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Bond-orbital theory of linear and nonlinear electronic response in ionic crystals.
&&. Nonlinear response
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A bond-orbital theory of linear electronic response set out in the preceding companion paper (I)
is expanded to include nonlinear response. Attention is focused on the third-order susceptibility

g';,'kl (particularly as measured by the nonlinear refractive index n2) in pretransition-metal halides
and chalcogenides. Root-mean-square accuracy over 11 halides for relative n2 values is about 9%,
and points to an essential absence of local-field effects in bond-orbital response at least for halides.
The latter conclusion enables us to make an absolute calibration for n, —a question of some consid-
erable controversy among different experimental groups.

I. INTRODUCTION

In the preceding paper' [referred to hereafter as I and
its equations as Eq. (Il.l), etc.] a bond-orbital theory has
been developed to describe linear electronic response in
pretransition-metal halides and chalcogenides in the
long-wavelength limit. In the present paper we formally
extend this model to probe electronic nonlinear response
in the same materials. Since all the relevant crystal struc-
tures contain a center of symmetry, the lowest-order
nonzero electronic nonlinearity involves third-order sus-
ceptibility y' ', a fourth-rank tensor property which man-
ifests itself experimentally in many ways including, for
example, third-harmonic generation, three-and four-wave
mixing, intensity modulation of refractive index, and the
optical Kerr effect. '

Such a high-order effect is a rather extreme quantita-
tive test of any model. For example, even if we assume a
restriction to axially symmetric bonds (a condition which
is immediately violated by any d- or f-electron contribu-
tions to bond orbitals) and to an essentially dispersionless
low-frequency regime (for which Kleinman symmetry re-
strictions apply) y' ' for a representative bond can still
have as many as four independent components. Only one
of these, albeit the dominant one, is directly derivable
from the simplest bond-orbital representation as set out
in I. In spite of this, we shall find that the ensuing bond-
orbital computation for nonlinear refractive index gives
relative values which, over those halides for which accu-
rate experimental information is available, is accurate to
better than +10Io.

The theory of nonlinear response in solids can be dis-
cussed at various levels of sophistication, from the most
formal and rigorous (elucidating on the most general
grounds what types of processes can contribute) to the
more restricted and semiempirical (developed for predic-
tive purposes concerning problems of practical in-
terest). ' Most work in the latter category concerns
electronic response in the transparent frequency domain.
Here only a small number of energy levels or bands are
essential to the discussion —the others being far removed
in energy. With the exception of the bond-orbital ap-

proach these theories are cast, almost universally, within
the framework of anharrnonic electronic oscillators —the
electronic charges to be associated either with individual
ions themselves"' (introducing the concept of "ion hy-
perpolarizability") or with bond charges situated between
1ons 9'10, 13, 14

Although calculations of "ion hyperpolarizability"
have now developed beyond the effective charge mod-
el, ' ' the results for ionic crystals demonstrate the ex-
treme sensitivity of the numerical findings to environ-
ment. They therefore confirm the original conjecture of
Pantelides' that any separation of dielectric response
into additive ionic constituents is of limited value since it
obscures the dominantly interionic nature of the
phenomenon. The bond-charge representation postulates
the presence of a weakly bound well-localized bond
charge positioned between cation and anion. Within this
picture, both linear and nonlinear response is dominantly
attributed to the perturbed motion of this charge via an
association with the linear-response theory of Phillips
and Van Vechten. ' '

The notion of a concentration of loosely bound charge
located between ions is obviously most realistic for co-
valent systems, and consequently most work using this
model has focussed on such systems and, in particular,
upon calculations of y' '. In the context of ionic insula-
tors the method appears to be least viable and what few
estimates are available for g' ' for insulators using bond
charge-methods (e.g., Ref. 14) are numerically far inferior
to those of the present work.

In order to present as self-contained a paper as possi-
ble, we shall first restate the basic concepts of bond-
orbital theory and, in particular, redefine the parameters
which enter the equations of I for electronic linear
response. Bond-orbital theory, in its simplest form, de-
scribes long-wavelength electronic response as the pertur-
bation by an applied electric field of local bonding orbit-
als, each formed along a representative bond axis as a
linear combination of unspecified atomic orbitals ~h~)
and ~h~) centered on the cationic (M) and anionic (X)
sites, respectively. Writing such a bond-orbital in the
form
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I ho &
= u))t lb~ &+ux I hx &, V2=M/(1 —S ) (1.9)

the coe%cients uM and u& are determined first in the ab-
sence of applied field by minimizing the one-electron en-
ergy function ( bo Idol bo ) /( bo I ho ) simultaneously with
respect to ul and ux. Such a procedure (Sec. II of I) in-
volves the intraorbital and interorbital matrix elements

and

V —E /( 1 S2)1/2 (1.10)

in terms of which it is convenient to define a dimension-
less measure of covalency

(h l~ lh &= —(h I& lh )=E, (1.2) a= v, /(v', +v', )'".
and

(h l&olh )=—M, (1.3)

S =(h))tlhx) . (1.4)

If the minimization procedure is repeated in the pres-
ence of an applied external field E„along the bond direc-
tion x, i.e.,

%=%0 efE„,— (1.5)

where e is electronic charge and f a local-field factor,
then the induced bond-orbital moment
(blex Ib ) —(bolex lbo), and hence electronic response,
follows as a function of E„" to any required order of per-
turbation theory n. The only additional parameters
which enter are the bond length d and the distance

& h Ix lh
(1.6)

which would be equal to d/2 if lhx) and IhM) were
identical orbitals, but which more generally differs from
this value by an amount

where &o is the one-electron Hamiltonian, as well as the
overlap integral

II. NONLINEAR BOND-ORBITAL RESPONSE

Defining linear and nonlinear bond susceptibilities g&"',

n =1,2, 3, . . . , from the induced bond-orbital moment in
an applied field E„parallel to the bond axis x in the
manner of Eq. (I4.16) viz. ,

&blexlb) = const. + g y'b"'E„",
n=1

(2.1)

it is possible to calculate each as a function of the bond-
orbital parameters by combining Eqs. (I4.6), (I4.16), and
(I4.10} to (I4.15}. In this manner, after some algebraic
manipulation, we obtain

2Q 3
~()) f (d +gg)2

4a V

In this notation, full covalency is represented by a=1
(i.e., Et) =0) and is expected to be manifested in such sp-
hybrid elemental crystals as Si and Ge. The most ionic
crystals (i.e., the alkali halides) by contrast do not have
a=0, but rather a=S which is equivalent, in Eq. (1.1),
to a bonding orbital with uM =O. From a practical point
of view we therefore refer to the condition a=S as the
"ionic" limit. It implies the presence of valence bands
made up only of anionic orbital components.

5/2=(d/2) —xo (1.7)

which can be empirically determined from measured
linear-response trends in the form

b, /d =(d/2R )'/ —1

—3e3a'„&2
(d+gb, ) (gd —bS /a ),

16a V $'

e a f d (d+gQ) D
32a V2

(2.3)

(2.4)

in which RM is cationic radius.
The full parametrization therefore consists of two ener-

gies (M and Eo), two distances (d and 5), and two dimen-
sionless quantities (S and f). Of the four remaining "un-
knowns" [d is a measurable and b, , via Eq. (1.8), follows
from tabulated values of RM] three can be deduced by
fitting the theory to measured values of linear response
alone if attention is given to bond summation and to fre-
quency dependence on approach to the electronic long-
wavelength limit (Sec. VII of I). In order to completely
"close" the theory (in the sense of determining all param-
eters directly from observables) the final parameter,
which we take to be the local-field factor f, requires one
more observable. We choose this final observable to be
the third-order nonlinear response g' ' which, as we shall
see, will indicate that f probably does not differ appreci-
ably from unity throughout, and certainly not for halides.

In the formal theoretical development of I, the energies
M and Eo of Eqs. (1.2) and (1.3}appear most naturally in
combination with S in the forms

in which a and g are defined as in I, viz.

S(1 a2))/2
(1 S2)i/2 g-

a( 1 S2)1/2

and

(2.5}

D =4—5a —10ga (6/d)+(S/a) (Sa —1)(h/d)

(2.6}

p =y[] ).E+~[2).E2+~[3].p3+. . . (2.7)

in which the dots imply tensorial contraction, have
Cartesian representations y';;",y',- k, g',. I,'I ~ . . , which are re-

Since, for most materials, b /d is a small quantity [«1
see Eq. (1.8)], the final term in Eq. (2.6} is usually sinall to
the extent that it can be dropped from numerical work.

The macroscopic linear and nonlinear susceptibilities
y'"', n =1,2, 3, . . . , which relate polarization P to ap-
plied field E in the manner
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X(I)—y X(()P2 G
b=1

(2.8)

lated to the respective bond susceptibilities via the equa-
tions

co co 1 +602 +f03 and 0. is a degeneracy factor arising
from the intrinsic permutation symmetry of the frequen-
cies. These degeneracies are most easily calculated for
the case of real-field amplitudes by expanding

P' '(co) =X' '[E( cos(co)t)+E2 cos(co2t)+Ei cos(~3t)]3

Xjk X Xb ~ib~jb~kb Gf
b=1

(2.9) (3.4)

Xijkl X Xb ~ib~jb~kb~lbGf
b=1

(2.10)

G =2znj)jolmVM . (2.11)

The presence of the local-field factor f in Eqs. (2.9) and
(2.10) arises via interactions between nonlinear dipole
moments at one ionic site and the linear dipole at another
as set out by Armstrong et al. ~

For crystals with a center of symmetry (which includes
all of the compounds to be discussed in this paper) the
second order-nonlinear susceptibility g'; k is zero on sym-
metry grounds. It follows that, in the context of binary
insulators, the lowest-order nonlinearity is usually g';~&l,

involving third-order bond-orbital response g'b '. In pur-
suing this third-order response we first note that y'b ' can
be directly related to X'b" via Eqs. (2.2} and (2.4) in the
form

'2
X(3) «f (D/8)X(i)

b0
(2.12)

This can be simplified further by making use of the
Sellmeier energy gap E, =2 V2/a [see Eq. (I7.7)] to obtain

where there are m anion-cation bond axes b per anion
(with direction cosines labeled by p;b) and G is the elec-
tron "weighting" factor per bond (2z/m, z =6, see the
Appendix of I) times the number of bonds per unit
volume. Since, for a binary compound MX„(M=metal,
X=anion) the latter number is nj)jo/Vbt, where No is
Avogadro's number and V~ is molar volume, the general
form for 6 can be expressed as

P '(3') = ,'X' kl( 3c—o;—co, co,co)Ej(to)Ek(co)E)(to)

which experimentalists often reduce to a form

P("'(3')=C,'&'ki(to)E, (~)Ek(~)Ei(~)

to define a "third-harmonic susceptibility tensor"

~(3) —1 (3)
Cij kl 4~ij kl

(3.5)

(3.6)

(3.7)

In principle, any of the above-defined third-order pro-
cesses can be used to measure the relevant g;'~&l or its C Jkl
equivalent as defined in Eq. (3.7). In practice, one of the
more common methods involves a measure of the mean
field-intensity modulation of refractive index (n) via the
index expansion

and suppressing the Cartesian component notation. In
this manner we find terms in E; cos(3';t), i = 1,2, 3, with
0 =

—,
' (defining third-harmonic generation), terms in

E;El cos(to;t) with 0 =
—,
' (defining the optical Kerr

effect), terms in E; cos(co;t) with cr =
—,
' (describing self-

induced refractive-index changes}, and finally terms in

E;E cos(2', +co; )t with cr =
—,
' and in E;E Ek cos(co;

+co i+co k)t with o =—', defining, respectively, three-and
four wave mixing. All these effects can obviously be in-
corporated into the general representation of Eq. (3.3}.
Note, however, that many authors depone a frequency-
dependent y' ' by setting o = 1 for the particular property
under study, so that a check of definitions is essential
when reading the literature.

For third-harmonic generation Eq. (3.3) takes on the
form

Xb '=(efd/aE, ) (D/2)X'„" . (2.13)
n =no+ ,'n2E(co)E(——co) . (3.8)

P, (t)=(1/2)[P;(co)e '"'+P;( —co)e' '],
E;(t)=(1/2)[E;(co)e ' '+E, (

—to)e' '], .

(3.1)

(3.2)

into the expansion of Eq. (2.7). In this manner the third-
order Fourier component of polarization P )(co}becomes
expressible as ' '

Pi (~) ~Xijkl( ~~~1&~2&~3)Ej(~1) k(~2)EI(~3)

III. THE THIRD-ORDER SUSCEPTIBILITY

Third-order optical nonlinear susceptibility X',"kl is
most generally defined in Cartesian terms by introducing
a frequency dependence e.g.,

n = 3m X' '/n = 12m.C( '/n (3.10)

The appropriate tensor coinponent (or components) to be
used in Eq. (3.10) depends on the symmetry of the crystal
under investigation and the direction of propagation and
polarization of the light beam involved. ' For the sim-
plest case of a cubic material with a beam plane polarized
along [100] and propagating along [001] Eq. (3.10) be-
comes

Using the relevant terms of the general expansion Eq.
(3.3},viz. ,

P )(cu) = ,'X'jk(( co; co, co, —c—o )E (co)Ek (—co)E)( co ) (3—.9)

and recalling that n =I+4nX (where n is refractive in-
dex) we readily deduce the relationship

(3.3)
n2, =3 lr»X» n/=o12m. C»» n/.o

(3) — (3) (3.11)
where a repeated index summation over j, k, and l is im-
plied, the frequencies satisfy the condition %e may now directly relate C .

k& with the bond-orbital
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theory of Sec. II by combining Eqs. (2.10), (2.11},(2.13),
and (3.7}. For a binary insulator MX„we find the rela-
tionship

r '2
( 3 )

DznN0f
Cijkl 4V E Xb (PibPjbPkbPlb )

M ~ s

in which the angular brackets define an average over all
bond directions b Co. mbining this form with Eq. (I4.20)
which relates y&" to linear dielectric response F =no, we
obtain a final form

3' '2

Cij kl 32 E ( n 0 1 ) ( 13lbPjbPkb13(b ) ~

(3) 3Df ed 2

32m aE,
(3.13)

If d is expressed in A and the Sellmeier gap E, in eV, n 2

follows in esu by combining Eqs. (3.13) and (3.11) in the
form

1.0X10 "Df d (n —1)(P' &

nz, &= cm /erg,
n()(1 S}E,—

well below the band gap (and isotropic materials more
generally), there are only two independent components of
the tensor g' ', namely y'„'» and y', &&2. The problem is
that whereas the ratio XI))22/XI)I) almost always occurs
within the experimental range 0.45+0. 15, within our
bond-orbital picture, via Eq. (2.10), it is equal to
(p(bp2b)/(p&b), which is readily seen to be equal to
zero for cubic [001]-type bond axes of the kind possessed
by the rocksalt crystal structure and equal to unity for
the [111]-oriented bond axes of the fluorite or CsC1 crys-
tal structures.

Clearly the fault lies in the notion of a completely one-
dimensional anion-cation orbital bond which ignores
transverse response. Although the linear response of a
bond-orbital is predominantly longitudinal, ' as is direct-
ly apparent from measurements on layered structures like
graphite, important transverse terms can appear in
higher-order bond nonlinearity.

In principle, an axially symmetric bond along an x axis
can have four independent third-order response elements
as follows:

(3.14)

where we have used the definition a =(1—S ) of Eq.
(2.5) and recognize that the final angular average will

vary for different crystal structures. A conversion to the
SI units of m /V can be accomplished by noting that 1

cm /erg=—4m/(9X10 ) m /V .

X' '„,=A =Xb ' of Eq. (2.13),
(3) — (3)

Xy(xxy) Xz(xxz)

(3) (3)
Xx (xyy) Xx (xzz)

(3) — (3) —1 (3) —1 (3)
yyyy Xzzzz 3 Xy (zzy) 3 Xz (yyz)

(4.1)

(4.2)

(4.3)

(4.4)

IV. COMPARISON WITH EXPERIMENT

The most frequent contact with experiment for third-
order response occurs via measurement of the nonlinear
refractive index n2. Firstly, we recognize that no
frequency dependence has been built into the theory. Al-
though this is by no means an essential restriction of the
bond-orbital method (and frequency dependencies can
readily be discussed}, the present formalism should be
completely adequate for comparison with experimental
data obtained at frequencies large with respect to the
highest phonon modes and small compared to the elec-
tronic band-gap frequencies. For the wide band-gap ma-
terials of interest in this paper (with Sellineier gaps, '

E, =fico„ in the range 5-15 eV) frequencies of order
to, /10 to 0), /20 are adequate.

The primary diSculty confronting a direct comparison
with experiment concerns absolute values. Thus, al-
though a number of experimentalists essentially agree on
relative values of n2 (and claims of accuracies as high as
+5%o for some halides have been made in this context by
the most recent work), a severe disagreement persists
concerning calibration standards. Thus, for example, six
reported measurements of ostensibly the same n2 value
for CaF2 (see Table III of Ref. 30) fairly uniformly span
the range from 0.43X(10 ) to 2.8X10 ' esu. So
severe is this problem that we believe (see below) that the
accuracy of bond-orbital theory is sufBcient to narrow
this range considerably.

A secondary difficulty in comparing theory [viz. , Eq.
(3.14)] with experiment involves an essential limitation of
the theory itself. Thus, for cubic materials at frequencies

X1122/X1111 (B + C) /A

XIi22/XIiI) = A /[ A +6(B +C)] (fl)

(4.5)

(4.6)

To this approximation, it follows that contact with
bond-orbital theory (via A =X'b ') can be made directly
via g'&&'&& for rs-structures and via g', &&2 for 6 structures.
In particular, nonlinear refractive index n21 of Eq. (3.11)
follows immediately from Eq. (3.14}in the forin

100Df d (n0 —1)F
n2, = X10 '3 cm /erg,

n0( 1 S)E, —
0

where d is in A, E, in eV, and F =
—,
' for rs structures. In

Eq. (4.7), the parameter D is

(4.7)

D =4—5a —10ga (b, /d) (4.8)

[from Eq. (2.6) neglecting the jb, term], g is defined by Eq.

which we may think of respectively as XII II, X) II, XII), and

X) ), in terms of coinponents parallel (xx) or perpendicu-
lar (yy or zz) to the bond axes. Our nuinerical results
(a posteriori} and the bond-orbital concept (a priori) point
to the

y~~ ~~

component as being dominant. In addition, an
examination of the possible perturbational coupling paths
for transverse response suggest the likely relative trans-
verse magnitudes g~

t~

&
g~~ j & g~ j. Neglecting the last,

an e"ning XII II X) II
B an XII) rom qs

(4.1)-(4.3), it is a simple exercise in coordinate transfor-
mation to compute the two independent cubic matrix ele-
ments X'(,I( and X'1(z2 as functions of A, B, and C for the
rocksalt (rs) and fluorite (fl) structures. We find, in par-
ticular, the ratios
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(2.5), 6/d by Eq. (1.8), and the "covalency" parameter a
[from Eq. (16.7)] by

(4.9)

with Zz being the magnitude of the formal valence of the
anion. If we now write the Sellmeier gap, from Eq. (I7.8)
in the form

E 872fS
(4.10)

ad (1—S }
0

where d is in A and E, in eV, then the two equations (4.7)
and (4.10) for the measurables n2, and E, respectively
are cast solely in terms of linear refractive index no, bond
length d (in A}, overlap parameter S, and local-field fac-
tor f. Since no and d are directly measurable, these two
equations now suSce for an unambiguous determination
of S and f for the rocksalt structure (F =

—,'}.
This is extremely interesting since neither of these di-

mensionless quantities has previously been deduced from
experiment to our knowledge. In fact, the question of the
proper value to be taken for the local-field factor f in any
context has been a vexed one, even for cubic materials.
For the latter it is usually assumed to be between unity
and the full "Lorentz" value fL =(no+2)/3. In particu-
lar, unless f =1 its value should certainly be dependent
on no in some fashion.

For our initial comparison with experiment we use the
relative n2, measurements of Adair et al. as given for
seven rocksalt halides in Table IV of Ref. 30, since their
claimed accuracy of better than +15 for relative values is
the most accurate that we can find. As mentioned above,
the experimental determination of an absolute nz scale is
at present far from precise. To avoid bias we have chosen
to compare theory with experiment both for the lowest
(Adair et al. ) and highest (smith et al. ) scales adopted
in the literature, the latter of which is some 6.5 times the
former. In each case, however, we keep the relatiUe
values of Ref. 30.

Using these two sets of values we now compute, via
Eqs. (4.7)-(4.10) the self-consistent values of f and S for
these seven rocksalt-structured alkali halides. The values
of no, d, and E, required for the calculation are taken
from Wemple. In Fig. 1 we show the resulting f values
for both limiting absolute n2 scales together with the cor-
responding full Lorentzian local-field factors
fL =(no+2)/3. The important finding is that f is essen-
tially constant as a function of no within this set of
halides regardless of the absolute scale of n2 chosen al-
though, of course, the actual (constant} value of f is a
function of scale, rising from 0.63+0.03 for the lower n2
scale to 1.15+0.05 for the upper.

Since any local-field deviation of f from unity should
be monotonically dependent upon no in an isostructural
cubic series, the conclusion to be drawn from Fig. 1 is
that the correct value of f is probably close to unity.
This essential absence of a local-field correction within
the bond-orbital framework is presumably due to the ex-
tended nature of the wave functions involved in the bond-
ing. Putting f =1 in Eqs. (4.7) and (4.10) we may now
readily calculate self-consistent values of S and n2, for

1.6-

1.4

1.2

c 1.0

0.8—

1.8 2.0
no

2
2.2 2.4 2.6

NaF KF LiF KCk NoCf KBr NaBr

FIG. 1. The local-field factor f deduced as a function of no2

for a series of alkali halides by comparison of the theory of Eqs.
(4.7)-(4.10) with the relative n2 &

measurements of Adair et al.
(Ref. 30) using both the smallest (Ref. 30) (solid circles) and
largest (Ref. 28) (open circles) absolute nonlinear refractive-
index calibrations found in the literature. The bars indicate the
accuracy of the experimental data (as estimated in Ref. 30) and
the open squares mark the Lorentz local-6eld values

fi = (n 0+2)/3 for the same set of halides.

all the rocksalt-structured halides, most of which have
yet to be probed experimentally. The detailed results are
given in Table I. For the seven samples measured by
Adair et al. the relative values given by theory (Table I)
agree with experiment to an accuracy =+8%. To our
knowledge this accuracy exceeds that of any other empir-
ic relationship predicting n2 for insulators, the most com-
monly used of which is that of Holing et al. ' The ab-
solute values, on the other hand, exceed those of Ref. 30
by a factor of 4.3 (using a geometric average) and agree
fairly closely with the absolute scale adopted by Leven-
sen, who used a calcite reference standard with
nz, --3.2X10 ' crn /erg.

It is now a straightforward exercise to proceed to the
rocksalt-structured chalcogenides, if we again write f = 1

and use the sequence of Eqs. (4.7)—(4.10). The essential
di8'erence is that for these, with an anion valence Zz =2,
the covalency parameter is a =&2S in place of the a =S
equivalent for halides. The self-consistent findings for
nz &

and S are given Table II.
Experimental data for members of the series is scant.

Only Adair et a/. report any measurements, giving
values for MgO, CaO, and SrO. If we maintain the abso-
lute scale for n2, determined by the f =1 choice for
halides, and retain Adair s relative values from halides to
oxides, then the measured values are about a factor 2
larger than the theoretical predictions of Table II. This
could be marginal evidence for the existence of a local-
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TABLE I. Calculated values of overlap S and nonlinear refractive index n2 &
from the theory of Sec.

IV—Eqs. (4.7)—(4.10)—for the rocksalt-structured alkali halides i.e., F =—'. Local-field parameter f
has been set equal to unity (see text) and experimental values for linear refractive index no, bond length

d, and Sellmeier gap E, have been taken from the literature (Ref. 33). Also shown for completeness are
the parameters d of Eq. (4.8) and 5/d of Eq. (1.8).

Crystal
(Units)

CsCl
CsBr
CsI

RbF
Rbcl
RbBr
RbI

KF
KC1
KBr
KI

NaF
NaC1
NaBr
NaI

LiF
LiC1
LiBr
LiI

2no

2.30
2.43
2.63

1.93
2.17
2.34
2.59

1.84
2.17
2.35
2.63

1.74
2.33
2.60
2.98

1.92
2.68
3.00
3.4

d
(A)

3.57
3.71
3.95

2.82
3.29
3.43
3.67

2.67
3.15
3.30
3.53

2.31
2.81
2.99
3.24

2.01
2.57
2.75
3.00

(eV)

10.6
9.4
7.7

14.5
10.4
9.3
7.8

14.7
10.5
9.2
7.6

15.1
10.5
9.1

7.4

16.5
11.0
9.5
8.0

b/d

0.03
0.05
0.08

—0.02
0.05
0.08
0.11

0.00
0.09
0.11
0.15

0.10
0.22
0.25
0.31

0.29
0.46
0.51
0.58

2.91
2.90
2.88

3.20
3.05
3.01
2.97

3.24
3.06
3.05
3.01

3.31
3.10
3.05
2.99

3.27
2.96
2.89
2.77

0.45
0.45
0.44

0.41
0.41
0.41
0.41

0.39
0.40
0.39
0.39

0.34
0.35
0.35
0.35

0.30
0.33
0.33
0.34

nz, &

(10 " cm'/erg)

11.9
17.3
31.5

3.2
9.8

14.4
26.1

2.60
8.7

13.7
25.7

1.64
7.4

12.5
25.0

1.18
6.2

10.5
19.1

field factor f=2' =1.25 in these more polarizable sys-
tems, but it may equally well be a reflection of the fact
that bond-orbital contributions lose their independence
for highly coordinated systems as we move away from the
ionic limit (see the Appendix of I).

Turning to the [111]-bonded cubic crystals we expect,
via Eq. (4.6), to make contact between experiment and
bond-orbital theory via y'»22. Experimentally, this tensor
component can be determined from n2 measurements by
combining findings on linear and circularly polarized
light ' or by variation of the propagation direction of

F =(gib)/R =1/(9R) . (4.11)

A number of experimental results for R are available for
the Iluorites CaF2, SrF2, and BaF2 (Refs. 29 and 30) with
findings scattered generally in the range 0.4&R &0.7.
Correspondingly we anticipate, from Eq. (4.11), F values

linearly polarized light alone. Thus, if R is the ratio
yI(122)/y'„'„ for these materials, then the principal non-
linear refractive index n2 &

can again be cast in the form
of Eqs. (4.7), but now where

TABLE II. As in Table I, but for the rocksalt-structured chalcogenides; f =1, and F =
—,'.

Crystal
(Units)

BaO
BaS
BaSe
BaTe

SrO
SrS
SrSe
SrTe

Cao
CaS
CaSe

MgO
MgS
MgSe

no2

3.68
4.26
4.48
4.71

3.35
4.09
4.33
4.91

3.27
4.24
4.58

2.95
4.84
5.28

d
(A)

2.76
3.19
3.30
3.49

2.58
3.01
3.12
3.24

2.41
2.85
2.96

2.10
2.60
2.73

E,
(eV)

7.1

6.3
5.3
4.2

8.3
6.6
5.4
4.9

9.9
6.9
5.6

11.4
7.6
7.0

6/d

0.01
0.09
0.11
0.14

0.07
0.15
0.17
0.20

0.10
0.20
0.22

0.27
0.41
0.45

2.82
2.42
2.50
2.58

2.74
2.43
2.55
2.51

2.68
2.47
2.59

2.66
2.32
2.21

0.34
0.38
0.36
0.35

0.34
0.36
0.34
0.34

0.34
0.35
0.33

0.31
0.33
0.34

52 )

(10 "cm'/erg)

22.5
38.0
61.3

115.0

12.8
29.7
51.5
73.2

7.5
25.1

45.3

3.8
17.7
23.5
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TABLE III. As in Table I, but for the CsCI (sc) and fluorite (fl) structured halides (i.e., with (111)
bond coordination); f= I,F= I/(9R)=0. 27, see text.

Crystal
(Units)

CsF (sc)
CsCl (sc)
CsBr (sc)
CsI (sc)

CaF2 (fl)

SrF, (a)
BaF2 (fl)

n',

2.15
2.63
2.79
3.03

2.04
2.06
2.15

d
(A)

3.00
3.57
3.71
3.95

2.37
2.51
2.69

(eV)

14.3
10.4
9.3
7.7

15.7
14.7
13.8

6/d

—0.06
0.03
0.05
0.08

0.09
0.05
0.00

3.18
2.93
2.91
2.88

3.26
3.27
3.27

0.43
0.45
0.45
0.44

0.35
0.36
0.38

(10 ' cm /erg)

3.64
11.7
16.7
29.6

1.67
2.19
3.08

n2 )=

Since we believe that f =1 for halides, and have some
preliminary evidence that f may be larger (=2) for chal-
cogenides, we can now tentatively combine these in the
form f =Zx, leading to a final expression

in the range 0.22+0.06 for use in Eq. (4.7).
Using the theoretical equations [(4.7)—(4.10)], the

closest agreement between theory and experiment for
Adair's (rescaled) nt, findings for CaF2 (viz. , 1.85),
SrF2 (2.15), and BaF2 (2.18), in units of 10 ' cm /erg,
obtains for an F value of 0.27. Adopting this value we
now calculate n2, and S for the pretransition-metal Auor-

ites and CsC1-structured alkali halides. The results are
shown in Table III. To our knowledge, no experimental
information is available for the CsC1-structured halides.

Finally, if we now look with the hindsight of Tables
I-III back to Eq. (4.7) for nz „we notice that the factor
DF/(1 —S ) rarely strays outside the range 1.1+0.15. It
follows that an extremely simple explicit expression for
nonlinear refractive index n2 &

can now be written which
possesses an accuracy only slightly less than that of the
full formalism of Eqs. (4.7)-(4.10): it is

110f3(no —1)d
X 10 ' cm /erg . (4.12)

no&'

110'(n o
—1)d

n2, = X10 ' cm /erg,
no s

(4.13)

in which bond length d is in A and Sellmeier energy E, in

eV.
We compare the accuracy of this expression with that

of the full theory of Eqs. (4.7)—(4.10), and also with the
often-used empirical expression of Boling et al. ' and the
experimental measurements of Adair et al. in Table IV
for 11 halides. Experimental data on chalcogenides are
not yet sulcient to make any parallel comparison for
these meaningful at the present time.

V. SUMMARY

The bond-orbital theory of I (Ref. 1) for linear elec-
tronic response in pretransition-metal halides, and chal-
cogenides has been expanded to include nonlinear
response and, in particular, to calculate the third-order
electronic susceptibility g';Jkl. Contact with experiment
has been made via the nonlinear refractive index n2.
Since the linear theory alone is suScient to empirically
determine all the parameters appearing in the simplest
bond-orbital representation except one, the nonlinear

TABLE IV. A comparison of the relative nz &
values between experiment (Ref. 30), the full theoreti-

cal results of Tables I and III (labeled A), the approximate representation of Eq. (4.13) (labeled 8), and

the theoretical expression proposed by Boling et al. (Ref. 12) as computed by Adair et al. (Ref. 30). All

columns are normalized such that the product of the 11 components in each is equal to unity.

Expt. (Ref. 30) A (% error) B {% error) Boling (Ref. 12) (% error)

LiF
NaF
KF

NaC1
KCl

NaBr
KBr

MgF2
CaF2
SrF2
BaF2

0.33
0.43
0.95

2.02
2.55

4.14
3.72

0.32
0.54
0.63
0.85

0.35
0.48
0.77

2.18
2.56

3.68
4.03

0.33'
0.49
0.64
0.91

(+6)
(+ 12)
( —19)

(+8)
(+0)

(—11)
(+8)

(+3)
(—9)
(+2)
(+7)

0.34
0.45
0.70

2.13
2.43

3.65
3.86

0.31
0.57
0.73
1.01

(+3)
(+5)

( —26)

(+5)

(—5)

(—12)
(+4)

( —3)
{+6)

(+ 16)
(+ 19)

0.46
0.44
0.41

2.62
2.11

5.45
3.92

0.39
0.56
0.57
0.80

(+39)
(+2)

(
—57)

(+30)
(—17)

(+32)
(+5)

(+22)
(+4)

(—10)
( —6)

rms ERRORS

'Assuming F=
—,
' in Eq. (4.7).

(9%%uo) (12%) (26%)
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response (and in particular n2) is used to focus self-

consistently upon this final parameter —the local-field fac-
tor f.

Unfortunately, although different experimentalists
largely agree as to the relative n2 values among the
relevant materials studied, they use absolute calibrations
which differ by up to a factor of 6. This degree of con-
fusion enables us only to compute upper and lower
bounds on f equal to 0.63 and 1.15, respectively. Howev-
er, focusing only on relative n2 values, the theoretical in-

terpretation for a series of rocksalt alkali halides estab-
lishes clearly that f is independent of linear refractive in-
dex no. Since any local-field enhancement or shielding
(represented by values

foal)

should certainly correlate
with no in some manner [e.g., the Lorentzian local-field
factor fL =(no+2)/3] we infer that f must be effectively

equal to 1, at least for halides. The lack of local-field
effects within the present framework presumably reAects
the extended nature of the orbitals involved in the bond-
orbital description, the Lorentz condition arising only in
the limit of point dipoles. Putting f =1 enables us to lo-
cate an absolute n2 calibration. It is close to the calcite
"standard" nz, =(3.2+0.4) X 10 ' cm /erg used by
Levenson and co-workers.

n2, —(no —1)d /(noE, ) (5.1)

is noted, where d is bond length and E, is the Sellmeier
energy gap [observable from the long-wavelength elec-
tronic frequency dependence of linear response in the
form no —1 (E-, A—co ) '] and found to be only slight-

ly less accurate (rms 12%) than the full theory over these
same halides (Table IV).

Experimental data for pretransition-metal oxides is
scant and for the remaining chalcogenides virtually
nonexistent. However, the few n2 measurements for ox-
ides (relative to halides) which are available suggest that
the local-field factor f for these generally more polariz-
able materials may be slightly larger that unity, although
this finding is hardly more than speculative at the present
time.

With f =1 we have calculated nz, (the n2 value for
light propagating along [001) and plane polarized along
[100]) which is a measure of g, '», for a wide selection of
cubic halides and chalcogenides in Tables I—III. A direct
comparison of theory with experiment for relative n2,
values over 11 halides (Table IV) shows a rtns accuracy of
9%%uo. In particular, a very simple (if approximate) propor-
tionality
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