 and the lower curves to L = 1.

This exact result has been used to test the convergence
of the series (44). We have summed it to guarantee a
O. l%%uo precision on m& and have checked that a similar
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0.5

~a ?0
mode region is dominated by the dipole L =1 mode,
which is typical of light-absorption processes. That can
be seen from Fig. 19, where the rise in the E& and E3
curves is at the position of q, (L =1), which is indicated

by an arrow.

VI. DISCUSSION AND CONCLUDING REMARKS

O. i
0 0.5

q (a.u.)

FIG. 18. Na&0 E& and E3 energies (in a.u. ) corresponding to a
plane-wave operator.

0.5

0.5

q (a.u. )

FIG. 19. Same as Fig. 18 for Na&ooo. The arrow indicates the
Srst q value for which j&(qR) =0.

precision is achieved on m
&

and m3. The number of
terms to consider in Eq. (44) depends on the values of q
and N. For Na92 and q =1, 22 terms are needed to have
a 0.1% precision in the three sum rules, whereas for

q =0.3, eight terms are enough.
We represent in Figs. 18 and 19 the plane-wave results

for Na20 and Na&000, respectively. Two salient features
are worth commenting upon. The first one is the pres-
ence of a flat region for small q values in the Na20 case
that has almost disappeared for Na, ooo. This behavior is
related to the impossibility for photons (represented by
plane waves) to excite surface modes on infinite plane sur-
faces, whereas for nonplanar geometries, and in particu-
lar for small spheres, the probability of exciting surface
modes by real photons is not zero.

The second feature is that the response in the bulk-

We have studied the response of metallic spheres to q-

and L-dependent operators jL(qr)FLo. The RPA sum-

rules technique has permitted us to obtain the average ex-
citation energies of surface and bulk modes of these sys-
tems.

One of the main advantages of our method is that only
electron ground-state quantities are needed to apply it.
This allows one to use models of different complexity for
describing the g.s. electron density, like the crude step-
density model, or Thomas-Fermi and Kohn-Sham mod-
els. Consequently, we compare them and establish their
influence on the quantitative results. In particular, we
conclude that the ITFW g.s. electronic densities yield re-
sults in good agreement with the full KS-RPA calcula-
tions. This is of great importance for the applicability of
the method, since for spheres with N ~ 200, self-
consistent KS-RPA calculations are not technically feasi-
ble due to the increasing washing out of the electronic
shell structure of the sphere. The step-density model has
turned out to be quite useful in the characterization of
bulk modes, as it magnifies the size-quantization effects
while bearing the general features of the more realistic
models.

We have separately analyzed the q and L dependences
of the collective excitation energies. We conclude that
surface-mode frequencies coL are q independent and that
for each angular-momentum value different from zero
there is only one surface mode. The volume modes are q
quantized. For a fixed L value, one needs a second quan-
tum index i that labels the bulk-mode frequency col; and
determines its q;-momentum value. The number of
q; & q, values increases with N and tends to a continuum
when N ~ 00. As expected, for values of q larger than q„
i.e., short excitation wavelengths, no collective modes are
possible and the excitation energy tends to that of a
quasifree electron.

It is worth discussing the meaning of the parameter q
entering the definition of the external field. For small en-
ergies, the well-defined quantum number is the angular
momentum L. The frequency coL of the mode is indepen-
dent of q. For intermediate energies, bulk modes coL, are
excited predominantly. Thus, the longitudinal character
of the excitation increases because of this fact and of the
decreasing excitation probability of surface modes, which
are of transverse character. In this intermediate energy
region, the momenta q and L are partially good quantum
numbers. Finally, for large energies, the spherical
geometry is irrelevant, the q momentum is a well-defined
quantum number, and the frequencies co(q) are actually L
independent.

For a plane wave representing a real photon, the
response of the metallic sphere at intermediate energies is
dominated by dipolar excitations and at large energies by
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electron-hole excitations made possible by the energy ex-
change between this excitation and the sphere as a whole.

We have obtained a simple RPA dispersion relation for
the infinite electron gas which includes exchange and
correlation effects, generalizing the dispersion relation
obtained by Lundqvist in the plasmon-pole approxima-
tion.

We conclude that the q quantization is the origin of the
oscillations in the scattering spectrum found by Batson
(see Fig. 7 of Ref. 9). In his experiment, he finds an oscil-
latory behavior of the scattering amplitude as a function
of the radius of the sphere. It seems clear from our re-
sults that for a fixed momentum q, the scattering will be
resonant for all the radii R such that qR corresponds to a
peak in the response function. This already stems from
the step-density hydrodynamical model. Here, we have
shown that more realistic models also predict the same
behavior.

Finally, recent experiments on electron-energy-loss
spectroscopy carried out for K clusters ' unambiguously
show that for small values of q, the electronic response of
these clusters is dominated by the surface-plasmon exci-
tation. When q increases, the surface peak is washed out
and a q-quantized volume mode is preferently excited (see
Fig. 2 of Ref. 23). This behavior is in qualitative agree-
ment with the results we have obtained for Na clusters
(see for example our Fig. 5).

Note added in proof .Recent high-resolution electron-
energy-loss spectrocopy measurements in aluminum car-
ried out by Sprosser-Prou et al. have been used by these
authors to study the Al bulk-plasmon dispersion relation.
Taking for Al r, =2.07 a.u. , Eq. (41) is able to reproduce
their experimental results within a 6% error for all the
measured q values.
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APPENDIX

In this Appendix we collect the formulas for m& and

m3 corresponding to jL(qr) YLo in th'e case of a step elec-
tron density n of radius R. We will denote by jL the
spherical Bessel function jL(qR) and by jL(qR) its
derivative with respect to r evaluated at r =R. The quan-
tities ez"(n), Ez'"'(n), and y have been defined in the main
text. We have

nq R .2 2
ttL (JL 1JL 2JL-)+(L +-1)(jL+i

—jL jL+2)j
4m 2L + 1

2
2

m3(«, co«)= —,'e2 "'"(n) q'R 'ljLjL +q'R (j L' jL —i jL+1))
m

(A 1)

(A2)

3

1
m3(T) =—

2 m

y~ 5/3 n 2

+
3 4

2 2

2L + 1
[L(jL 1)'+(L +1)(jL+1)']

4 n 5/3 3

(«JL 1JL—2 JL ) —«+1)(JL+1 Jl. Jl. +2) l

q nR . . . q nR+
8

(jL JL 1JL+1)+—
4

(A3)

2
$2

m3(C) =2me

T

3 q' ., 1, q'(2L +3} . . 2 L
2 JL 2L+ljL

—
2(2L+1—)

JL 1JL+1+ R 2L+1jLJL (A4)
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