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Metastable spin-polarized He atoms incident on a Ni surface undergo deexcitation in a process
which yields electrons from the Ni. The number produced is observed to depend on the relative

spin of the Ni and the He atoms. The normalized difference in the ejected-electron intensity pro-
duced by He atoms with opposite spin polarizations increases dramatically with increasing kinetic
energy of the electrons. A theory of this asymmetry is presented. It is found that the experimental
results can be reproduced only by the use of a realistic potential for the Ni electrons in the vacuum

region. With such a potential it is found that He+ ions which result from the He -surface interac-
0

tion are neutralized at -4.5 A from the Ni surface, a much larger distance than given by previous
estimates. The experiment is shown to reflect the polarization of Ni electrons at the He ion, and it
is estimated that the Ni magnetization at the Fermi energy and far from the Ni surface is = —

20%%uo.

I. INTRODUCTION

There has been increasing interest in the spin-
dependent properties of magnetic solids over the last de-
cade. ' In particular, the spin dependence of electron
scattering from surfaces and the polarization of secon-
dary electrons in magnetic transition metals and related
ferromagnetic metallic glasses "has been studied in de-
tail. One aim in such studies has been to probe the ele-
mentary excitation spectrum of the magnetic material,
i.e., spin waves and Stoner excitations. Whereas the
former has been investigated extensively with use of neu-
tron scattering, ' only recently have techniques been
developed to study the single-particle excita-
tions. ' ' The most recent of these experiments'
utilizes a spin-polarized beam as well as spin detection of
the scattered electrons to obtain information about four
scattering channels. Other spin-sensitive probes include
spin-polarized inverse photoelectron spectroscopy, ' '
spin-polarized photoemission, ' spin-polarized
Auger-electron spectroscopy, spin-resolved tunnel-
ing from ferromagnetic materials, spin-polarized
low-energy electron diffraction (I.EED), ' ' electron-
capture spectroscopy, and spin-polarized positron
spectroscopy.

The probe dealt with in this paper is spin-polarized
metastable-atom-deexcitation spectroscopy (SPMDS).
In this technique a thermal beam of metastable He(2 S)
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atoms is electron-spin polarized by optical pumping and
is then directed at the surface under study. The spin-
polarized atoms are deexcited when they interact with
the surface and electron emission from the metal results.
As is well known from the many previous investigations
that utilized unpolarized metastable atoms, this
technique provides the opportunity to study surface and
adsorbate electronic structure with extreme surface
specificity. With the addition of spin polarization, this
technique can be used to study surface magnetism as
well as the dynamics of metastable-atom-surface interac-
tions.

In the experiment under consideration, electron-
spin-polarized atoms are directed at a clean magnetized
Ni(110) surface. The atoms are polarized either parallel
or antiparallel to the magnetization of the sample. As
the He(2 S) atoms approach the surface they resonantly
ionize as the excited 2s electron tunnels into an empty
state above the Fermi level. The resulting He+ ion is
subsequently neutralized by a conduction electron from
the surface which fills the He 1s hole in an Auger-like
process in which a second Ni electron is ejected. This
process, Auger neutralization, plays a key role in the
closely related technique of ion neutralization spectrosco-
py

5 1 62

Since the incident He(2 S) atoms are electron-spin po-
larized in a selected direction, the spin of the electron
which fills the He+ 1s hole is known. For a given in-

Work of the U. S. Government
3303 Not subject to U. S. copyright



3304 DAVID R. PENN AND PETER APELL 41

He

15— Vacuum Level

SP
$ = 5.1eV

E* = 4.77eV

~O0

10-
Ws —9.5eV

47/i 41 Wd = 5eV

0.6 0.6

0
0

EA (eV)

10 I Eqs I = 24.6eV

FIG. 1. The experimental integrated normalized spin asym-

metry, A ', as a function of energy E„(from Ref. 36). The inset
illustrates the neutralization of a He ion by an Auger-like pro-
cess. A Ni electron spin cr fill the empty 1s 0 state of the He+
ion and a second Ni with energy E„ is excited.

cident spin direction, all electrons ejected from the Ni
surface with an energy greater than some energy E„are
collected, regardless of spin. The number collected is
N

~ (E„), where j, refers to the spin of the Ni electron
that fills the He 1s state. The spin of the He atoms is re-
versed and again all ejected Auger electrons with energy
greater than Ez are collected. The integrated normal-
ized spin asymmetry is defined as

Nt (E„) Nt (E„)—
A (E„}=

Ni (E„)+Nt (E„)
The experimental results for A (E„) are shown in

Fig. 1. The purpose of this paper is to report on calcula-
tions of the asymmetry, A (E„), and to understand
what properties of the Ni are measured in SPMDS.

Section II is a discussion of the model on which our
calculations are based. Section III gives the general
theory for SPMDS. In Sec. IV the Auger rates are dis-
cussed, and in Sec. V the numerical results are presented.
The conclusions are given in Sec. VI.

II. MODEL FOR SPMDS CALCULATIONS

In Ref. 36 a thermal beam of metastable spin-polarized
He is incident on a clean Ni(110) surface. Figure 2 shows
the relevant energies. The He (2 S) level is 4.77 eV
below the vacuum level; i.e., the ionization energy of
He*(2 S) is 4.77 eV. The ionization energy of neutral He
in its ground state, E, is 24.6 eV. Both of these values
are for an isolated atom. At a distance z from a metal
surface the screening of an ionized He atom will lower
the ionization energy by an amount given by the image-
potential shift, e /4z. The Ni(110) work function is 5.04
eV. There are approximately 4.7 majority spin d elec-

FIG. 2. Summary of relevant energies and electron occupa-
tion numbers for the metastable He-Ni system.

where (note: u = dz/dt)—
I'(z) =R (z)/u(z) (3)

and the probability that the He 1s level is filled at a dis-

trons (spin l' ) and 4.1 minority spin electrons (spin 1 ) in a
band approximately 5 eV wide. There are approximately
an equal number of spin f and spin i s-p electrons,
n, =0.6, in a band of width 9.5 eV. In the surface region
the d band narrows to roughly 3 eV.

Experiments from metals with work functions greater
than the He'(2 S) ionization energy have shown that the
metastable He' atoms are resonantly ionized with almost
unit probability. This resonant ionization occurs when
the excited 2s electron of the He' atom tunnels into the
empty s-p states of the metal. It takes place in the range
5-10 A from the metal surface where the 2s He' wave
function starts to overlap the metal surface atoms. In the
region & 5 A there is subsequent neutralization of the
He+ ion via an Auger-like transition in which a metal
electron fills the empty He ls state and a metal Auger
electron is ejected. Thus the Auger spectra produced by
incident He* atoms are virtually identical with that pro-
duced by He+ ions and the starting point of the paper is
the calculation of the Auger neutralization of spin-
polarized He+ ions.

A rough description of the neutralization is given by
the theories of Cobas and Lamb, 8 Hagstrum, ' and oth-
ers, ' who derive a most probable distance for the neu-
tralization. Far from the solid there is a low filling prob-
ability for the He 1s level, often written as R =Roe
where z is distance to the surface and 1/y is associated
with the exponential decrease of the metal wave function
in the vacuum region. The number of empty 1s levels,
n(z}, at a distance z from the surface is given by
dn /dt = —Rn.

The solution of the rate equation is

n (z) =exp —f dz' I (z')
Z
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tance z is P =Rn /u, where

P(z) =I (z)exp —f dz' I (z')
Z

The maximum of P(z) occurs at z =z, where

(4)

+I (z )

01

R0

1 OU
v y+—

U

(6)

The velocity v is determined by the image potential

e
—,'Mu (z)= +E;„, ,

4z

where E;„,is the incident energy of the thermal He atoms
and M is the mass of the He atom. In Eq. (6) the quantity

y can be estimated by 2(2m'/Rz)'~z, where q& is the Ni
work function. Equation (6) then yields a value of z =1
A, 1.5 A, and 2 A for R0=1.4X10' s ', 2.7X10' s
and 8.7 X 10' s ', where R0 is defined by
R (z}=Roe

Our calculation of the SPMDS experiment of Ref. 36 is
based on the following picture. A metastable He' atom
with a definite polarization (say f } corresponding to a
hole in the ls $ level approaches the Ni surface and reso-
nantly ionizes leaving a He+ ion with a ls $ hole. The
He+ ion is subsequently Auger neutralized and a Ni
Auger electron is produced. For every incident He'
atom, regardless of its spin, one Auger electron is pro-
duced and the integrated asymmetry is zero. If only
those electrons with energy greater than say E„are col-
lected, then a nonzero integrated asymmetry A (Ez ) is
measured. The larger E~ the greater the asymmetry for

Ez up to a maximum value E~:0.

For a value of E„(less than E„),only Auger transi-
tions that take place farther from the surface than
z;„(Ez ) will be observed where

E„=iE„(z;„)i —2q& (10)

where q is the work function and E &, is the energy of the

empty He 1s level when the He is far from the surface.
The zero of energy is taken to be the vacuum level. The
term 2g in Eq. (8) arises because the two metal electrons
involved in the Auger process must originate at the Fer-
mi level if the maximum Auger energy is to be produced.
As the He+ ion approaches the surface the maximum
Auger energy at which electrons are produced decreases
due to the change in the He is energy, Ei, (z), which is
affected by the image potential. The maximum Auger en-

ergy for a given z is

E„'"(z)=~E„(z)~—2g .

determines z;„. For z &z;„all Auger transitions will

produce electrons at energies less than E„. For E„=E~
only transitions far from the surface can be observed. If
the He ls J, holes are filled more rapidly than the He ls I
holes, then a positive asymmetry will be observed,

(E„))0. It will be seen that He ls g holes fill faster
than ls 1' holes because there are more metal spin 1 elec-
trons than spin 1 electrons in the vacuum region corre-
sponding to a negative spin polarization.

For a smaller value of E~ there is a smaller value of
z;„and Auger transitions that take place closer to the
surface also contribute to the observed spectrum. By the
time it gets near the surface a He+ ion that began with a
is 1 hole is more likely to have filled than a is f hole.
This means that near the surface there is a greater proba-
bility for the filling of a He ls t hole than for a He Is $
hole even though the filling rate is largest for l holes, i.e.,
filling probability is equal to rate times number of holes
available. This implies a reduction in the asymmetry. In
the limit that E~ is reduced to the point where all Auger
electrons are collected, A =0.

III. THEORY

A theory of the asymmetry measured in SPMDS is
developed in this section. Let r~(E&,z) be the rate per
unit energy that Ni Auger electrons of either spin are
produced at energy Ez by a He+ ion located a distance z
from the surface with a spin cr hole in its ls shell. Such a
He ion is said to be polarized in the spin o. direction
(where cr is opposite to cr ) due to the electron in the lscr
state. Let n (z) be the probability that the initially emp-
ty 1s o hole is still empty after the ion, initially at z = 00,
has reached a distance z from the surface. The number of
Auger electrons per unit energy produced with energy
Ez by an incident He+ ion is

R (z)
n (z)= n (z),

dz u z
(12)

where R (z) is the total rate at which Auger electrons
are produced by a He 1s o hole at distance z from the
surface

R (z) =f dE„r (E„,z) . (13)

Equation (12) has the solution

n (z) =exp —f dz'[R (z')/u (z') j
z

(14)

Thus a knowledge of the rate at which Auger electrons
are produced, r (E„,z), yields the number of Auger elec-
trons per unit energy produced at energy E„,X (E„),
by a He ion with a 1s ~ hole incident on a Ni surface.
The quantity E (E„)obeys a suin rule

N (E„)=f r (E„,z)n (z),
o u(z)

where u (z) = dz/dt is—the velocity of the He atom. Far
from the surface n (z)~1 and n (z) decreases monoton-
ically with decreasing z. In order to deterinine n (z) we
use the rate equation (dn /dt) = Rn, i.e.—,
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I' = f dE„N (E„)=1—n (z =0) (15) where N (E„) is the number of Auger electrons with

energy greater than or equal to E„:

a(E„)=N((E„) Nt(E—g ) . (16)

Equation (15) requires

Embox

E~a E„=O, (17)

where E„'",E„'"are the minimum and maximum ener-
gies at which Auger electrons are produced. The energy
E~ will be measured from the vacuum level. Thus the
1owest value of E„ that can be observed is E„=O.G,

however A (0.0} need not be zero since E„'"&0.0.
Those electrons with E„(0.0 cannot be observed. The
normalized asymmetry is a(E„)l [Nt(E„)+Nt(E&)].
The Ni SPMDS experiment measures an integrated nor-
malized asymmetry given by

which follows directly from Eqs. (11)—(13). In Eq. (15},
I' is the yield (the total number of Auger electrons) for a
He+ ion with a 1s hole of spin o. In practice
n (z =0)«1 and the yield is essentially unity. A He+
atom with a 1s hole incident on a surface will produce
one Auger electron due to the 611ing of the 1s hole. The
actual measured yield is smaller than 1 because not all
Auger electrons escape into the vacuum. However, the
escape probability will depend only on energy and not on
spin so that A (Ez) is not effected. We therefore
neglect the escape probability in this paper.

The asymmetry for Auger electrons of kinetic energy
E~ 1s

N (E„)=f dEN (E) . (19)

From (17) it follows that A (E„'")=0.
In order to calculate A (E„),define

rt(E„,z) =ro(E„,z)+br(E„,z),
rt(Eg&z)=ro(Egyz) kr(Eg z)

(20)

(21)

n& =n0+bn,

n&=n0 —bn .

(24)

(25)

Use of Eqs. (20)—(25) in Eqs. (13) and (14) yields

no(z) =exp —f dz'Ro(z')/u (z')
z

(26)

hn(z)= —no(z) f dz'ER(z') ju(z'),
2

It will be shown in Sec. IV that hr/r0 is related to the
polarization which is small in Ni.

The rates Ro(z), AR (z) are defined by

Ro(z) =f dE& ro(E„,z), (22)

dR(z)= f dE& b,r(E&,z), (23)

in analogy with Eq. (13). Similarly, no and b, n are defined

by

Nt (E„) Nt (Eq)—
A (E„)=

Ni (E„)+Nt (E„)
(18) to lowest order in hR. The asymmetry a (E„)of Eq. (16)

is given to lowest order by

a(E&)= —2f dz no(z} br(E„,z) ro(E„,z)f dz'— , bR(z')
0 u z z u z

(28)

which follows from Eqs. (16), (24), (25), and (27). The total number of Auger electrons at energy E„ is

N(E„):Nt(E„)+N—&(E„)=2 dz no(z)ro(E„, z) .
o u(z)

(29)

The first term on the right-hand side of Eq. (28) represents the contribution to the asymmetry due to the difference in
the rates at which He+ ions of different spin produce Auger electrons. The second term on the right-hand side of Eq.
(28) takes into account the difference in availability of He holes of different spin. It is easy to show that a (E„)given
by Eq. (28) satisfies the sum rule Eq. (17).

The expression for a (E„}given by Eq. (28}can be rewritten as

a (Ez ) = —2f dz Po(z) AI(E„,z)p(z) I(E&,z) f dz'— , Ro(z')p(z')
0 z v z

(30)

where

no(z)Ro(z)
Po(z) =

u z
(31)

ro«~»)I(E„,z}=
oz

hR (z)
q)(z) =

(33)

(34)

b,r(E„,z)
AI(E„,z}=

hR (z)
(32}

In Eq. (30), Po(z) is the probability of neutralization at a
distance z. The quantities bI(E„,z) and I(E„,z) are the
normalized Auger distributions corresponding to the
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difference and the sum of the Auger production rates
r&(E„,z) and r~(E„,z):

f dE„4I(E„,z) = 1, (35)

f dEqI(Eq, z)=1 . (36)

The quantity (p(z) is the ratio of the difference to the
sum of Auger production rates at a metal-He separation
z. Just as in Eq. (28), the first term on the right-hand side
of Eq. (30) describes the asymmetry produced by the
difference in the rates r

&
(E„,z) and r &(E„,z). The

second term arises because as the He+ gets closer to the
surface there is a lower probability of (say} a spin 1 being
available for filling due to the fact that they fill more rap-
idly than spin f holes corresponding to 4r =r

&

—r
&
(0.

Similarly, Eq. (29) can be written

N(E„)=2f dz Pp(z)I(E„,z) . (37)
0

In the case where y(z) is independent of z, Eq. (30)
simplifies to

d1 ('E„,z)= f dE„' dI(E„,z'), (45)

I (E„,z)= f "dE„'I(E„',z) .
E~

The quantity N (E„)is given by Eq. (37) with I(E„,z)
replaced by I (E„,z).

It should be emphasized that the SPMDS measures the
total production of Auger electrons rather than the rates
of production measured in an experiment that detects
currents. For example, assume that the rate r is given

by

(46)

r.(E„,z) =g.(E~ )e " (47)

gi«~) —g&(E~)

N(E„) g i(E~)+gt«~)
(48)

for the production rate of Auger electrons where the de-
cay of r with z arises from the decay of the Ni wave
functions in the vacuum region where they overlap the
He atom. The asymmetry of the rates is

(p(z) =(p=const,

a (E„)= 2p f d—np[4I(E„,z)

(38) From Eqs. (11)and (12)

r (Eq, z)
N (E„)=f dn

R z
(49)

+I(E„,z)inn ]p,

where use has been made of the relation

(39)
where z is related to n by Eq. (14). Use of Eq. (47) in

Eq. (49) yields the total asymmetry

d
np(z) =Pp(z}

z
(40)

and z =z (np) in Eq. (39) is determined from the solution
of Eq. (40):

a(E„) gt(E„)—gt(Eq)

g, (E„)+g,(E, )
'

where

(50)

np(z)=exp —f dz', Rp(z') (41}

In the experiment all electrons with energies greater
than E„are collected. Thus, the normalized asymmetry
measured in the experiment, A (E„), is given by Eq.
(18) and is obtained from Eqs. (30) and (37) by

a '(E„)
A (Eq)=

N (E„)
where

a'«~)= f dE~ «E~ »E„
N (E„)=f,"dE„'N(E„').

A

(42)

(43)

The quantity a (E„)is given by Eq. (30) with 4I(E„,z)
and I(E„,z) replaced by 4I (E„,z) and I (E„,z),
where

g (Eg)
g (Eg)= (51)f dEAg (EA }

Unlike d(E„), the asymmetry a (E„) satisfies the sum
rule of Eq. (17), thus a (E„)must take both negative and
positive values as a function of E„. If the shape of the
Auger distribution is spin independent so that
g (E„)=A g(E„), then a(E&)=0 while

a(E~ )/N(E„) =( A
~
—A t )I( A

~
+ A &). Clearly, asym-

metry will in general be smaller than the asymmetry rate.

IV. AUGER PRODUCTION RATES

In this section we derive an approximate expression for
r (E„,z), the rate that Auger electrons are produced at
energy Ez by an unfilled He spin o. 1s leve1 located a dis-
tance z from the surface. The rate that spin f electrons
are produced at E„by a spin 1 hole in the He 1s level is

where

IM ~,"~'k" ".-'t I'&(Ek„t+E, „, E„& Ek-„,)5(E—„—Ek-—„ t ),
k n k' n' k" n"

7 S

(52)

M ~s= f d r& fd r2 g (1 }1{&(l) 1{&(2)gs(2) (53)
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is the matrix element describing the Auger process and e /r, 2e is the screened Coulomb interaction. Equation (52) is
simplified by the use of Kanes' random k approximation in which momentum conservation is neglected. In Kanes
treatment the matrix element is replaced by its average value. Here we allow it to depend on the energies of the states,
Ek„&, Ek.„.&, E„,and Ek-„-&=E„.The dependence of the matrix element M on c.=Ek„~ and c'=Ek„& will be written
as M(e, s') and the dependence of M on E„and E„ is assumed but not written explicitly. M is also dependent on the
orbital character or the states; s-p —like or d-like. The Auger state with energy E~ must be s-p —like as it lies above the
d band. It will become apparent that M is large only for those states, Ek„&, which have total momentum normal to the
Ni surface. Within this approximation Eq. (52) becomes

r',"'(E„,z) = p,'(E„)f«f«' g pP, (e)p,', (e') IM" (e, s') I'~(a+e' —E„E„—),
1, 1'

where I is the orbital character of the state and

(54)

p((e)=p~ (e)f(e),
pI'(e)=p& (e)[1—f (e)],

(55)

(56)

where pi (s) is the density of states at energy s for electrons of symmetry I and f (s) is the Fermi factor. The matrix
element M" (s, e') describes transitions from an electron in the state (s, I) to the He ls state and from an electron in the
state (e', 1') to the Auger state (E„,s).

The matrix element M" (e, s') depends strongly on z because of the exponential decay of the metal wave function (e, 1)
in the vacuum region. This is clear from Eq. (53), which shows that the matrix element is proportional to the overlap of
the Ni wave function gk„& with the He ion. This overlap is maximized for metal states with total momentum normal
to the metal surface and pl &(e) in Eq. (54) should be interpreted as the density of states with momentum normal to the
surface.

The energy of the He ls state, E„,in Eq. (54) is also a function of z due to the image potential of the Ni:

eE„—:Ei, (z) = +E„,4z

where E„is the energy of the He ls state in the absence of Ni.
It is convenient to introduce the notation

C[g(&,&')I —= p,'(E„)f f de f, de'g(s, s')5(e+s' —E„E„), —=2

(57)

(58)

where eF is the Fermi energy. Equation (54}becomes
T

r'~t '(E„,z) =C g pP~(~)pl't(e') IM"'(~, &')I2

1, 1'

The rate at which spin 1 electrons are produced by the He ls 1 hole is

rI)'(E„,z) =C g pPg(e)p(, (e')—,
' IM"'(~, e') —M "(e',e)I

1, 1'

and the total rate is

r (E„,z)=r'~'(Ez, z)+r'~'(E„,z) .

Use of Eqs. (59}—(61) yields for b, r =r
&
r&—

br =C g [pi&(e}pl.&(s ) pi&(e}pl &(e'}]—,
' IM"'(e, s') —M"(e', e)l

(59)

(60)

(61)

+[p~t(s)p~ ~(e') —pl~(e)pr t(e')]IM"'(e, e')I' (62)

The total rate ro =(r
&
+ r

&
) is given by Eq. (62) with pp

—
pp replaced by pp+pp. Equation (62) can be written as

hr =C, g m&(e)ni (e') IM" (e, e')I —Re[M" (c., e')[M''(e', e)]'J (63)

where

m&(e) =p&&(e) —p«(e),
n~(e) =p&t(e)+p»(e),

(64)

(65)
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and

r =C. g n&(e)n& (e')IM" (e, e')I + g —,'[n&(s)n& (e')+m&(s)m& (s'}] —Re[M" (e, E')[M' '(E', E)]' j
1, 1' I, 1'

(66)

In Ni the polarization is small so the magnetization can be neglected compared to the charge density and Eq. (66) be-
comes

r =C. g n, (e)n~ (s')[IM" (s, E')I —
—,'Re[M" (e, e')[M''(e', s)]' J (67)

Using the fact that the He 1s wave function is very
compact the matrix element in Eq. (53} can be approxi-
mated by

can be neglected, thus Eq. (71) gives

br =C m, (e,RH, ) g n~(e')I@(, I (75)

M(~s —-g (RH, )@~s

where RH, is the position of the He atom and

(68)

r = C n, (e,RH, ) g n, (e')
I @,«I

1

(76)

ef d3r g„(r) f d r
~

p&(r)ps(r) .
~RHe r e

(69)

M" (e, e') =P(,(RH, )4).«, (70)

where P&, is a metal wave function with energy e and to-
tal momentum normal to the surface. If the interference
terms in Eqs. (63) and (67) are neglected, use of Eq. (70) in
those equations gives

The Ni wave function at the He position, Pk„(RH, ), will

be largest for values of total momentum normal to the
surface. Thus, in Eq. (54), M" (e, e') can be written

An expression for the normalized asymmetry at the
highest observable Auger energy E„,defined in Eq. (8), is
easily obtained. The largest Auger energy is obtained
when the Auger transition involves two metal electrons
with energies equal to the Fermi energy. Furthermore, as
is apparent from Eq. (57), the He Is level, E»(z), lies
lowest when the He+ ion is far from the Ni surface. If
we observe Auger transitions with energies E„or larger,
then it follows from Eq. (57) that z must be greater than
z;„, where z,„=(e l4)(E„Ez) ' an—d the integra-
tion over z in Eqs. (30) and (37) is restricted to z &z;„.
As E„~E„,Eqs. (28) and (29) yield

~r =C. g mi(e, RH. )n((e')I+t «I' . ,
1, 1'

r =C g n~(e, RH, )n& (e )I@p«l
1, 1'

where

(71) a (E„) dr(E„—, z~ao }
A (EA)=

N (E„) ro(Eq, z~~)
(77)

and Eq. (77) gives the integrated normalized asymmetry
as

mi(e, RH, }=m((e)lg(, (RH, )I',
n(«, RH, ) =n~«) lp~, ,(RH, }I' .

(73)

(74)

It is understood that in the integration over e in Eq.
(71) [implied by C[ ]] only those states are summed over
which have momentum normal to the surface.

The quantities m~(e, RH, ) and n&(e, RH, ) represent the
magnetization density and number density of Ni elec-
trons at the He atom for electrons of symmetry l. From
band calculations the d magnetization in bulk Ni is
md -0.6pz per atom for the d electrons and
m, = —0.02pz per atom for the s-p electrons. However,

0
at a distance of 1.2 A into the vacuum md-—0.0pz and
m, = —0.005pz. The number of electrons at that dis-
tance is n, =0. 14 so the s electron polarization is

p, = —3.5%.
In order for Eq. (28) to agree with the measured sign of

the asymmetry, Ar must be negative. Thus the dominant
contribution to Ar in Eq. (71) must correspond to m& &0
which is consistent with m, = —0.005pz per atom and
md-—0. Following this discussion it is assumed that the
Ni d magnetization and charge density at the He+ ion

A (Eq)= p (eF,RH, ), as RH, ~OO, (78)

where p, (eF,RH, ) is the polarization at energy eF of the
metal s-p electrons at the He+ ion. If the s po1arization is
constant outside the surface, then A (E~ )

p, (eF,z, ), where z„—is the distance from the surface
at which the d electron density becomes negligible,
z„—1-2 A.

If this were the same as the average polarization just
outside the metal it would imply A (E„)=3.5%, how-
ever the s-p polarization at the Fermi energy is probably
larger than the average polarization. The s-p polarization
is due to s-d hybridization with the spin-polarized d
bands and would be zero if the d-band polarization was
zero. Assuming lp, (e)l ~ lpd(e)l implies that p, (e) in-
creases linearly with energy, thus p, (ez } is on the order of
four times the average polarization, p„ in the s-p band,
which means that A (E„)=14%,in reasonable agree-
ment with the experimental results.

In order to carry out numerical calculations it is neces-
sary to model b, r (E„,z) and r(E„,z} given by Eqs. (75}
and (76). The quantities m, (e,R H, ) and n, ( e, R H, ) de-
pend on

I P, ,(R H, )I, the s component of the Ni wave
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P, ,(z) ~e (79)

function at the He ion. The simplest approximation for

P, ,(z) is
the distance of the He+ ion from the Ni surface. The
&KB approximation can be used to estimate the decay of
the Ni wave function for the state with s-p symmetry and
energy e,

where
1/2

T

f, ,(z) =exp —fdz, sc(z, ;z,e)

where

(83)

where y is the Ni work function and c~ is the "normal
component" of the electron energy. In a free electron
metal e~=e —()r) /2m)k~~, where k~~ is the momentum
parallel to the surface. The corresponding d component
can be estimated from

.), ( )
-y(z+ai2)

Ty'd ~ z —e (81)

2 e 2 2

V(z, ;z)= — — +
4z, lz —z, l lz +z, l

(82)

where z, is the z component electron coordinate and z is
I

where a/2 is the distance of the Ni atoms from the jelli-
um edge and a =3.52 A is the Ni lattice constant. Con-
sequently Pd/$, =0.15, which is consistent with the
neglect of the d magnetization and number density at the
He ion.

It will be seen that a more accurate approximation for

g, ,(z) will be required to obtain agreement with the ex-

perimental results.
Equation (79) holds if the potential in the region be-

tween the Ni surface and the He+ ion is a rectangular
barrier. However, the potential of an electron in the vac-
uum region should include the metal image potential as
well as the potential of the He+ ion and its image

«(z, ;z;e)= [))p
—e+ V(z„z)]2m

(84)

y n, (e}le
n(e) = I

(85}

Equation (71) for b, r and r p can be written explicitly as

The integration in Eq. (83) is from the left turning point
to the right turning point and it has been assumed that
we are considering a state with total momentum normal
to the metal surface in Eq. (84).

The terms due to the He+ ion on the right-hand side of
Eq. (82) are often not included in problems involving
ion-surface interactions, however they make a major
change in the potential barrier. The most probable dis-
tance of the He+ atom from the surface for Auger pro-
duction, zz, is given by the maximum of
Rp(z}np(z)/U(z) For t.he rectangular potential barrier,
Eq. (79) leads to z„=l—2 A while Eqs. (82) and (83),
which include image and He+ potentials, give z~ =4-5
0
A as will be discussed in the next section.

4&(e) in Eq. (70) will be a slowly varying function of z
and e and is taken to be constant, 4I. Defining

br(E„,z)=y f de f de'm, (e)lf, ,(z)l n(e')5(E&+E„(z) e e'), ——

rp(E&, z)=y f de f de'n, (e)lg, ,(z)l n(e')5(E„+E),(z) e e'), ——
(86)

(87)

where

(88)

V. RESULTS

The total asymmetry is obtained from Eqs. (28), (29),
(43), and (44) as

where m, (e),n, (e) are given by Eqs. (64) and (65), E),(z)
is given by Eq. (57},and y is assumed constant.

a (E„)
A (E„)=

N (Eq)
where

a'(E„)= 2f dz— np(z) b,r'(E„,z) rp (E„,z)f dz—, AR(z')
o U(z) z u(z') (89)

where

n p(z) =exp —f dz' Rp(z')/U (z')
Z

Rp(z)=rp ( —oo,z),
b (R)=zb, r (

—oo,z),

I

and

(90)

(91) and

(E z) = f dE rp(E z)
E~

br'(E„,z}=f dE„' br(E„',z),

(92)

(93)
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N (E„)=2f dz no(z)ro (E„,z) .
0 v z

(94) y(z, e) =2f dz, )r(z„z,e) (101)

Thus, A (E„) can be calculated once ro(E„,Z) and
br(E„,z) are known. These two quantities are given by
Eqs. (86) and (87) and are specified by choosing a model
for m, (e), n, (e), and n(e). The asymmetry is not sensi-
tive to the detailed energy dependence of these quantities
because they enter hr and r through a convolution. The
magnetization m, (e) is due to hybridization of the s
bands with the d bands and would be zero if the d-band
magnetization were zero. We assume that
m, (e) ~ —md(e), where md(e) is the magnetization den-
sity of the d states which is roughly a linear function of e.
Thus

m, (e)= —a(e+ Wd), for —
Wd &e, (95)

where Wd is the width of the d band and a will be
specified. The density of s electrons is taken to be con-
stant:

n, (e)=b, for —W, & e, (96)

where W, is the depth of the s band below the Fermi lev-
el. We take 8'd=5 eV, 8', =10 eV, and b will be
specified. Finally n (e) is the density of states associated
with excitations of Auger electrons from Ni and it is tak-
en to be a linear combination of s-like and d-like density
of states

L = —inn()(0), (98}

where no(0) is the fraction of He ions that reach the Ni
surface without neutralizing. From Eq. (26)

n(E) =c[(1 A, )8(—e+ W, )+A(e+ Wd )8(e+ Wd )],
(97)

where the unit-step function 8(x)=1 if x )0 and
8(x)=0 if x & 0, and A, determines the relative amount of
s and d character of the states from which the Ni Auger
electrons originate. From Eqs. (86) and (87) it is clear
that for a given A, there are two free parameters, yac and
ybc Rather th.an specifying these we choose as one pa-
rameter

and where a is given by Eq. (84). In Eq. (100},z is the
metal-ion distance and e is the energy of the metal elec-
tron. The quantity y(z, e) is plotted as a function of z in
Fig. 3 for various values of e. It is clear from the figure
that y may be approximated by

P(z, G} a(6)[z —zo(e)] (102}

where zo(e) has a strong dependence on e and a (e) has a
weak dependence. For a rectangular barrier model
a-2(2mgltri )'~ =2.3 A ', whereas a(er)=1.4 A
because of the lower height of the more realistic barrier.
Unlike the rectangular barrier, this barrier goes to zero
for distances less than zo(e} for electrons with energy e

0
For electrons at the Fermi energy zo(sr)=4. 1 A while

zo(sr —3 eV) =2.5 A.
The total asymmetry is now calculated only allowing

for transitions from states of s symmetry, A, =O in Eq.
(97). For every value of the parameter L of Eq. (98) the
theoretical curve is normalized in such a way that it falls
within the experimental error bars for the point E„=9
eV. As shown in Fig. 4 it is found that for values of L
such that 31 & L & 35 the theoretical A (E„)is in agree-
ment with the experiment for all measured values of
E„. For a value of L =32 the quantities no(z) [given by
Eq. (26)], Ro(z)/v (z) [given by Eq. (90)], and
no(z)[Ro(z)/v(z)] are plotted versus z in Fig. 5. The
product noRp/v represents the average number of He
ions that are ionized per unit distance and it has a pro-
nounced peak in agreement with the much simpler
theory, Eqs. (2)-(7), but the peak is at 4.5 A rather than
considerably closer to the surface as predicted by Eqs.
(2)—(7). Thus ionization takes place -4.5 A from the
surface, a considerably larger distance than previous esti-
mates. '

This difference is due in large part to the term zo(e) in
Eq. (102), in other words to the very different shape of the
real potential, Eq. (84), from a rectangular potential.

A rough estimate of the quantity Rp that appears in

L=f "dz R()(z)
(99)

so that specifying L is equivalent to specifying ybc.
A second parameter is determined by requiring that

the calculated value of A (E„}(for a specific choice of A,

and L) agrees with the experimental value of A (E„)
for a particular E~. This adjusts the scale of the calcu-
lated asymmetry.

Aside from m, (e), n, (e), and n (E) the quantities
ro(E„,Z) and br(E„,Z) involve ~f, ,(z)~ as is seen from
Eqs. (86) and (87). This quantity represents the density of
metal electrons at the position of the He ion and it is
given by z (A)

where

)~2 y(, )

FIG. 3. Dependence of the exponential decay factor, y(z, e),
of Eq. {100)on the Ni-He+ distance and on the electron energy.
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—a(z —zo)
the simple expression R =Roe ' can be obtained
by estimating Ro from

R (z) Ro —a( —z, )
dz = dz e

o u(z) ~0 u(z)
(103)

18—

where use has been made of Eq. (102) and the e depen-
dence of a and zo have been neglected. For z0=4. 5 A
and a =1.6 A as determined from Figs. 3 and 5 we find
R0=10' s 'L or R0=3X10' s ', in reasonable agree-
ment with other estimates of Ro.

As shown by Eq. (78), the asymmetry evaluated at the
maximum value of E„yields the polarization of the Ni
far from the surface at an energy equal to the Fermi ener-

gy. This asymmetry cannot be obtained directly from the
exerimental values because of the enormous experimental
uncertainty in A (E„) for large E„. However, deter-
mining parameters such that the theory agrees with ex-
periment for all measured values of Ez then allows an ex-
trapolation to E„via the theoretical calculations for
A (E„)and hence a determination of the polarization,

Eq. (78). For 31 & L & 35 this gives
22% & ~p, (eF,z~ac)~ &24%. It has been assumed that
the polarization does not change with distance from the
surface for distances larger than several angstroms. This
extrapolated value of p, is larger than the estimate from
band theory.

A magnetization density given by Eq. (95) implies the
polarization at eF to be four times the polarization deter-
mined by band theory (which is an average over the en-
tire band} at a distance 1.2 A into the vacuum;
p, (eF,z =1.2 A}=4p, = —14%, which should be com-
pared to the estimate for p, in the previous paragraph.
However, the value p, = —3.5% is at the limits of the ac-
curacy of the band calculation since it corresponds to a
magnetization of only =0.005 pz per atom. Further-
more, it is not clear that 1.2 A is sufBciently far from the
surface for p, to have reached its asymptotic value.

There are a number of changes in the model that can
reasonably be made. The parameter A, in Eq. (97) can be
varied to allow for some d character in the states from
which the Auger electrons are produced. It is still possi-
ble to obtain fits to the experimental results for A (E„)
for values up to X=0.6. The magnetization density
m, (e) in Eq. (95) can be taken to be quadratic in energy
and a fit to the experimental data can be obtained for
24&L &32 for A, =O. Similarly the barrier shape given

16—

14—

~ L = 80
o L-35
x L=31
o L-8 L=32

12—

o& 10—
12

10

0 I & I I I I I I I I I I I I I

2 4 6 8 10 12 14
EA (ev)

FIG. 4. Comparison of theory and experiment for the in-

tegrated asymmetry measured in Ref. 36. Several values of the
parameter L [defined in Eqs. (98) and (99)] are chosen and the
theoretical curves are scaled so they agree with experiment at
E„=9eV. The magnetization density is given by Eq. (95) and
A. =O in Eq. (97). The experimental error bars from Fig. 1 are
indicated. In the region 4 ~ E& ~ 9 the curves for L =8, 31, 35,
and 80 are essentially identical. The theoretical results for A

corresponding to L =31 and L =35 fall within all the experi-
mental error bars.

0
3

z {A)

FIG. 5. The number of He+ ions no(z), the neutralization
rate per unit distance Ro(z)/v(z), and the filling probability
Po(z)=no(z)RO(z)/v(z), are shown for the case L =32 of Fig.
4. The value of z for which Po(z) is a maximum is roughly the
most probable distance for neutralization. The actual most
probable distance depends on electron energy.
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by Eq. (82) can be somewhat altered to compensate for
the assumption of one dimensionality. A more realistic
three-dimensional potential might result in a preexponen-
tial factor in Eq. (82) that varies with distance. It is
found that a factor I/(I+bz")'~ for n =1,2, 3 and
0.5 & b (4 will allow a fit to the experiment by choosing
a suitable value of L,. Other values of b, n as well as other
functional forms would probably work as well. However,
if m, (e) is assumed constant, then a fit cannot be ob-
tained. Also, the assumed barrier potential, Eq. (82), can-
not be changed in a fundamental way if a fit is to be
made. The energy dependence of P, ,(z) is required if
theory is to agree with experiment. Similarly, the ap-
proximation to P, ,(z) obtained from Eq. (102) for zo in-

dependent of e will not yield a fit. In particular, the usual
rectangular barrier model where zo(e}=0 will not repro-
duce the experimental results. In short, the agreement
between theory and experiment only obtains for barrier
potentials similar in shape to that described by Eq. (82).

VI. SUMMARY

and

R (z)n (z)
P~(z) =

v z
(105)

The qualitative explanation of the experimental asym-
metry is as follows. The number of electrons of spin e
with energies greater than E~ produced by incoming
He+ ions with ls spin o holes is from Eqs. (11)and (19):

N (E„)=f dzP (z)I (E„,z), (104)
0

where

tance from the surface primarily because of the image po-
tential which shifts the spectrum. As the He ion moves
closer to the surface the position of the 1s level moves to
higher energy due to the image potential of the Ni. Thus
the entire Auger spectrum is shifted to lower energies as z
decreases. The normalized Auger spectrum is shown
schematically in Fig. 6 as a function of z assuming it to be
independent of cr. Also sketched are Pt(z) and Pi(z).
For a given value of Ez and for a given z all electrons
with energies greater than E„ in the normalized Auger
spectrum are collected. The number of spin cr electrons
collected is obtained by multiplying this quantity by
P (z) and integrating over z. For a given Ez there is a
minimum value of z which contributes to the integration
in Eq. (104); this occurs when the maximum Auger ener-

gy falls below E„as indicated in Fig. 6. For small Ez
this happens quite near the surface and the integration
over z includes all the area under Pt (z) and Pi (z) so that
&t (Ez ),N~ (Ez )=1 and A (Ez ) =0. For larger
values of E~ the integration over z will include more of
the area of Pi(z} than Pt(z) with the result 3 (Ez ) &0.
The precise shape of A (E„}depends on the shapes of
the peaks in P (z) and their positions. The further the
peaks in P from the surface the greater the slope of
A (E„).

We have found the following. (1) The integrated asym-
metry measures the Ni magnetization outside the surface
(at the He ion). Assuming that the s electron polarization
is constant in the vacuum it is possible to extract the Ni
polarization at the Fermi energy far from the surface ( & 2
A) from the experimental results. This is estimated to be

r (Eq, z)I (E„,z) =
r ( —ao, z)

(106)
——Ea 1

and

r~ (E„,z)= dE„r~(E„,z), (107)

————————Ep2

where use has been made of the relation R (z)
=r ~

( —ao, z).
In Eq. (104) the quantity P~(z) is the probability that a

He+ ion with a 1s spin o hole is neutralized at a distance
z from the surface. In Eq. (10S), R (z)/v (z) is the proba-
bility per unit distance per ion of neutralization and
n (z) is the number of ions. The quantity I (E„,z} is
the normalized integrated Auger spectrum. It represents
the fraction of Auger electrons produced with energies
greater than E~ by the He+ ions. The rate at which the
He+ ions fill the 1s spin o. holes and produce Auger elec-
trons with energies greater than E„ is r (E„,z) which is
obtained by integrating the rate r (Ez,z), over all ener-
gies greater than Ez, Eq. (107).

The quantity P (z) peaks at a distance z from the sur-
face. Because the He ions with spin I holes fill at a faster
rate than those with spin 1, it follows that z& &zt. This
difference in filling rates is due to the excess of spin J s
metal electrons over spin I s electrons outside the Ni sur-
face. The Auger spectrum I (E„,z) is a function of dis-

Z2

FIG. 6. Explanation for the dependence of the asymmetry,
A, on E&. For a given z, the shaded region indicates the
range of energies to which Ni Auger electrons are excited due to
He+ neutralization. The z dependence is due to the influence of
the image potential on the H+ 1s level. The probabilities for
neutralization of spin f and spin $ He 1s holes, P~ and P)„are
shown schematically. For large E„,E& =E„,neutralization

and Auger production of electrons with energies E& ~ E& can
1

take place only for z &z„where P~(z)=0. Thus, primarily
He+ 1s $ holes are filled and A (Ez ) is larger. For small Ez,
E& =E&, both P~, P~ are large in the region z )z2 and He+ 1s

holes with both spins are filled so that A ' is small.
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= —20%. (2) The experimental results are reproduced
by the theory with the use of two parameters, one that
specifies the magnitude of the ionization rate and one
that adjusts the scale of the calculated asymmetry. (3)
This fit is only possible with a realistic, energy-dependent
expression for the tunneling barrier seen by a metal elec-
tron and produced by the He ion. The ionization takes
place at an average distance of -4.5 A from the surface
for a metal electron at the Fermi energy and at smaller
distances for lower energy electrons. (4) A St to the ex-
perimental results can be obtained for various reasonable
models of the energy dependence of the Ni magnetization
and the Ni Auger spectrum without any substantial

changes in the previously quoted numbers. However, a
fit cannot be obtained for an energy-independent Ni mag-
netization density, nor for the case where the dominant
contribution to the Auger spectrum is from d states rath-
er than s-p states.
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