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Development of an embedded-atom potential for a bee metal: Vanadium
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An empirical embedded-atom potential for a bcc metal (vanadium) has been developed by 6tting
the embedding function, electron density, and pair interaction to the lattice constant, cohesive ener-

gy, elastic constants, and vacancy-formation energy. This potential has been used to calculate va-

cancy and divacancy properties, interstitial properties, thermal expansion, bulk-phonon dispersion,
surface relaxation, surface energy, and liquid volume; in all cases the calculations are in reasonable
agreement with experiment.

I. INTRODUCTION

Atomistic simulations are becoming an increasingly
powerful tool for studying the structure and properties of
materials. Simulation methods fall into two classes,
the ab initio or first-principles methods, and the
(semi}empirical methods. The ab initio methods involve
solving Schrodinger's equation with various degrees of
approximation; these techniques are generally limited to
very small systems (less than a few dozen atoms).

The (semi)empirical methods are capable of treating
much larger systems (thousands to millions of atoms), but
their success is limited by the reliability of their poten-
tials. Pair potentials have previously been popular for
metals, but they suffer from two major errors: the
vacancv-formation energy is always the same as the
cohesive energy, and C,2=C~. These errors can be
overcome by including a volume-dependent energy term,
but the volume-dependent term is poorly defined at sur-
faces.

To overcome the limitations of pair potentials, Daw
and Baskes' developed a model of metallic cohesion
known as the embedded-atom method (EAM). It is more
general than pair potentials, in that it involves many-
body interactions. The EAM is based on density-
functional theory, which asserts that the energy of a ma-
terial can be written as a unique functional of the electron
density. In the EAM, the important aspect of the elec-
tron density is assumed to be the local electron density at
each atomic site, as provided by the surrounding atoms.
The total energy is divided into an electrostatic interac-
tion plus an embedding energy, which is the energy re-
quired to place an atom in a uniform electron gas. Thus,
the total energy of an arbitrary arrangement of atoms is
given by

E„,= gF;(ph;)+ —,
' g p; (R; ),

where F; (p) is the embedding energy of atom i, p&,. is the
host electron density at atom i due to the surrounding
atoms, P, .(R, . } is a short-ranged electrostatic interaction
between atom i and atom j, R; is the distance between
atoms, and the sums are over all atoms. The host elec-

tron density is approximated by the superposition of
atomic electron densities.

Daw recently derived the EAM form from density-
functional theory, and thereby obtained the EAM func-
tions. Although these functions do not represent the ac-
tual metals as accurately as empirical functions, they
clearly demonstrate the physical origin of the terms in
Eq. (I). His derivation ignores band-structure effects and
assumes that the electron density can be approximated by
a superposition of atomic electron densities. Both of
these assumptions are better approximations for fcc met-
als than for bcc metals, suggesting that EAM-type mod-
els are less appropriate for bcc metals. Jacobson,
Norskov, and Puskai have also derived EAM-type func-
tions from ab initio methods, and their results also sug-
gest that the EAM-type approach might be inappropriate
for bcc metals.

Accurate empirical functions for the fcc metals (Ag,
Au, Cu, Ni, Pd, Pt} and their alloys were developed by
Foiles, Baskes, and Daw (FBD) (Ref. 4} by fitting both
F;(p) and p;J(R;l ) to the bulk lattice constant, sublima-
tion energy, elastic constants, vacancy-formation energy,
and alloy heat of mixing. Other EAM functions have
also been developed, ' ' but the FBD functions are the
most commonly used. The EAM has been shown to ac-
curately reproduce many physical properties, such as va-
cancy and interstitial properties, phonon dispersion, "
liquid-metal structure, alloys, bulk diffusion in metals
and alloys, ' thermal expansion, ' ' Gibb's free ener-
gies, ' and the structure of grain boundaries. ' ' They
have also been fairly successful in describing many prop-
erties of surfaces, including surface energies and relaxa-
tions, surface reconstructions, ' ' surface segrega-
tion, ' and phonon dispersion at surfaces. ' ' The abili-
ty of the EAM to accurately describe such a wide range
of properties is one of the most surprising and powerful
justifications of the approach.

Other researchers have used similar approaches to de-
velop many-body potentials, but they generally replace
the atomic electron density with a parametrized function
which has an exponential-like decay. Using this quasi-
electron-density approach, Voter and Chen developed
functions for the fcc metals, and Oh and Johnson'
developed simplified EAM functions for fcc and hcp met-
als. Baskes has proposed modified EAM potentials for
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covalently bonded materials (Si and Ge) by including a
directionally dependent term in the quasi-electron density
to approximate the covalent bonding between atoms.

However, previous attempts to develop accurate mod-
els for bcc metals have generally met with only limited
success. Finnis and Sinclair (FS) (Ref. 25) used a
mathematically similar formalism to develop potentials
for the bcc metals, although they use a different embed-
ding function due to a different physical motivation.
Their potentials describe the elastic constants, phonon
dispersion, and simple defect properties. Two
modifications of the FS potentials have been proposed to
correct unphyscal behavior at close interatomic separa-
tions, namely the pressure versus volume relation.
(The EAM functions have the correct pressure versus
volume relation, since they were fitted to an accurate
equation of state —see the Appendix}.

Marchese, Jacucci, and Flynn ~ have shown that the
FS potentials (including the modified ones2 30) predict
thermal expansions that are too low and in many cases
negative. This flaw implies that the third derivatives of
the FS potentials are incorrect, so that the FS potentials
may be inaccurate for large distortions of the perfect
crystal lattice.

Johnson and Oh and Eridon have developed EAM-
like potentials for the bcc metals, and achieved good fits
to the experimental data. Although these approaches are
promising, to the best of our knowledge the predictive
power of these potentials has not yet been tested.

The purpose of this paper is to develop and thoroughly
test EAM functions for the bcc metals. We will being
with a single element, vanadium. This element proved to
be one of the most intractable to the FS approach (it had
a negative thermal expansion, and it required major
modifications to its short-range interaction. Potentials
for the other bcc metals will be developed in the future
with the same formalism.

Self-consistent local-density-functional calculations of
the electron density in bulk bcc and fcc transitions metals
indicate that the superposition of atomic electron densi-
ties is a better approximation in the fcc metals than in the
bcc metals. Therefore, we will allow the electron densi-

ty to be an adjustable function. Our approach is virtually
identical to that taken by Voter and Chen in developing
functions for the fcc metals; the primary differences are
that we use a different cutoff condition for the functions,
and we only weakly fit to the dimer properties (see Sec.
II).

Section II discusses the development ofF, an EAM
potential for vanadium. Section III discusses the calcula-
tions carried out with F to fully test its reliability and
range of applicability. Finally, Sec. IV summarizes the
results.

The Appendix presents a simple calculation of the
pressure versus volume relation of the equation of state
used in the EAM.

II. DEVELOPMENT OF AN EAM
FUNCTION FOR VANADIUM

Our previous attempts to develop potentials for the bcc
metals assumed that the electron density is given by a su-

perposition of atomic electron densities; however, these
attempts were unsuccessful. Since the electron density in
bcc metals is less well approximated by the superposition
of atomic densities than in the fcc metals, we have instead
followed Voter and Chen*s approach ' of using an ad-
justable electron density which has a reasonable form
(that of a 4s orbital). This form of the density does not
include the directional dependence of the d-like states; it
was chosen simply because spherically symmetric elec-
tron densities are easier to incorporate in the model.
Baskes has recently proposed a modified embedded-
atom method for silicon which includes directionally
dependent electron densities to approximately treat co-
valent bonding. This approach provides a better descrip-
tion of silicon than one based on spherical densities and
such an approach might increase the accuracy of func-
tions for bcc metals. However, it is still an unanswered
question whether simply including a better description of
the electron density will be sufficient to obtain a good
description of the energetics of materials where covalent
effects are important. Despite the possible inaccuracies
of assuming spherically symmetric electron densities, it
wi11 be seen that our simple approach is reasonably suc-
cessful in describing the behavior of vanadium.

Voter gave a thorough explanation of his approach pre-
viously, ' so we will merely mention the major points
here. The pair term in Eq. (1) is assumed to have the
form of a Morse potential:

D is the depth of the minimum, r is the separation at
the minimum, and a determines the curvature near the
minimum. Each atom's contribution to the total electron
density is given by p(r):

p(r)=r (e ~"+512e r"),

where p and y are adjustable parameters. The first term
represents the density of a 4s orbital, and the second term
is added to ensure that the electron density decreases
with r over the range of relevant interaction distarice (the
preexponential value of 512 is the relative normalization
factor). The second term may be thought of as the con-
tribution of core electrons. It should be noted that Voter
required that y have exactly the value of 2P, whereas we
treat it as an adjustable parameter; this means that the
512 term is no longer the correct normalization factor,
but simply an additional parameter which we keep con-
stant for simplicity's sake. Although allowing y to vary
is not absolutely necessary, it seemed to slightly improve
the fit of the functions.

Following Foiles et al. , the EAM function F(p, } is

specified by requiring that the total cohesive energy [Eq.
(1)] be exactly equal to the universal equation of state
determined by Rose et al. ' This equation of state
releases the total energy of the system to its lattice con-
stant, and ensures that the functions have a correct pres-
sure versus volume relationship. The purpose of fitting
F(p, ) in this manner is to ensure that the function
behaves properly over a large range of densities and to in-
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corporate the overall anharmonicity of the cohesive ener-

gy
Since the above functional form for the HAM function

F continues out to infinity, it is necessary to cut F off at
some distance r,„,. We follow the approach taken by
Foiles et al. , ' which they unfortunately neglected to
mention in their paper. We will now present their ap-
proach.

The embedding function is determined by requiring
that the zero-temperature equation of state ' E(a) is
satisfied for all lattice constants a. However, if this is
taken literally, as the lattice is expanded to the point
where the nearest-neighbor distance RNN is equal to r,„„
the density and pair interaction will be zero but the total
energy is not. This means that the embedding function at
zero density is nonzero and the functions will not reason-
ably handle the case of an atom moving away from the
solid. To handle this, the equation of state was modified
so that E(a,„,) =0, where a,„, is the lattice constant such
that the nearest-neighbor distance equals r,„„ i.e.,
a,„,=~2r,„, for a fcc lattice. The modified equation of
state is defined by the following equations:

E(a)—E —e

where E,„b is the sublimation energy, and

f (a'}=1(1+a')e
a —a0a'=

AQ

a0 is the equilibrium lattice constant, and the other pa-
rameters are given by

e =f((r,„,—RNN)l(AORNN)),
1/2

f, „,h(r }=f (r) —f (r,„,)+(r,„, r—)
df (r)

dr
cut

A. Fitting procedure

Given the above expressions for p, 4, and F, we will
now discuss how the functions were fit to experimental
data. Due to the way the embedding function F is deter-
mined, the fit to the lattice constant, cohesive energy, and
bulk modulus is exact for any choice of p and 4. The six
parameters R, D, a, P, y, and r,„, in Eqs. (2)-(4) are
determined by searching parameter space to minimize the
difference between calculated and experimental values of
the shear moduli [6 =(C» —C,2)/2 and C~], vacancy-
formation energy (E, ), bcc-fcc phase stability, dimer
bond energy (D, ), and dimer bond length (R,}. The

5.0-

Using the above cutoff procedure, the functions were
found to be fairly insensitive to the cutoff distance, and
we finally chose a value halfway between third- and
fourth-nearest neighbors (see Table I). This form for the
cutoff does significantly change the shape of the functions
(see Figs. 1 and 3), and we found that this form was im-
portant to the success of our approach; the use of other
cutoff procedures (including Voter's) were generally not
successful. Interestingly enough, values of m =2 to
m =4 were moderately successful, but the choice of
m =1 seems best. This suggests that a more general form
for both p and F would be better, and allow a much wider
choice of cutoff procedures.

9BQ

4.0-

The net result of the above equations is that E(a) is not
changed near a =ao [through second order in (a —ao)]
but that E(a} goes to zero near a =a,„,. Note that for
the cutoff distance used, e is fairly small (0.115), which is
approximately a 10% correction.

The functional forms for p and F given above continue
out to infinity, so it is necessary to cut them off at some
distance r,„,. To ensure that the functions are suitable
for atomistic simulations, we require that the functions
and their first derivatives are equal to zero at r,„,. Voter
used a form given by

f,m„,h(r) =f (r) —f (r,„,)

2.0-

1.0-

Giltr

m rout

'm
df (r)

dr r=r
cut

(4) 0.0
1.0 1.8 2.6 3.4 4.2 5.0

where m =20. We instead chose this form with m =1, so
that the functions would be cut off more gradually', our
simplified expression for the cutoff procedure is thus

FIG. 1. The quasielectron densities p(r) for F, in arbi-
trarjj units.
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50- TABLE I. Parameters which describe the fit for F""".
Parameter Value

(p 26-
QJ

U

OP

E 14-
UJ

-10
0 12 15

FIG. 2. The EAM embedding function F(p), in units of eV.
The total electron density at an atom in a perfect crystal, as con-
tributed by other atoms, is 6.114 (arbitrary units).

searching algorithm iteratively adjusts the choice of ini-
tial parameters so as to find the local minimum in param-
eter space.

Using difFerent guesses of the initial values of the pa-

D (eV)
a(A )

r (A)
P(A )

y(A )

rcut (A)

11.229 933 7
3.418 491 6
2.231 861 9
1.862 836 8

4.320001 9
4.65

1.0-

rameters, many reasonable fits to the above bulk material
properties were found. However, in no case could the di-
mer bond energy and bond length be accurately fitted
while still fitting the other experimental data. This is in
contrast to Voter's functions for the fcc metals, which fit

both bulk and dimer properties.
Since dimer properties could not be fitted accurately,

their relative importance in the fitting procedure was re-
duced by an order of magnitude. Similarly, since the ex-
act value of the bcc-fcc phase stability is not well known
we simply required that it be positive.

Many sets of parameters were found to yield very good
fits to the bulk data (within a few percent), so these func-
tions were tested further to determine which were the
best. We decided to primarily investigate thermal expan-
sion and vacancy migration. There were several reasons
for this choice. First, there is reliable experimental data
for both of these properties (especially for thermal expan-

15-

0.6-

O

gp 0.2-
CL

L

O
CL

'- -0.2-
C3
C)

LU

-06-

-1.0
1.0 1.8 2.6 4.2 5.0

-15
1.0 1.8 2.6 3.4 4.2 5.0

FIG. 3. The pair potential P(r) in units of eV. This potential
is a Morse potential, modified by a cutoff term.

FIG. 4. The effectiv pair potential, P,s(r) in units of eV.
The potential is determined by summing [p,gr)];, and an ap-
proximation for F(p) where F(p) is approximated with a
Taylor-series expansion about the equilibrium electron density
(Ref. 5).
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sion). Secondly, whereas the elastic constants are related
to second derivatives of the crystal energy, thermal ex-

pansion is related to third derivatives of the crystal ener-

gy. Finally, vacancy migration involves a nonuniform
distortion of the lattice and atomic separations closer
than those which enter the other bulk properties used
here. These two criteria were used to determine which of
the many vanadium functions was the best, and that
function was then used to determine several other materi-
al properties.

Surprisingly, many of the functions which yielded good
fits to the elastic constants and vacancy-migration energy
did a very poor job at predicting thermal expansion
and/or the vacancy-migration energy. Many of the func-
tions yielded low or even negative thermal expansions,
and often too low a vacancy-migration energy. This is
similar to the FS functions, ' ' which had very low (or
negative) thermal expansions and usually somewhat low
vacancy-migration energies. ' A few functions were
found which yielded too high a vacancy-migration energy
or thermal expansion, but this was rare. Thermal expan-
sion and vacancy-migration energy appeared to be largely
uncorrelated; often one value would be correct and the
other would be too high or too low.

Thus, thermal expansion and vacancy-migration ener-

gy appear to be two stringent and largely uncorrelated
tests of the functions. Simply fitting the lattice constants,
cohesive energy, lattice constants, and vacancy-formation
energy is not sufficient for developing good functions for
the bcc metals with this formalism. Usin these two
stringent criteria, we selected one function, F, for fur-

ther studies. The parameters which describe F are
listed in Table I. It should be noted that the cutoff dis-
tance, r,„„is almost exactly halfway between third- and
fourth-nearest neighbors, p, 4, and F are graphed in Figs.
1 —3. In Fig. 4 we graph the effective pair potential,
which is determined by modifying F by approximating
the effect of the embedding function with its first and
second derivatives at the equilibrium separation dis-
tance. This pair-potential approximation of the EAM
interactions yields some insight into their pro erties.

Table II compares the calculations using F and the
experimental data to which it was fitted. Due to the form
of the embedding function, the lattice constant, sublima-

tion energy, and bulk modulus are fitted exactly. In gen-

eral, the fit to the experimental data is quite good, with
the exception of dimer properties, which appear to be
beyond the capabilities of this simple madel.

III. RESULTS

The previous section described the development of a
function for vanadium by fitting to various material prop-
erties. In this section we first discuss thermal expansion
and vacancy properties, which were used to determine
which of many vanadium functions was the most reliable.
Then, we used that function, F, to predict many oth-
er properties, including divacancy properties, interstitial
properties, phonon dispersion, surface energies, surface
relaxations, and liquid volume.

A. Thermal expansion

a, (A)
E b (eV)
B (10' ergs/cm')
C]] (10' ergs/cm )

C» (10' ergs/cm )

C44 (1012 ergs/cm )

Ef (eV)

3.038'
5 30
1.57'
2.32
2.29'
1.19
1.21'
0.459
0 AAAa

2.22
2.2

Eb„—Ef„(eV/atom)
EDBE (eV)

R, (A)

0.035
6.12
2.49
2.52
1.77d

'Reference 36.
Reference 37.

'Reference 38.
Reference 39.

TABLE II. Pure metal properties used to fit F ":equilibri-
um lattice constants, sublimation energy, bulk modulus, elastic
constants, and vacancy-formation energy. The bcc phase stabil-
ity, dimer bond energy, and dimer bond length were only weak-

ly included in the 6t. Where two values are given, the top value
represents the calculated value with F ",and the bottom value
represents the experimental value.

A detailed discussion of thermal expansion was given
in a previous paper, ' so we will merely highlight the ma-

jor points here. At temperatures below the Debye tern-
perature (about 380 K for vanadium ), quantum effects
are important in determining thermal expansion.
Specifically, certain phonon modes will be "frozen out, "
and also zero-point phonon vibrations are significant.

Above the Debye temperature, quantum effects become
unimportant, and thermal expansion may be determined
from classical calculations, such as molecular dynamics
(MD). Thermal expansion is due to anharmonic terms in
the cohesive energy for small displacements of the atom
about its equilibrium position at 0 K. Thus, thermal ex-
pansion is related to third derivatives of the cohesive en-

ergy near the 0-K equilibriuin position. (Remember that
the elastic constants are related to the second deriva-
tives. )

Using MD techniques, we calculate the average lattice
constant at 500, 1000, 1500, and 2000 K at zero pressure.
In Fig. 5, we compare the thermal expansion of F
with experiment. The theoretical results have been nor-
malized to a&H =3.0517 A, the lattice constant at 0 K as
calculated from the quasiharmonic (QH) approximation.
The QH calculations include the effect of zero-point vi-
brations. '

The agreement with experiment is good, especially
when one realizes that the calculated curve will approach
0 at 0 K once the quantum effects are properly included.
The calculated curve is almost linear, whereas the experi-
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~O0
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CLx
LLj

i Exp 31

D =D,„exp( —Q,„lkT),
where D &, is a constant, and Q&„ is the activation ener-

gies, given by

Q
—Ef +Em

00
o

1000
Temperature (K)

I

2000

FIG. 5. Thermal expansion of vanadium. The points
represent experimental data (Ref. 40), and the solid lines
represent classical MC calculations with F . The MC results
are normalized to a«, which guarantees that the theoretical
and experimental results agree at 0 K.

mental curve shows a slight upwards curvature, especial-
ly at high temperatures. This curvature is related to the
fourth derivative of the potential, which appears to be in-
correct. However, the overall magnitude of the thermal
expansion is within 20% of experiment, which is a large
improvement over the FS potentials.

B.Monovacancy properties

Monovacancy formation energies have been deter-
mined from positron-annihilation studies ' ' and their
values are listed in Table III. Migration energies may be
determined from measurements of self-diffusion, as will
be discussed below.

In many bcc metals (including vanadium), diffusion by
monovacancies appears to be the major diffusion mecha-
nism at moderate temperatures (0.5T &T&0.8T ).
The diffusion rate is given by

where the E„is the formation energy and the E,„ is the
migration energies for monovacancies.

The values of E~&„and Q„are listed in Table III; we
chose to fit E„=2.2 eV, and Q,„=3.2 eV; this yields

E&, =1.0 eV. This migration energy is consistent with
the minimum temperature required for vacancy migra-
tion, 430 K. ' It should be noted that the limit of experi-
mental accuracy is approximately a couple tenths of an
eV for both values (see Table III). We chose the upper
range of values for Q „, since those values seem to be
most consistent with the positron-annihilation data. As
stated in the previous section, E„is directly included in
the fitting procedure used to generate the functions.
Then, of the functions generated, we chose the one which
had the best agreement with Et„and the thermal expan-
sion data. The values for Ef„,EP„, and Q, „using the FS
potentials are also listed in Table III. These values are
seen to be somewhat lower than the experimental values.

There has been speculation that at high temperatures
may also diffuse by jumping to next-nearest-neighbor
sites (see Sec. III E). Therefore, we calculated the activa-
tion energy for the jump, and found it to be

Em(NNN) P 99
U t

yielding a total self-diffusion energy of

Q =Ef+E ' '=5 13 eV .1U

This mechanism will be discussed further in Sec. III E.

TABLE III. Predicted monovacancy properties (in eV). PA are positron-annihilation experiments,
and Diff. are diffusion experiments. The diffusion results are for the low-temperature regime, which
probably corresponds to a monovacancy mechanism.

Ref.

VAN
FS (Refs. 28,29)
FS (Ref. 27)
PA (Ref. 41)
PA (Ref. 38)
Diff. (Ref. 42)
Diff. (Ref. 43)
Diff. {Ref. 44)
Diff. {Ref. 45)
Diff. (Ref. 46)
Diff. (Ref. 47)
Diff. (Ref. 48)
Diff. {Ref. 49)

2.22
1.83
1.83
2.1+0.2
2.2+0.4

0.98
0.72
0.76
1.3+0.3'
1.2+0.3'

3.20
2.55
2.58

3.20
3.20
3.21
3.14
2.82
2.80b

2.65
3 09'

Em(NNN)

2.91

g(NNNI

5.13

'Determined from PA and diffusion experiments.
Signi6cant impurity contamination (Ref. 49).

'Nonstandard nuclear-magnetic-resonance techniques used.
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Configuration

First-nearest neighbors
Second-nearest neighbors
Third-nearest neighbors
Fourth-nearest neighbors
Fifth-nearest neighbors

Formation
energy

3.99
4.21
4.50
4.44
4.44

Binding
energy

0.45
0.23

—0.06
0.00
0.00

TABLE IV. Predicted divacancy formation and binding en-

ergies (in eV).

Jump (see Fig. 6)

Jl
Jz
J3
J4
Js

Activation energy
(in eV)

2.47
1.27
1.24
2.99
0.97

TABLE V. Predicted divacancy migration energies, as calcu-
lated for one vacancy of a nearest-neighbor divacancy to mi-

grate to a new position relative to the stationary vacancy.

C. Divacancy properties

The stability of several possible divacancy structures
were investigated, and the nearest-neighbor divacancy
was found to be the most stable (see Table IV), with a
binding energy of 0.45 eV. These values contrast with
calculations by Johnson using pair potentials for Fe, in
which he found the second-nearest-neighbor configura-
tion to be the most stable.

Divacancy diffusion in bcc metals is much different
than in fcc metals, due to the different positions of
nearest neighbors. Specifically, in a fcc lattice there exist
atoms which are nearest neighbors to both vacancies;
however, this is not the case in bcc lattices. Thus, in fcc
lattices a divacancy may diffuse by one of the vacancies
exchanging positions with a mutual nearest neighbor, re-
sulting in a nearest-neighbor divacancy. However, such a
mechanism is not possible in bcc lattices; the divacancy
must migrate either by a one-step next-nearest-neighbor
(NNN) jump (to reform a nearest-neighbor divacancy) or
by a two-step jump, first to an intermediate metastable
configuration (see Fig. 6) and then to reform a nearest-
neighbor divacancy. The activation energies for these

mechanisms have been calculated, and the results are
shown in Table V.

The activation energies for the migration of one vacan-
cy (of a nearest-neighbor divacancy) are seen to depend
dramatically on the migration path. The activation ener-

gy for jumps ji and j4 are high because the vacancy ini-

grates to a site which is a second-nearest neighbor of its
first site. The other jumPs (jz,ji,js) have a much lower
barrier because the vacancy migrates to a site which is a
nearest neighbor to its original site. It is interesting to
note that although jump j~ results in a relatively unfavor-
able metastable state, its migration path has the lowest
activation energy. Thus, the linear migration path of
jump j5 appears to be the most favorable, although jumps

j2 and j3 are also expected to be significant.
It is interesting to note that unlike fcc metals where

E2, & E&„we instead find that for bcc metals E2„&E,„.
This is due to the fact that the divacancy must migrate
via a metastable configuration in which the nearest-
neighbor divacancy must split into a second-, third-, fifth-
nearest-neighbor divacancy.

The activation energy for diffusion by a divacancy
mechanism is Qz„=Q2„+Qz„. The lower range of
values of Q2„varied from 4.96 to 5.26 eV (see Table V).
This mechanism will be discussed further in Sec. III E.

D. Self-interstitial properties

FIG. 6. Divacancy in a bcc lattice. The circles represent
atoms, and the squares represent the two vacancies of a first-
nearest-neighbor (NN) divacancy. The arrows indicate atomic
jumps which result in migration of the divacancy. The number
associated with the jump refers to the final configuration of the
divacancy: first-nearest neighbor (J & ), second-nearest neighbor
(J2), etc. The formation energies and migration energies are list-
ed in Tables IV and V.

Only one fact about the properties of self-interstitials in
vanadium is known, namely that they are highly mobile
even at 4 K. ' Since interstitials rapidly diffuse to sinks,
no experiments have yet been carried out to determine
the structure of an interstitial in vanadium. Experimen-
tal studies on fcc metals (Al, Cu, Ni) show that self-
interstitials form a dumbbell pair about a lattice site, with
the orientation of the dumbbell in the [100] direction.
In bcc metals, only Mo and Fe have been investigated ex-
perimentally, and in both cases the self-interstitials form
a dumbbell pair along the [110]direction.

Calculations by Johnson using pair potentials
confirmed that in bcc Fe the most stable configuration is
the [110] split. Calculations by Rebonato et al. using
their modified FS potentials found that the [110]
configuration is favored in Mo, Nb, and V, but in Ta the
[111]configuration is more stable. Similar calculations
by Ackland and Thetford using their modified FS po-
tentials found that the [110] configuration was most
stable in V, Nb, and Ta; a bent [110] configuration was
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found for Mo, and the crowdion configuration was found
for W. It should be noted that the FS values of Ef
difFered by up to 1.4 eV, indicating that E; was very sen-
sitive to the modifications of the short-time potential.

In Table VI we list the results of our calculations on
the formation energy of self-interstitials in vanadium. All
of our calculations involved cubic systems containing
1025 atoms; systems twice as large yielded equivalent for-
mation energies to within 0.01 eV. Surprisingly, we
found that the [100]dumbbell is the most stable by a few
tenths of an eV, in contrast to the experimental results
for Mo and Fe. Although it is possible that the predicted
resutls are incorrect, it is important to remember that the
activation temperature for diffusion in Mo (40 K) and Fe
(100 K) is over an order of magnitude higher than that
for vanadium (&4 K). This difference in the activation
temperature suggests that they might have different
structures.

To further test the reliability of the vanadium function,
we calculated the migration energy for a [110]dumbbell,
and found that during the migration it reverted to a [100]
dumbbell. For the [100] dumbbell, the lowest-energy mi-
gration path is the [100]direction through the octahedral
site; the migration energy is 0.06 eV, in reasonable agree-
ment with experiment [ &0.01 eV (Ref. 51)] in that both
results are small. Our low value of the activation energy
is further evidence of the reliability of the model, and
suggests that the [100] dumbbell may in fact be the most
stable configuration in vanadium.

At high temperatures, diffusion by a dissociative mech-
anism may be important. The dissociative mechanism in-
volves the motion of a lattice atom into an interstitial
site, leaving behind a vacancy. The interstitial atom then
hops rapidly from one interstitial site to another, until it
encounters a vacancy, which it enters to again become a
lattice atom. Thus, the distance the interstitial diffuses is
proportional to the vacancy concentration. The total ac-
tivation energy for a dissociative diffusion mechanism is
given by

Qd;, =E~, +EP« =4.58+0.06 eV=4. 64 eV .

The vacancy-formation energy does not affect this re-
sult, ' because it affects both the barrier to the creation of

a Frenkel pair and the distance the interstitial diffuses be-
fore being "trapped" by a vacancy, and these two terms
exactly ofFset one another. This mechanism will be dis-
cussed further in the next section.

E. High-temperature-difFusion mechanism

As discussed above, at moderate temperatures diffusion
in vanadium is dominated by a vacancy mechanism.
However, at high temperatures () -0.8T~~) a second
mechanism dramatically increases the diffusion rate. The
nature of this mechanism is unknown, but several possi-
bilities have been suggested, namely divacancies, next-
nearest-neighbor vacancy jumps, and interstitials.

In fcc metals, the high-temperature mechanism is attri-
buted to divacancies. However, in bcc metals divacancies
diffuse by a different mechanism, where Ez„&E &„, which
is the reverse of the behavior in fcc metals. Also, bcc lat-
tices are less closely packed than fcc lattices, suggesting
that self-interstitials would form more easily in bcc and
fcc lattices. These two arguments suggest that bcc lat-
tices would favor a dissociative mechanism more than a
divacancy mechanism.

In Secs. III B-III0 we calculated the activation ener-
gies for these migration mechanisms, and we summarize
the results in Table VII. We find that the dissociative
mechanism does in fact have the lowest activation energy
by 0.3 eV, suggesting that it is the dominant diffusion
mechanism.

Many experimental estimates of the activation energy
of the high-temperature mechanism have been made from
diffusion measurements; these values are listed in Table
VII. The values are seen to range from 4.12 to 4.81 eV,

TABLE VII. Comparison of theoretical and experimental ac-
tivation energies for a high-temperature difFusion mechanism.
The results of F suggest that the dissociative (interstitial)
diffusion mechanism is dominant, and the activation energy is in

reasonable agreement with most experiments (range of 4.5-4.8
eV). Diff. means the results of difFusion experiments, which
were analyzed to determine the contributions of both a low-

temperature and a high-temperature mechanism. The asterisk
denotes significant impurity contamination.

Interstitial
structure

Split [100]
Split [110]
Split [11 I]
Octahedral
Tetrahedral

4.58
4.90
4.78
4.64

Esi

o.o6b

'Unstable; reverts to split [100].
Migration path is in the [100] direction to an octahedral site,

which is marginally metastable.
'Unstable; during migration it reverts to a [100) configuration.

TABLE VI. Calculated interstitial properties using F
The formation energy is the energy required to form a Frenkel
pair minus the vacancy-formation energy. Ref.

FvAN

FS (Ref. 27)
FS (Ref. 30)
Diff. (Ref. 43)
Diff. (Ref. 45)
Diff. (Ref. 46)
Diff. (Ref. 67)
Diff. (Ref. 44)
Diff. (Ref. 47)
Diff. (Ref. 18)

Diffusion
mechanism

NNN monovacancy
divacancy
dissociative
dissociative
dissociative
QHT
QHT
QHT
QHT
QHT
QHT
QHT

Activation
energy
(in eV)

5.13
4.96—5.26
4.64
3.23
4.14
4.71
4.81
4.57
4.74
4.24
4.48*
4.48*
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with most of the analyses in the range of 4.5-4.8 eV.
This range is in excellent agreement with our calculation
of Qd;, =4.64 eV.

The FS potentials have not yet been used to calculate
the interstitial migration energy, but if we use the experi-

mental value (&0.01 eV}, then Q4;, is found to be 3.23
(Ref. 27) or 4.14. Although these values are rather low,
they also suggest that the dissociative mechanism is the
dominant high-temperature dift'usion mechanism.

In summary, a comparison of activation enthalpies
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FIG. 7. Comparison of experimental (Ref. 54) and theoretical phonon dispersion in the (a) [100]direction, (b) [110]direction, and
(c) [111]direction. q,„ is 2n/a in the [100] and [111]directions, and m. /a in the [110]direction. The frequency is in units of THz.
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shows that the dissociative mechanism is favored over
both the divacancy and next-nearest-neighbor vacancy
mechanisms. Ideally one would also like to know the for-
mation entropy of interstitials and divacancies, but to our
knowledge this has not yet been calculated for bcc met-
als. We have previously calculated the formation entropy
of an interstitial in Cu using QH techniques, finding
S~, =8.4k~; this strongly suggests that a dissociative
mechanism could signilcantly contribute to self-diffusion.

G. Surface properties

We have calculated the surface energy of the (100) and
(110) faces of vanadium by creating a 30-A-thick slab
with two free surfaces, and allowing the surfaces to relax.
No attempt was made to search for reconstructed sur-
faces. The results are shown in Table VIII, and are seen
to closely agree with previous FS results. Also shown
in Table VIII are Tyson's estimates of the surface energy
of an "average" face, which are based on measurements
of the liquid-vapor surface energy. ' Using Tyson's es-
timate of the surface energy of an "average" face, and us-

ing his estimate of the "population density factor, "56 57

we can also estimate the surface energy of a particular
face; these results are also included in Table VIII.

Our results qualitatively agree with Tyson's, in that the
(100) face has a higher surface energy that the (110) face.

TABLE VIII. Comparison of surface energies (in ergs/cm )

at OK.

Surface

(100)
(110)

Average solid

VAN

1700
1460

FS (Ref. 55)

1733
1473

Expt.

2589'
1822'
2622b

'Our estimate using Tyson's method (Refs. 56 and 57).
Tyson's estimate from liquid-surface energy data (Refs. 56 and

57).

F. Phonon dispersion

Using the same approach as Daw and Hatcher, " we
calculated the phonon-dispersion curves for I' . The
results are shown in Fig. 7, and the agreement with exper-
iment' is reasonable. In the long-wavelength limit (low
k), the dispersion curves are directly related to the elastic
constants, to which the functions were fit. However, even
in the short-wavelength limit the results agree with ex-
periment to within 25%%uo.

It should be noted that Rebonato and Broughton
used the FS potentials to calculate phonon-dispersion
curves for several bcc transition metals, including vanadi-
um, and found generally good agreement with experi-
ment. However, they appear to have misunderstood the
labeling of the experimental results for vanadium in the
[110] direction, so that the experimental results are in-
correctly plotted in their Fig. 4. Their results are some-
what more accurate in the [111]direction, whereas our
calculations are more accurate in the [100] and [110]
directions.

Expt.

FVAN

FS
(Ref. 55)
LEED
(Ref. 59)
LEED
(Ref. 68)

Expt.
FvAN

FS
(Ref. 55)
LEED
(Ref. 63)
LEED
(Ref. 68)

(100) surface

(1.519 A) (%)
—6.2
—6.9

—7.0

—6.7+1.5

(110) surface

(2.149 A)
—2.9

—3.9

—0.5+0.5

—0.3+0.5

(%)

+0.3

+ 1.0+1.3

+0.05

+0.4

However, our results are only 65—80% of the estimated
value. This is consistent with previous EAM calcula-
tions, where the surface energy is approximately 75% of
Tyson's estimates. The reason for this discrepancy is un-
clear. Ackland and Finnis also calculated the surface
energy, and their results are in close agreement with ours
(see Table VIII).

Several low-energy electron diffraction (LEED) studies
of vanadium surfaces have been made to determine the
surface strucutre. These studies are complicated by the
extreme difficulty of preparing a clean surface. One early
study of the (100) surface found a (5 X 1) reconstruction, s

but this seems to occur only in the presence of a
significant fraction of a monolayer of oxygen. ' Other
qualitative LEED studies of the (100) (Refs. 60, 61, and
62) and (110) (Refs. 63, 64, and 65) surface found that the
surface had the same 2D periodicity of the bulk planes.

Table IX compare our calculated surface relaxations
with quantitative LEED studies. The overall qualitative
agreement is good, in that the sign of the relaxations are
always correctly predicted. The quantitative agreement
for the (100) face is good for both the first-layer and
second-layer relaxations. For the (110) face, we calculate
a larger contraction of the first layer than is experimen-
tally observed. We find a very small second-layer expan-
sion; the LEED analysis did not include D23 as a parame-
ter, but the accuracy of their fit suggests that Dz3 is
small, in agreement with our result. It is interesting to
note that our results are in fairly close agreement with
those of the FS model.

H. Liquid density

The liquid structure was formed using MD techniques.
Starting with a uniformly expanded perfect crystal of 432
atoms, the structure was annealed at 3500 K for 10 ps at
constant pressure (the volume was allowed to vary). This

TABLE IX. Surface relaxations; 5» and 6» are the first-
and second-layer relaxations, respectively.

Bulk value



3326 JAMES B.ADAMS AND STEPHEN M. FOILES 41

annealing transformed it into a liquid, which was then
cooled (during 30 ps) to the melting point, 2175 K. The
cooling rate was such that the volume had a sufhcient
time to equilibrate. One further 5-ps annealing treatment
at the melting point yielded the average volume, 15.8
A /atom. After rescaling by aQ/a MD (see Sec. III 8),
the volume is found to be 15.6 A /atom, in reasonable
agreement with the experimental value of 15.2
A /atom.

A word of warning should be added about this calcula-
tion, however. After the liquid was equilibrated at 2175
K, its structure factor was calculated and resembled that
of an amorphous solid in that the amplitude of the struc-
ture factor was larger than that usually seen for liquids,
and the second maximum in the pair-correlation function
had a double-peak structure. Thus it is possible that this
structure was an amorphous solid rather than a liquid.
This suggests that the melting point of F is somewhat
higher than experiment. Further calculations are re-
quired.

IV. SUMMARY

In summary, we have presented the determination ofF, an EAM function for vanadium. It was developed
by directly fitting the lattice constant, sublimation ener-

gy, elastic constants, and vacancy-formation energy, and
by indirectly fitting the thermal expansion and vacancy
migration energy. The fit to those quantities was accu-
rate to within 3%, except for thermal expansion, which
was accurate to about 20%. This agreement for vacancy
properties and especially thermal expansion is a large im-
provement over the FS potentials.

F was also used to calculate the following.
(1) Vacancy-migration energy by a next-nearest-

neighbor mechanism. The high value of E,„' ' (2.91
eV) suggest that this is not a significant diffusion mecha-
nism.

(2) Divacancy formation and migration energies.
Nearest-neighbor divacancies were found to be the most
stable, but divacancy diffusion occurs via a metastable
configuration. The high values of Qz„(4.96—5.26 eV)
suggest that this is not a significant diffusion mechanism.

(3) Interstitial structure and migration energy. The
most stable interstitial structure was found to be the [100]
split dumbbell, in contrast to the FS model which pre-
dicted the [110]split. The migration energy was found to
be 0.06 eV, in reasonable agreement with the experimen-
tal value (&0.01 eV). The combined formation and mi-
gration energy is Q;„, , the activation energy for a dissoci-
ative diffusion mechanism; the relatively low value of
4.64 eV strongly suggests that this is the dominant high-
temperature mechanism. Furthermore, this value is in
excellent agreement with experimental measurements of
the activation energy (4.5 —4.8 eV).

(4) Phonon dispersion. Phonon dispersion in the [100],
[110],and [111]directions is in good agreeinent with ex-
periment in the long-wavelength limit, and even in the
short-wavelength limit the results agree with experiment
to within 25%.

(5) Surface energy and relaxation. The surface energy
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is found to be about 75% of experimental estimates, con-
sistent with other EAM calculations. The calculated
surface relaxations of the first and second layers of the
(100) and (110) surface are in reasonable agreement with
LEED measurements.

(6) Liquid volume. The volume of the liquid at the
melting point was found to be 15.6 A /atom, in good
agreement with the experimental value of 15.2 A /atom.
However, it is possible that the liquid was in fact a disor-
dered solid.

In summary, this potential fairly accurately describes a
wide range of inaterial properties, although the phonon-
dispersion and liquid-volume results suggest that further
improvement could be made. The accuracy of this poten-
tial is presumably due to including thermal expansion
and vacancy migration in the fit. %'hereas the elastic
constants are related to the second derivatives of the po-
tential, thermal expansion is related to the third deriva-
tive. Similarly, vacancy migration tests the potential far
from equilibrium, so that including it in the fit also in-
creases the reliability of the potential.

The importance of the form of the cutoff suggests that
the simple Morse potential used for the electrostatic in-
teraction should be replaced with a more general form
(see Johnson and Oh ), which might result in even more
accurate potentials for the bcc metals.



41 DEVELOPMENT OF AN EMBEDDED-ATOM POTENTIAL FOR. . . 3327

with us, as well as for his useful comments and sugges-
tions. We would also like to thank the following people
for their helpful comments and suggestions: Dr. Murray
Daw, Dr. Jeff Nelson, Dr. Mike Baskes, Dr. Tom
Felter, and Dr. Bill Wolfer of Sandia National
Laboratories —Livermore, Dr. Graham Ackland of the
University of Pennsylvania, and Dr. Gerhard Neumann
of the Freie Universitat Berlin. This work was supported
by the U.S. Departinent of Energy (Division of Materials
Science of the Office of Basic Energy Sciences).

APPENDIX: PRESSURE VERSUS VOLUME
RELATION FOR THE UNIVERSAL COHESIVE

ENERGY RELATION (REF. 31)

The universal cohesive energy relation was developed
by Rose et al. , ' and several sets of EAM functions (in-
cluding F ) have been developed which require an ex-
act fit to it. For uniform distortions of the lattice con-
stant, the cohesive energy of each atom is given by U:

U= —E,„b(1+a')exp( —a"),
where a * is given by

a*=(a/ao —1)/(E,„b/9BQ) —,
' . (A2)

E,„b is the sublimation energy at 0 K, a is the distorted
lattice constant, ao is the equilibrium lattice constant at 0
K, B is the bulk modulus, and 0 is the atomic volume at
OK.

The pressure versus volume relation can be determined
from

P = —dU/dV, (A3)
and in Fig. 8, we plot the result for vanadium, using the
values in Table II. We also compare with the averaged
experimental data, as determined by Rebonato et al. In
contrast with an earlier calculation which probably con-
tained an error, we 6nd that the calculated pressure
versus volume relation is in excellent agreement with ex-
periment over the entire range.
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