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Materials characterization for optical device purposes relies heavily on a knowledge of material
compliances related to dielectric response. These include both linear response (dielectric constant)
and various orders of nonlinear response involving electro-optics (Kerr and Pockels effects, harmon-
ic generation, etc.) and elasto-optics (light scattering, piezoelectrics, etc.) All these properties fol-

low, in principle, from an adequate description of electronic bonding in insulators and semiconduc-
tors. This paper sets out a bond-orbital theory of dielectric response which, it is anticipated, will

eventually lead to a global semiquantitative representation of all these various properties as func-
tions of such readily available measures as formal valency, bond length, ionic radii, etc. In its initial
form, as presented here, it is used to obtain just such an expression for the electronic dielectric con-
stant of pretransition-metal halides and chalcogenides. The root-mean-square accuracy, over 28
halides, is 2.4% and over 44 materials in all, about 3.4%. In the companion paper (II) a similar cal-
culation is carried out for nonlinear response on the same materials.

I. INTRODUCTION

It is with some concern when I note that even the most
recently revised introductory graduate texts on solid-state
physics' still discuss electronic response in insulators in
terms of the supposedly environmentally independent
electronic polarizabilities a; of their ionic constituents
and include a table associating polarizability values with
ion types. The association is made via the Clausius-
Mossotti (or Lorentz-Lorenz) relationship

(e I ) I(@+2—) =(4m/3) g N;a;,

where e is the electronic dielectric constant (equal to the
square of the refractive index) and N, is the number of
ions of type i per unit volume. However, it is now clear
from the literature that any formulation based on a
summation g, over independent ionic contributions a;
must recognize an essential environmental dependence of
o,'; which precludes any viable one-to-one association of
a; with ion types.

Although the details of the formula include the as-
sumption of a local-field enhancement of Lorentz form, '

the assumed environmental independence of a,- rests on
an even more basic premise; namely that the dominant
electronic excitations (real or virtual) which are produced
by an optical frequency electric field are wholly intraion-
ic. Only in this circumstance could the notion of unique-
ly defined (i.e., approximately composition-independent)
ionic polarizabilities a; be developed. However, as first
noted by Pantelides, a careful analysis of experimental
data for optical response over a wide range of insulators
clearly excludes the independent-ion model. Moreover,
this finding is hardly surprising when the lowest-energy
electronic excitations (whether to exciton or lower

conduction-band levels) are known to be dominated by
charge-transfer processes. '9

But Pantelides went further to suggest that the experi-
mental evidence actually points to the opposite extreme
condition; a marked dominance of interion over intraion
processes in the optical response of insulators. If true,
this would suggest that a theory based solely upon in-
terion excitations should be more fundamental than any
additive polarizable-ion model. It is the purpose of the
present (I) and following (II) papers to develop the sim-
plest possible theory of this nature for both linear and
nonlinear response, to test its accuracy and limitations,
and to derive relationships of textbook simplicity to re-
place their "independent-ion" counterparts, at least over
wide classes of insulator.

Although, with the use of ultrafast computing facili-
ties, it is now becoming possible to calculate electronic
structure and associated dielectric response from first
principles for all classes of simple solids (from molecular
to metallic' "), such ab initio methods involve highly
sophisticated machine computation and are therefore
somewhat arcane and certainly not physically transpar-
ent at the introductory graduate level. In addition, their
numerical findings are not well adapted for the organiza-
tion of chemical trends. As a result, the various
semiempirical models that have been developed over the
years ' (which attempt to retain the essentials of the
underlying physics for each material class while simplify-
ing the analysis to bare essentials) still have important
roles to play.

For binary semiconductors and insulators the two
competing (but possibly not conflicting'6) models are
those of Phillips' ' and of Harrison and co-
workers. ' The first is based upon a single band gap
in free-electron bands while the second adopts a local pic-
ture of bonding and antibonding orbitals formed by in-
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teractions between nearest-neighbor anion and cation
wave functions. In this paper we wish to develop the
bond-orbital method since, not only is it extremely trans-
parent in the physical approximations which it pursues,
but also (surprisingly) it has never been presented for in-
sulators due to a persistent belief that independent bond
orbitals (which are not present in highly coordinated in-
sulator complexes) are a necessary ingredient of the
method; they are not.

The bond-orbital method was developed initially for
binary covalent (tetrahedrally bonded) semiconductors
and later extended to other covalent structures. ' The
work of the present paper, while inspired by Harrison's
earlier formalism, differs from it in a number of ways.
First, it includes orbital overlap in an essential fashion
(i.e., in a manner which cannot simply be absorbed into a
rescaling of other parameters). Secondly, it recognizes
the differences in size of the cation and anion orbitals
which combine to form the bond orbitals. This size
difference is absolutely essential for discussing electronic
response in insulators, for which ionic radii can differ by
more than a factor of 2. Thirdly, and most importantly,
it empirically relates one-electron matrix elements to
physical and chemical trends in a manner which com-
pletely rids the final equations of any further ad hoc pa-
rametrization. Finally, in conjunction with the paper to
follow, it settles the question of local-field enhancement
(Lorentzian or otherwise) in favor of its essential absence
in the context of bond-orbital theory.

II. FORMAL BOND-ORBITAL THEORY
IN THE ABSENCE OF APPLIED FIELD

Consider a binary insulator or semiconductor MX„,
where M denotes the metal (or cation) species and X the
anion species. Limiting ourselves, for the present, to
structures which possess only a single class of equivalent
primary M—X bonds, we express such a representative
bond as a linear combination of a single pair of
unspecified atomic orbitals IhM ) and Ik») associated, re-
spectively, with the metal and the anion. Although it is
anticipated, for the class of materials of immediate con-
cern in this paper, that Ih» ) is predominantly ofp-orbital
character and IhM) largely (though possibly less dom-
inantly) of s-orbital form, it is not necessary to impose
these restrictions in the formalism which will be cast sole-
ly in terms of parameters representing matrix elements
within and between these atomic orbitals.

Following, initially, the formulation developed by Har-
rison and co-workers ' ' for covalent semiconductors (in
which IhM ) and Ihx) were sp hybrids), we first consider
a o. bond between the metal and an arbitrary nearest-
neighbor anion, and write a normalized bonding orbital

I ho ) as the linear combination

lbo & =uM lhM &+uxlhx & .

The coefficients uM and ux are then obtained as functions
of the relevant interorbital and intraorbital matrix ele-
ments, by variationally. minimizing the bond-orbital ener-

gy (boI&olbo)/(bolbo) with respect to them, where Ho
is the one-electron Hamiltonian. This Hamiltonian may,

in a first approximation, be assumed to consist of a
kinetic-energy operator and interactions with the M-
cation and X-anion nuclei and electrons.

Defining the one-electron matrix elements

(hMl~olhM ) = —
& h»l~olh» & =Eo,

&hMI&olh» &
= —M,

(2.2)

(2.3)

where the former also selects an arbitrary zero of
absolute-energy scale, and the overlap integrals

& hM IhM &
= ( hx lh» ) =1,

(hMlhx) =S,
we now differentiate the energy function

(b, lm, fb, &

&b. ib, &

(2.4)

(2.5)

(2.6)

partially with respect to uM and u» of Eq. (2.1) to obtain
the stationary conditions

E+Eo M +ES ux

M +ES E Eo uM

0
0 (2.7)

The matrix equation (2.7) has nontrivial solutions when
the determination of the coefficients is set equal to zero,
viz. ,

E+Eo M+ES
M +ES E —Eo

=0. (2.8)

Of the two solutions for E, which follow in the form

E,=SV,+(V +V )
/

where

(2.9)

and

V2=M/(1 —S ),

V —E /( 1 S2)1/2

(2.10)

(2.11)

the smaller, E=E =Eb,„d, defines the energy of the
bonding orbital. Substitution of E =Eb,„d into Eq. (2.8)
now supplies the corresponding bond-orbital coeScients
in the form

uM =+[(qo —ro)/2]'"

ux = [(qo+ ro ) /2]'

in which

qo=(1 —Sa)/(1 —S'),
ro=[(1—a')/(1 —S')]' ',

w~ere

a —V /( V2 + V2 )1/2

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

The + ( —) sign for uM in Eq. (2.12) holds for a)S
(a(S) and the bonding wave function Ibo) has been
normalized to unity according to
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& bo ~bo &
=u»+ u~+2u»u~S = 1 . (2.17) & bo~e(x —xo)~bo & =(e/2)(rod +qob, ), (3.4)

The parameter a of Eq. (2.16) can be used as a measure
of covalency by noting that full covalency (uM=u»,
r0=0) corresponds to a=1, V3/V2 =0, while the oppo-
site formal limit Vz/V3 =0 of complete ionicity leads to
a=0. However, the two limits differ in relevance since,
while V3/Vz=O is physically realized in the elemental
semiconductors, the opposite limit V2/V3 =0 is never ap-
proached by any known chemical bond. In fact, the most
ionic materials (namely the alkali halides) are known to
have bonding orbitals (or equivalently valence bands)
which are overwhelmingly of anionic p character. This
points to the conditions u»=1, uM=O, qo=ro, (or
equivalently a=S) as being close to the practical ionic
limit for real systems. Accordingly we shall, from this
point on, refer to the condition

Ibo &
= Ih» &, ~=S, (2.18)

III. THE BONDING ORBITAL MOMENT

In order to calculate the dielectric response to an ap-
plied field, it is first necessary to consider the magnitude
of the dipole moment of the bonding orbital ~bo & of Eq.
(2.1). Measuring distance x along a bond from the cation
nucleus x =0 to the anion nucleus x =d, we can express
this electric dipole moment (per one electron orbital) as

as being the "ionic limit" for solids. Note that in this
limit the corresponding antibonding orbital is the orthog-
onal ~ao &

= ~hM &
—S ~b» &.

It follows that, as a measure of covalence, a can take
on values only between S and unity, where the overlap S,
as we shall see, may vary somewhat from material to ma-
terial, but is typically of order 0.3-0.45 for insulators. It
also follows that for all physical bonds it is the positive
sign in Eq. (2.12) which is relevant.

where

6=d 2xp

or, equivalently

(d +6)/d =2[1—(xo/d)] .

(3.5)

(3.6)

X

Now, while d (the bond length) is clearly a measurable
quantity, the nature of the distance variable xp is not so
self-evident in a general context. In the limit of full co-
valency, in homopolar semiconductors such as Si or Ge,
it is obvious by symmetry [see Fig. 1(a)] that xo=d/2
and hence b, =0. This is the value used by Harrison and
co-workers for all the tetrahedrally bonded (sp-
hybrid) semiconductors. Whether or not this is an ap-
propriate assumption for the wider field of sp3 semicon-
ductors is a topic which we shall take up in a future pub-
lication. Regardless of this question we shall demon-
strate below that, for the more ionic materials of concern
in this and the following paper, the condition xo =d /2 is
clearly inappropriate.

In essence, xp locates approximately the center of the
region of maximum overlap of the cationic and anionic
wave functions ~h~ & and ~h» &, see Fig. 1(b). As the size
of the anionic orbital increases for a fixed cation, the peak
overlap position (and hence xo) will clearly move to
smaller values, and (d+b, )/d of Eq. (3.6) to larger
values. In a complementary fashion, as the size of the
cationic orbital increases for fixed anion, peak overlap
will move to larger values, and (d +5)/d to smaller ones.

& bolex lbo & =uM & hl lex lhsr &+u»& h»lex lb» &

+2usr u» & &sr I,ex
I b» &, (3.1)

where e is the electronic charge. The formalism simplifes
if x is recast in terms of distance from the point x xp
along the bond at which the matrix element
& hM ~

(x —xo )
~ h» & vanishes; viz. ,

&b„[h &

Xp=

&bo~e(x —xo)~bo & =[(qo —ro)/2] &h~~e(x —xo) ~h~ &

In the new formalism, and using Eqs. (2.12) and (2.13),
the dipole moment of Eq. (3.1) now can be written

(b)

cI/2

L
Xo

+[(qo+ro)/2]&h»~e(x —xo)~h» &.

(3.3)

Assuming ~hM & and ~h»& for the alkali halides and
alkaline-earth chalcogenides to be centered at the cation
(x =0) and anion (x =d) nuclei respectively, Eq. (3.3) fur-
ther reduces to

FIG. 1. (a) Schematic representing the overlap of two identi-
cal sp hybrids, with respective origins at M (x =0) and X
(x =d), showing the location (x =xo=d/2) of their region of
maximum overlap. (b) An analogous schematic for a cation s
orbital, centered at M, and an anion p„orbital, centered at X
(only the left-hand lobe shown), with maximum overlap at
x =xo (d/2.
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The quantitative manner in which this occurs will be es-
tablished empirically (Sec. V) as follows:

(d+6, )ld]=[(Rx+R~}/2R~]'/ =(d/2R~)'/, (3.7)

where Rx and R~ are, respectively, the ionic radii of the
anion and cation with RM+Rx =d. It follows that

now enables us to evaluate r„(for any order n) by minim-

izing successive coeScients of A, (i.e., n =0, 1,2, 3, . . .) in
the expansion of the energy E of Eq. (4.7} with respect to
r„; that is, via a general energy-minimization procedure.
The algebric manipulations are tedious though straight-
forward and we find, to third order in n

and

5/d =(d /2R~)'/2 —1

x11/d =1—(d/8R11r )'

(3.8)

(3.9)

IV. LINEAR DIELECTRIC RESPONSE

Clearly, when Rx =RI=d /2, then xp
=d /2 and b, =0.

r —
( 1 a2)1/2/a

r, =a2A/2V2a2,

r2= —a AB/8Vza

r& =a AC/16Vza

where

A =d+(bS/aa)(1 —a )'

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

Ib ) =[(q —r)/2]'/ hIsr) +[( q+r) /2]' /Ihx), (4.1)

but where now q and r are field-dependent quantities to
be determined, and which reduce necessarily to qo and ro,
respectively, when E„goes to zero.

Using the form Eq. (4.1), the field-dependent bonding
energy

We now examine the response of a representative cr-

bonding orbital Ib ) to an applied electric field fE„along
the bond direction x, where the factor f absorbs any
local-field enhancement or shielding efFects. In the pres-
ence of the field, a term efE„(x ——xp) must be added to
the original zero-field one-electron Hamiltonian 9p of
Sec. II. Led by the form [Eqs. (2.1), (2.12), and (2.13)]
adopted by the zero-field bonding orbital Ibp), we ex-
press the new field-dependent bond orbital Ib) in the
analogous manner

8 =3a(1—a )'/ d+(AS/a)(1 —3a ), (4.14)

C=ad (4—5a )+2(dbS/a)(1 —Sa )(1—a )'

+a(bS/a) (Sa —3) . (4.15)

The zeroth-order solution ro is simply a regeneration
of the Sec. II finding of Eq. (2.15). Defining linear (n = 1)
and nonlinear (n ) 1) bond-orbital polarizabilities y1b"' via
an expansion of the bond-orbital electric dipole moment
in the form

(bIe(x —xp)Ib ) =(e/2)(rd+qb )= g y1b"'E„", (4.16)
n=0

it is now straightforward, using Eqs. (4.6) and
(4.8)—(4.16), to calculate yI,

"' with n =1,2, 3 explicitly.
For a discussion of linear response, as in this paper, we
need only pursue y'b via r, of Eq. (4.10) in the form

E = (b I [&p efE„(x —x—p)]Ib & (4.2} y'1,"=eAr, A, IZE„=e a fA /4a V (4.17)

can now be expanded directly in terms of the zero-field
matrix elements of Sec. II and the bond length parame-
ters d and b of Sec. II in the form

Using Eqs. (4.4) and (4.13) this expression takes on a final
form

E = rVia —(q —r—)'/ V2a —(A, /2)(rd+qh),

in which

(4.3)

with

e a,~
(d+gb )

4(1 —S }V2
(4.18)

( 1 S2)1/2 (4.4) g =(S/a)[(1 —a')/(1 —S )]' (4.19)

and

(4.5)

qa =1—S(1 ra )'—
we can now eliminate q from Eq. (4.3) to obtain

E= rV&a —V2—[—S +(1 ra )' ]—(A, /—2)rd

—(}1,/2)(b, /a )[1—S(1 ra )'/2] . —

(4.6)

(4.7)

Expanding r as a Taylor series in field parameter A, , i.e.,

Relating r and q via their bond-orbital normalization con-
dition (bIb) =1, viz. ,

where "covalency" a is given, in terms of the original
zero-field matrix elements V2 and V2, by Eq. (2.16).
Equations (4.11) and (4.12) are given here for future refer-
ence in a following paper.

Generally, for insulators (with high ionic coordination
numbers) the primary bond orbitals are not independent
and may not involve o. bonds. However, we show in the
Appendix that, at least in the ionic limit Ibp) =Ihz),
each bond orbital does contribute independently to sus-
ceptibility. Moreover, in high-symmetry geometries,
these contributions are equal and (see the Appendix) are
proportional to the one-electron o.-bond susceptibility of
Eq. (4.18) in such a way that the macroscopic electronic
dielectric constant e can be written as

n=1
(4.8)

e —1 =(8n /3)zNxy'b", (4.20)
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e —1= 16m n(NO/V~)y~", (4.21)

where No is Avogadro's number. Equivalently, using Eq.
(4.18), this may be recast as

e —1=(Gn/Vjg V~)(d+gb, )2,

where

(4.22)

where there are z electrons per anion involved in the
bonding (z =6 for the materials discussed in this paper)
and Nz is the number of anions per unit volume. Al-

though this independence of bond-orbital contribution to
e—1 does not hold rigorously in high coordination if
~bo)&~h~), we shall assume Eq. (4.20) to be at least ap-
proximately valid for all the materials discussed in this
paper.

For a compound of formula unit MX„, and molar
volume V&, it follows that the final bond-orbital expres-
sion for e can be cast as

(Fig. 1). Plotting log(G'/V2), as calculated from Eq.
(4.24) with 6=0, against log(d) gives, for the alkali
halides, the results shown in Fig. 2(a). The points for
each separate cation lie on different straight lines of equal
slope. This is essentially equivalent to a finding first es-
tablished by Pantelides. However, we now note that the
line positions are quite accurately dependent only on cat-
ion radius R~. In particular, if in Eq. (4.24) we set

(5.1)

instead of d+b, =d, then the pl'ot of log(G'/Vz) versus

log(d) for all the 28 halides of Table I is quite accurately
given [Fig. 2(b)] by a single linear relation [i.e., the
separate straight lines of Fig. 2(a) fuse into a single resul-
tant which also accomodates the other halides as well].
The condition Eq. (5.1), is just that of Eq. (3.7},which es-
tablishes how far from the bond center the location of xo
is actually to be found. The electronic linear response for

G=4mNoe fa /(1 —S') . (4.23)

E—1=(G'n/VM V2)(1+6), ionic (4.24)

with

This result takes on a particularly simple form for the
ionic limit a=S (which we shall assume to hold for all
coordination halides), viz. , g = 1 and

TABLE I ~ The long-wavelength electronic dielectric constant
O

e (dimensionless), cation radius R~ (in A), cation-anion bond
length d (in A), and molar volume V~ (in cm ) for 28
pretransition-metal halides MX„. (sc denotes simple cubic, rs
denotes rocksalt. )

Compound Structure

G'=G;,„;,=[4nNoe fS /(1 —S )](6.24X 10 ') (4.25)
O

if, as from here and henceforth, d is expressed in A, V2 in

eV, and V~ in cm .

V. THE HALIDES

CsF
CsCl
CsC1
CsBr
CsBr
CsI
CsI

sc
sc
rs
sc
rs
sc
rs

2.15
2.63
2.30
2.79
2.43
3.03
2.63

3.00 1.69 25.13
3.57 1.69 42.21
3.57 1.69 54.83
3.71 1.69 47.42
3.71 1.69 61.60
3.95 1.69 57.36
3.95 1.69 74.51

Our first test of the theory of linear electronic response
given in the previous section will be carried out for the
pretransition-metal halides. For these, the predominant-
ly p-electron nature of the observed valence bands
points to a representation close to the ionic limit a=S.
Post-transition-metal halides are excluded at the present
stage because the presence of d-electron contributions
from relatively shallow d bands complicates the picture
for this group of materials. Since frequency-dispersion
effects have not been included in the formalism of Sec.
IV, the experimental response e relevant for comparison
with the theoretical form Eq. (4.24) is that extracted from
the electronic term of a single-oscillator Sellrneier disper-
sion relationship ' in the low-frequency limit. For
wide-band-gap materials this will not differ greatly from
from the square of the refractive index at visible frequen-
cies, but for narrow-band-gap materials, it may be some-
what smaller.

In Table I we give values of e for all the pretransition-
metal halides (28 in all} for which we have located a
Sellmeier analysis. Also shown in Table I are bond
lengths d and molar volumes V~ (as calculated from their
published crystal structures ) and cationic radii. We
first consider Eq. (4.24) with 6 set equal to zero. This is
the assumption that the mean position of cation-anion
overlap xo along a bond is at the bond center xo=d/2

8
9

10
11

RbF
RbCl
RbBr
RbI

rs
rs
rs
rs

1.93
2.17
2.34
2.59

2.82 1.48 27.00
3.29 1.48 42.90
3.43 1.48 48.48
3.67 1.48 59.59

12
13
14
15

KF
KCl
KBr
KI

rs
rs
rs
rs

1.84
2.17
2.35
2.63

2.67
3.15
3.30
3.53

1.33 23.02
1.33 37.53
1.33 43.29
1.33 53.11

16
17
18
19

NaF
NaC1
NaBr
NaI

rs

rs
rs

1.74 2.31 0.95
2.33 2.81 0.95
2.60 2.99 0.95
2.98 3.24 0.95

14.85
26.84
32.09
40.83

20
21
22
23

LiF
LiCl
LiBr
LiI

rs
rs
rs
rs

1.92 2.01 0.60
2.68 2.57 0.60
3.00 2.75 0.60
3.4 3.00 0.60

9.76
20.33
25.07
32.45

24
25
26
27
28

MgF2
CaF2
SrF2
BaF~
ZrF4

rutile
fluorite
fluorite
fluorite
glass'

1.89 1.99 0.65 19.64
2.04 2.37 0.99 24.55
2.06 2.51 1.13 29.37
2.15 2.69 1.35 35.89
2.35 2.29 0.80 42.0

'Values deduced from measurements on fluorozirconate glasses
(ZrF4) I (BaF2)„.
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e —1=(G'/V2)(nd /2VsrRM ), (5.2)

where G'/V2 satisfies the empiric power law [Fig. 2(b)]

G'/V —d /4 (5.3)

these halides, therefore, from Eqs. (4.24) and (5.1), is
given by

VI. CHALCOGKNIDES

Having concluded that the pretransition-metal halides
of Table I are all ionic, in the sense of having a=S, we
now turn to the pretransition-metal chalcogenides MX„
to see whether they also possess some common charac-
teristic of an analogous kind. Writing a=yS, the Eq.
(4.22) for e can be re-expressed as

e= 1+(nd /8VsrRM), (5.4)

Combining Eqs. (5.2) and (5.3) now provides an ex-
tremely simple equation or the electronic dielectric con-
stant of the pretransition-metal ionic halides MX„, viz. ,

e —1=(G'y n /VsrV2)(d+gb, )

where G' is defined by Eq. (4.25), and

g =(1—y'S')/[y'(1 —S )] .

(6.1)

(6.2)
0

in which bond length d and cation radius Rsr are in A
and the molar volume VM is in cm . The rms accuracy of
this relationship over the 28 materials of Table I is 2.4%%uo

(or typically about 0.05 in e) with a largest error of only
4.5%.

Since we anticipate a larger degree of covalence for the
anionically divalent (Zz=2) materials than for their
halide (Zx =1) counterparts, we also anticipate for them
deviations y) 1 and g (1 from the ionic limit y =g= 1.
Calculating 6 from Eq. (5.1), viz. ,

b, =d [(d/2Rsr)' —1], (6.3)

(a)

OS—

N

0.6—
O

04 20

Q2
0.2

o.s —(b)

0.5 0.4 0.5

log &d)

l

0.7

we therefore also expect the gh term in Eq. (6.1) to have
a less dramatic, though still significant, effect on the in-
terpretation of their dielectric constant than it did for the
halides.

In order to probe its significance, we once again first
attempt a fit of experimental e to Eq. (6.1) with b, set
equal to zero. We use experimental data (Table II) for all
16 relevant (i.e., high-coordination-number) chal-
cogenides for which the limiting long-wavelength elec-
tronic dielectric constant e is known to us from the litera-
ture. The resulting plot of log(G'y /V2) versus log(d) is
shown in Fig. 3(a) [and is to be compared with Fig. 2(a)
for the halides]. Although the scatter is quite large, it is
clear that a majority of points fall close to the line

TABLE II. As in Table I; for 16 high-coordination-number
pretransition-metal chalcogenides.

Compound Structure

cv 0.6—

G/Vp

1 BaO
2 BaS
3 BaSe
4 BaTe

5 SrO
6 SrS
7 SrSe
8 SrTe

rs
rs
rs
rs

rs
rs

rs

3.68 2.76 1.35 25.4
4.26 3.19 1.35 39.1
4.48 3.30 1.35 43.3
4.71 3.49 1.35 51.3

3.35 2.58 1.13 20.7
4.09 3.01 1.13 32.9
4.33 3.12 1.13 36.6
4.91 3.24 1.13 40.8

0.2
A

0.3 0.4 0.5

)aged)

0.6
t

0.7

9 CaO
10 CaS
11 CaSe

rs
rs
rs

3.27 2.41 0.99 16.8
4.24 2.85 0.99 27.7
4.58 2.96 0.99 31.1

FIG. 2. (a) log(G'/Vz) vs log(d) as calculated from Eq. (4.24),
for the alkali halides numbered in Table I, when parameter 5 is
neglected {i.e., set equal to zero). (b) The same plot with 6 in-
cluded and given by Eq. (5.1). In this plot we also include the
additional non-alkali halides (Nos. 24—28) of Table I, and exhib-
it a St to the analytic form G'/V, =d /4.

12 MgO
13 MgS
14 MgSe

15 AlO, 5

16 LiOo s

rs
rs
rs

2.95 2.10 0.65 11.2
4.84 2.60 0.65 21.2
5.28 2.73 0.65 24.4

corundum 3.07 1.92 0.50 12.8
antifluorite 2.65 2.00 0.60 7.4
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G'y /V2=0. 8d (6.4) 1.0—
2.4

[see Fig. 3(a)] which, on comparison with Eq. (5.3) ex-
tracted for the halides, points to a value of y =2 as
relevant for the chalcogenides of Table II ~ We also note
that the four compounds (viz. , MgS, MgSe, A10& s, and
Li20) which deviate most markedly from Eq. (6.4) are
just those for which the ratio d/R~ is largest and for
which, therefore, the heretofore neglected gh contribu-
tion to Eq. (6.1) will be most significant.

With y of order 2, we see from Eq. (6.2} that the pa-
rameter g is not overly sensitive to S for physically realis-
tic values of overlap (S «1}taking on a value a little
less than I/v'2. Although its precise value is not critical,
since gb, /d « 1 throughout, we can in fact look ahead to
the self-consistently determined overlap values of the fol-
lowing section (Table IV) to estimate the narrow range
g =0.65+0.02. With this value (g =0.65) and 6 as cal-
culated from Eq. (6.3}, we now replot log(G'y /V2)
versus log(d) using the full formalism of Eq. (6.1}and the

0.8—

0.6—

04—

0.2—

0.2 0.5 0.4 0.5

log„(d)

0.6

1.2—

1.0—
CV

0.9—
IO

0.8—
o 15

0.7—

14
—2

7

10

0 8d2o4

FIG. 4. A plot of log(G'/V2) vs log(d) as calculated (see
text) from Eq. (6.1) for all 44 material listed in Tables I and II,
exhibiting the universal fit to the relationship 6'/V2 =d /4.

data of Table II. The result is shown in Fig. 3(b) [com-
pare Fig. 2(b) for the halides]. The linearity of the loga-
rithmic plot, establishing the quantitative form

G'y3/V2 =0.70dz 4, (6.5)

is now striking. The rms accuracy of the implied rela-
tionship

0.6—
E= I+(0 70nd /V. sr )(1 +0.656) (6.6)

0.2

1.2—

1.0—

0.9—

0.8—C9

O

0.5

14

0.4 0.5
log (d)

I

0.6

a=(Z, )'"S, (6.7)

over 16 materials in Table II is 5.0%.
Comparing Eqs. (5.3) and (6.5), we conclude that

y =1.99. We may therefore say, with considerable pre-
cision, that the chalcogendies of Table II all possess a
"covalency measure" a=v 2S, which is to be compared
with the ionic limit a=S valid for the pre-transition-
metal halides (and a fully covalent limit a= 1 determiend
by definition). It follows that we can cover all the crys-
tals in Tables I and II with the common covalency cri-
terion

0.7—

0.6—

0.5—
0.2

15

0.4 0.5
)og(d)

I

0.6

Gy~
dp. 4

Vp

in which Zz is the magnitude of the formal anion
valence. Finally, combining the halide and chalcogenide
results by use of Eq. (6.1) with y = 1,2 and g = 1, 0.65 for
Zx = 1,2, respectively, now enables us to plot log(G'/Vz)
versus log(d} for all 44 compounds of Tables I and II to-
gether. The result, shown on Fig. 4 reveals an impressive
fit to G'/Vz=d /4 of Eq. (5.3) throughout.

FIG. 3. (a) log(G'y'/V2) vs log(d) as calculated from Eq.
(6.1), for the chalcogenides numbered in Table II, when parame-
ter 6 is neglected (i.e., set equal to zero). (b) The same plot with
6 included, and given by Eq. (5.1), or equivalently Eq. (6.3), and

g =0.65. Also shown (solid line) is the fit to the analytic form
G'y /V2=0. 70d

VII. THE COMPLETE PARAMETRIZATION

In spite of the success of the bond-orbital method to
this point, we have not yet determined the complete set of
defining parameters (f, S, Vz, V3, M, Eo, etc.) intro-
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M=V2(1 —S ),
(Z )1/2S

V3= V2(1 —a )'/ /a,
Eo= V2[(1—a )(1—S )]' /a .

(7.1)

(7.2)

(7.3)

(7.4)

To determine V2 and S we require two independent re-
lations involving only V2 and S and known or measurable
quantities. One has already been written in the form
G'/V2 =d ' /4 which, making use of the definition of G'

as given in Eq. (4.25), acquires the explicit form

duced in Sec. II for any crystal. Indeed, such a complete
parametrization cannot be carried out with full self-
consistency at the linear-response level alone. However,
the task can be completed by pursuing the nonlinear
response as set out in our following paper, and the essen-
tial finding is a very simple one which can easily be in-
cluded at this juncture. It is that the local-field parame-
ter f in the context of bond orbitals is essentially equal to
unity for the halides and is (at least) quite close to unity
even for the more polarizable chalcogenides. Physically,
this lack of local-field enhancement is presumably due to
the extended nature of the electronic orbitals involved in
the theory —the commonly used Lorentz condition
f =fL =(e+2)/3 for cubic materials being rigorously
valid only in the unphysical limit of point dipoles.

Setting f = 1 we now have only two independent quan-
tities left to be determined. If we choose them to be V2

and S, then all the other bond-orbital parameters of Sec.
II follow from them immediately in the fashion

assumed to be time dependent in the fashion
E„-exp(icot), then the lowest-order frequency response
for such a two-level system with an unperturbed energy
splitting E, is well known (from time-dependent pertur-
bation theory ) to depend on frequency via the factor
(E, fi—co ) '. The static response of Eq. (4.22) is there-
fore readily adapted for frequency dependence in the
fashion

GnE, (d +gh)
e(co) 1=—

V V (E —fico )
(7.10)

which, of course, reduces to Eq. (4.22) as co~0.
A single frequency dispersion form of this kind (with a

frequency-independent energy gap E, ) is, in optical litera-
ture, referred to as a Sellmeier dispersion with E, being
the electronic "Sellmeier energy. " It accurately describes
actual linear response dispersion if R~&&E&, provided
that co is well above the highest phonon frequencies. It
follows that E, can be directly determined from experi-
ment ' ' ' Insertion into Eq. (7.9) now directly deter-
mines the overlap integral S, and the rest of the bond or-
bital parameters follow immediately via Eqs. (7.1) to (7.4)

Crystal
(Units)

E,
(eV)

a=S V2 V3 M 2Ep
(eV) (eV) (eV) (eV)

TABLE III. The measured Sellmeier energy gap E, and the
bond-orbital parameters derived from it via Eqs. (7.1)-(7.4),
(7.7), and (7.9) for the crystalline pretransition-metal halides of
Table I.

436fS d2 4

V2(1 —S )
(7.5)

in which we have used the values e =4.8 X 10 ' esu and
No =6.023 X 10, and where V2 is in eV and d in A. The
second comes from the bonding-antibonding energy gap
E„calculated by subtracting the two solutions

E —SV +( V2 + V2 )1/2 (7.6)

E, =2V2/a, (7.7)

which, when combined with Eq. (7.5), provides the rela-
tionship

872fs3
(1 S)aE, —

2.4 (7.8)

of Eq. (2.8). Using the definition of Eq. (2.16) for co-
valency a, it may be expressed in the extremely simple
form

CsF
CsCl
CsBr
CsI

RbF
Rbcl
RbBr
RbI

KF
KCl
KBr
KI

NaF
NaCl
NaBr
NaI

(sc)
(rs&sc)
(rs&sc)
(rs&sc)

(rs)
(rs)
(rs)
(rs)

(rs)
(rs)
(rs)
(rs)

(rs)
(rs)
(rs)
(rs)

14.3 0.43
10.5 0.45
9.4 0.45
7.7 0.44

14.5 0.41
10.4 0.41
9.3 0.41
7.8 0.41

14.7 0.39
10.5 0.40
9.2 0.39
7.6 0.39

15.1 0.34
10.5 0.35
9.1 0.35
7.4 0.35

3.1

2.4
2.1

1.7

3.0
2.2
1.9
1.6

2.9
2.1

1.8
1.5

2.6
1.9
1.6
1.3

6.5
4.7
4.2
3.5

6.6
4.7
4.2
3.6

6.8
4.8
4.2
3.5

7.1

4.9
4.3
3.5

2.5
1.9
1.7
1.4

2.5
1.8
1.6
1.3

2.4
1.8
1.5
1.3

2.3
1.6
1.4
1.1

11.6
8.4
7.5
6.2

12.1
8.6
7.7
6.5

12.5
8.8
7.8
6.4

13.4
9.2
8.0
6.5

With f= 1 and a = (Zz )
'/ S this can be recast as

872+2

(1 S2)(Z )1/2d2. 4 (7.9)

LiF
LiCl
LiBr
LiI

(rs)
(rs)
(rs)
(rs)

16.5 0.30
11.0 0.33
9.5 0.33
8.0 0.34

2.5
1.8
1.6
1.4

7.9
5.2
4.5
3.8

2.3
1.6
1.4
1.2

15.0
9.8
8.5
7.1

with E, in eV and d in A.
The importance of this equation is that E, is actually

an observable and appears in the frequency dependent-
linear response e(co). If the applied field E„ in Sec. IV is

MgF2
CaFp
SrF2
BaF2

(rutile)
(fluorite)
(fluorite)
(fluorite)

16.8 0.30
15.7 0.35
14.7 0.36
13.8 0.38

2.5
2.8
2.7
2.6

8.0
7.3
6.8
6.4

2.3
2.4
2.3
2.3

15.3
13.7
12.7
11.8
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TABLE IV. As in Table III but for high-coordination-

number pretransition-metal chalcogenides. All have rocksalt
structure except for A1203 (corundum).

Crystal
(units)

BaO
BaS
BaSe
BaTe

(eV)

7.1 0.34
6.3 0.38
5.3 0.36
4.2 0.35

0.48
0.53
0.51
0.49

Vq

(eV)

1.7
1.7
1.4
1.0

V3

(eV)

3.1

2.7
2.3
1.8

M
(eV)

1.5
1.4
1.2
0.9

2EO

(eV)

5.9
4.9
4.2
3.4

SrO
SrS
SrSe
SrTe

8.3 0.34 0.48
6.6 0.36 0.51
5.4 0.34 0.49
4.9 0.34 0.49

2.0
1.7
1.3
1.2

3.6
2.8
2.4
2.1

1.8
1.5
1.2
1.1

6.8
5.3
4.4
4.0

Cao
CaS
CaSe

9.9 0.34 0.48
6.9 0.35 0.49
5.6 0.33 0.47

2.4
1.7
1.3

4.3
3.0
2.5

2.1

1.5
1.2

8.1

5.6
4.7

MgO
MgS
MgSe

A1203

11.4 0.31 0.44
7.6 0.33 0.47
7.0 0.34 0.47

2.5
1.8
1.7

13.4 0.31 0.43 2.9

5.1

3.4
3.1

6.0

2.3
1.6
1.5

2.6

9.7
6.4
5.8

1 1.5

6 (THEORY)

FIG. 5. A direct comparison of theory [Eq. (8.1)] and experi-
ment for the electronic dielectric constant e of the 44 halides
and chalcogenides of Tables I and II ~

VIII. CONCLUSIONS

Our most important conclusion is that all the bond-
orbital findings for linear response can be combined into
a single formula as follows: the limiting long-wavelength
electronic dielectric constant e for all binary
pretransition-metal halides and chalcogenides MX„(ex-
cepting only those, like BeF2, which contain hybridized
orbitals leading to low coordination numbers and direct-
ed valence) can be expressed as

e= 1 +(Zx nd /4V~ )(d +gb )

in which

5=d [(d /2R~ )' —1]

(8.1)

(8.2)

and g =1 for halides and g =0.65 for chalcogenides. In
these equations, d is the bond length (in A), V& is the
molar volume (in cm }, R~ is cation radius (in A), and

Zz is the formal anion valence magnitude (i.e., one for
halides, two for chalcogenides}.

and (7.7}. Taking E, values from Wemple, ' we calculate
all these bond-orbital parameters both for the halides and
chalcogenides of relevance to this paper; the detailed re-
sults are given in Table III and IV. Our only comment
on the values is that the suggestion by Harrison ' that
the intraband matrix elements (M) and "band gap" 2Eo
(or E, ) should scale absolutely as 1/d for s-p bonding,
though at least approximately valid for the chalcogenide
series, is not confirmed for the halides. For the latter an
approximate d dependence is observed separately for
each cation, but the amplitude is grossly cation depen-
dent. Note also (Table III) that overlap is largely deter-
mined by cation type alone for the alkali halides.

e = 1+( nd s /8 VM RM ), halides (8.3)

which is (rms) accurate to about 2.4% over the 28 halides
of Table I.

The other parameters which define the bond-orbital
model, but which do not appear explicitly in the final ex-
pression for linear response, have all been numerically
determined for each halide and chalcogenide. They in-
clude interionic and intraionic one-electron matrix ele-
ments (V2, M, V3, and Eo as defined in Sec. II) and also
the overlap integral S between valence- and conduction-
electron orbitals on neighbor sites. Detailed numerical
values are given in Tables III and IV. Incorporated into
these calculations is the finding of our following paper on
nonlinear response (II) that local-field effects in the con-
text of bond-orbital theory are essentially absent
throughout; or f = 1 in the nomenclature of Sec. IV.

APPENDIX

Consider an anionic p„orbital ~p„) overlapping m

equivalent cationic (nearest neighbor) s orbitals ~s,. ),
i =1,2, . .., m as shown in Fig. 6. The s orbitals are
equivalent as regards their intraorbital matrix elements,
but, at this junction, no geometric restrictions are as-
sumed concerning their relative orientational locations

The accuracy of Eq. (8.1) over the 44 relevant com-
pounds for which e is presently known to us (see Tables I
and II} is indicated in Fig. 5 where we directly plot the
experimental values against the theoretical predictions
following from Eq. (8.1). The overall accuracy is close to
a rms value of 3.4%%uo. For the halides alone (i.e., Zx= 1,
g =1) the Eq. (8.1) reduces to the even simpler form
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X

)s&&
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A B 0 0 . . . 0

A2 0 82 0
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0
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0 (A7)
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)sg&

FIG. 6. Schematic of an anion p„orbital lp„) overlapping
four equivalent cation s orbitals ls, ), i = 1-4.

with respect to the x axis of the p„orbital. Choosing the
zero of energy such that

&p. I~olp. &= —Eo

(s, Im, ls, ) =+E,S,,
(Al)

&p„Idols, &= —M, . (A2)

These equations, for i =1,2, . . . , m, together with the
following orbital overlap relationships:

&p„ls, &=S, ,

&s, ls, ) =5,, (A3)

define a bond-orbital system for which the ground state
can be expressed most generally in the form

where So is a one-electron Hamiltonian, we ignore all in-

teractions between different cations. The sole remaining
interactions, between the p„orbital and the cations, are
then included by defining the relevant one-electron ma-
trix elements

Ao =E+Eo

A; =M, +ES;+A (p, lxls; ), i =1,2, . . . , m, (AS)

B, =E Eo+—A, (s, lxls, ), i =1,2, . . . , m .

The simplest solutions for c and a; from Eq. (A7) arise
for the case of fully ionic systems, defined in terms of a
fully occupied p„orbital and empty s, orbitals in the ab-
sence of the field. For this case, we can write

M; —EoS,. =O, i =1,2, . . . , m (A9)

E = Eo+A—E',
a;=AQ, i =1,2, . . . , m

(Alo)

in terms of which the matrix elements of Eqs. (A8) reduce
to

~o=~E

A, =A[E'S, + &p„lxls, )), i =1,2, . . . , m,
8;= —2Eo+A[E'+(s;Ixls;)], i =1,2, . . . , m .

(A 1 1)

With these values Eq. (A7) is readily solved to first order
in A, to give E'=0, c =1 (for a normalized wave func-
tion), and

corresponding to the zero-field condition c =1, a;=0,
E = Eo, and I b )—= lp„). For this ionic limit we can ex-
pand E and a;, in the presence of a field, as power series
in A, . Including, for our present purposes, only terms up
to first order, we write

b =clp„)+ g a, ls, ) . (A4) a,'=(p„lxls, )/2E„ i =1,2, . . . , m . (A12)

The coefficients c and Q; can be obtained variationally by
minimizing the one-electron energy ( b I&ol b ) /( b I b )
with respect to them. In order to investigate the response
of such a system to an applied field E„ in the x direction
we include a field-energy term viz. , %=&o—M, where

(A5)

in which e is electronic charge, and f incorporates any
local-field enhancement or shielding e6ects. Minimizing
the energy

&bib&

with respect to the coefficients c and a; of Eq. (A4) pro-
vides the matrix relationship

I
b'

&
= Ip„& + g k[ &p„ lx ls,. & /2Eo] ls; & (A13)

while the corresponding field-induced dipole moment fol-
lows as

p„(p„)=(b'Iex Ib'&/&b'lb'& =e fE„&&p„lxls; &'/Eo .

(A14)

The important feature is that p„(p„) is the sum of in
dependent contributions fram each of the surrounding
cations. Although, in general, there will also be contribu-
tions ta field-induced dipole moment p„ from the other p
orbitals as follows:

The resulting field-dependent bonding orbital, there-
fore, takes the form
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i „(p,)=e'fE„y &p, IxIs, &'/E, ,

l .(p, )=ezfE. y &p, lxls; &'/E, ,

(A15)

ber of bonds m per anion, gives the number z of electrons
available for bonding per anion. The bulk optical fre-
quency dielectric constant then follows as

e = 1+4+—,'pzNq y'b" (A17)

the independence of the separate cationic contributions
remains.

In a highly symmetric environment which is unable to
lift the p-orbital degeneracy we are free to choose the ab-
solute orientational configuration of the orbital triplet
Ip & Ipr) Ip, ) at will. Let us choose them, for an arbi-
trarily chosen cation i, in a manner which places the x
axis along the vector connecting the anion nucleus to the
nucleus of this cation. In this case, we have

&p~ IxIs, ) = &p, IxIs, ) =0, so that the total contribution of
Is; ) to induced dipole moment )Lt„ takes the particularly
simple form

()u, ); =e 'fE & p, I x I s; &' /E (A16)

It follows that we can define a unique linear polarizability
X'b"=()tt„),/E„per bonding-orbital electron parallel to
each bond i.

The weight to be associated with each bond must be
proportional to z lm which, when summed over the num-

e = 1+4m N„(4X'b" ) (A18)

since z =6 for p orbitals. Assuming the value z =6 to be
appropriate for all the insulators discussed in this paper,
the equation (A17) for a compound of formula unit MX„
(M=cation, X=anion) can now be more conveniently ex-
pressed in the form

e= 1+16nn(No/VM )Xb
' (A19)

in which No is Avogadro's number, and V is the molar
volume. This is the Eq. (4.21) of the text.

where there are N„anions per unit volume, p is the pro-
portionality factor, and the —,

' arises from an angular aver-

age over bond directions assuming a high-symmetry
anionic environment. The factor p is readily determined
to have the value two by analyzing the simplest case of an
octahedral coordination (e.g. , rocksalt) and field applied
along a bond axis, viz. ,
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