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We study a two-dimensional continuum model of a dilute gas of fermions at T =0 interacting via
a given two-body potential, with an aim to investigate superconductors with coherence length of the
order of the interparticle spacing [kr£,~ O(1)], a striking feature of the high-7, materials. We find
that a two-body bound state in vacuum is a necessary and sufficient condition for an s-wave pairing
instability. We also find that the existence of such a bound state in a higher-angular-momentum
(I >0) channel is not a necessary condition for an /-wave pairing instability. We further investigate
using a variational ansatz the evolution from a state with large overlapping Cooper pairs (kp§,>>1)
to one with Bose condensation of composite bosons (kz§, << 1). For the s-wave case an exact solu-
tion of the variational equations shows a smooth crossover from one regime to the other at 7 =0.
The p-wave solution has a weak singularity when the chemical potential goes through zero, which is
the bottom of the band. We show, quite generally, independent of the dimensionality and of model
details, that the gap—to-single-particle excitations is nodeless, even if the anisotropic pair wave
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function has nodes, when the coupling is strong enough that the chemical potential is negative.

I. INTRODUCTION

There has been renewed interest,! both theoretical and
experimental, in superconductivity with the discovery of
the high-transition-temperature (7,.) copper oxide super-
conductors. In spite of vigorous activity, there is still no
agreement on many of the basic issues: for example, the
appropriate microscopic Hamiltonian, the pairing mech-
anism, and the symmetry of the order parameter. On the
other hand, there are certain characteristics of the new
high-T, materials that are strikingly different from the
traditional superconductors and can, we believe, be fruit-
fully studied independently of these controversial issues.

One of the most striking characteristics of the high-T,
materials is their extremely short coherence length, or
pair size, §,. Rough estimates of the parameter kp§, for
the high-T,. materials lead to values of about 10-20 for
La, 4sSrg ;sCuQO,, approximately 5-10 for YBa,Cu;0,,
and possibly even smaller for the thallium compounds.
In contrast, the traditional Bardeen-Cooper-Schreiffer
(BCS) superconductors have kp£,~ 10°~10%. These rath-
er crude estimates for the new materials are not very sen-
sitive to whether we use the in-plane coherence lengths or
the cube root of the coherence volume for &, or use the
three-dimensional electronic density to determine k,, or
use formal valence arguments to estimate the electronic
density in the copper oxide planes.

We shall argue further that superconductors with a
pair size &, comparable to the average interparticle spac-
ing ki !, are in an interesting intermediate regime be-
tween the limit of large, overlapping Cooper pairs
(kp€y>>1) and that of Bose condensation of composite
bosons (kp&y<<1) consisting of tightly bound fermion
pairs. The Cooper pair limit is, of course, described by
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the standard BCS pairing theory.? Aspects of the “Bose
limit” have been studied in the specific context of strong
electron-phonon coupling, under the name of bipolaronic
superconductivity.> While both of the extreme limits are
well understood, the intermediate regime is only begin-
ning to be explored.

In this paper we shall study two-dimensional (2D) su-
perconductivity* at 7=0 in a simple continuum model of
a Fermi gas with a given two-body interaction. Motivat-
ed by the high-T. superconductors, we shall focus on two
questions: (1) the conditions for a pairing instability in
two dimensions, and (2) the evolution of the supercon-
ducting ground state from the Cooper pair to the Bose
condensation limit, with a view to understand the inter-
mediate regime where the pair size is of the order of the
interparticle spacing. Some of the results were first re-
ported in an earlier paper.’

In the remainder of this section we briefly summarize
our approach and our main results, and conclude with an
outline of the rest of the paper. The first question that we
address is what are the conditions under which a pairing
instability takes place in this 2D Fermi gas. We show
that, in the presence of hard-core repulsion, a nontrivial
threshold in the attraction must be crossed before the gas
undergoes an s-wave Cooper instability, and this coin-
cides with the threshold for the formation of a two-body
bound state in vacuum. In other words, a two-body
bound state in vacuum is a necessary and sufficient condi-
tion for the many-body instability. The necessary condi-
tion is in marked contrast with the three-dimensional re-
sult. We also find that the existence of such a bound state
in a higher-angular-momentum (/>0) channel is not a
necessary condition for an /-wave pairing instability.
These results, which were first obtained’ diagrammatical-
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ly, are derived here from a simpler analysis of the energy
dependence of the scattering phase shifts, starting with
the Cooper problem.

We next study the many-body ground state within a
variational approach to examine the evolution from a
state with large, overlapping Cooper pairs to a Bose con-
densate of composite bosons formed out of tightly bound
pairs of fermions, as the attraction in the pair potential is
increased. This crossover has been studied earlier by
many authors (see Refs. 6—11); our analysis is based on
the approach of Leggett.’

We make a variational pairing ansatz for the ground
state of the many-body system. There are two main
differences from the standard BCS procedure in the sub-
sequent calculation. First, as the attraction gets stronger
there is a significant rearrangement of the occupation
probability in momentum space, which then no longer
resembles a Fermi function with slight rounding. As a
result the chemical potential u is no longer fixed at €
and must®’ be determined self-consistently together with
A. Second, a renormalization of the nonlinear gap equa-
tion for A is required to handle a possible hard core in the
interaction.

We find that the resulting coupled integral equations
for the gap and chemical potential can be solved exactly
for the 2Ds-wave case to obtain a surprisingly simple and
transparent result.” We obtain a smooth crossover in the
ground state from the Cooper pair regime to the Bose
condensation limit, as a function of the attractive poten-
tial. Some of the results of this 2D crossover were also
obtained by Miyake’ in the context of dilute *He in *He
films.

The analysis of the evolution of non-—s-wave pairing
from the BCS regime to the Bose limit is of great interest
for a number of reasons. First, for the high-T, materials
there are some experiments which may be interpreted as
indicating non-s-state pairing;'>~!* however, the situa-
tion is highly controversial since there are other experi-
ments'> that suggest s-wave pairing, or at least, the ab-
sence of nodes in the gap. Second, many analyses'® of mi-
croscopic models for the high-T, systems, e.g., the Hub-
bard model, seem to favor d-wave pairing. And finally,
independent of its possible relevance to the high-T, sys-
tems, the question is of interest in its own right, as em-
phasized by Leggett’ and by Anderson.!” Other than a
preliminary 3D calculation by McClure,? the crossover
analysis for anisotropic superconductors has not been
done to the best of the authors’ knowledge. The two-
dimensional equations are much simpler than in 3D, and
therefore offer the possibility of making more progress.

The analysis of pairing in higher-angular-momentum
states is considerably more complicated than the s-wave
case due to the appearance of apparent ultraviolet diver-
gences in the integral equations for the gap function A
and the chemical potential u. For the p-wave case we
have solved this problem by regulating these divergences
using corresponding results from the two-body problem
in vacuum. The results for the superconducting ground
state provide a continuous interpolation between the ex-
pected answers in the Cooper pair and the Bose limits.
The ground-state solution, though continuous, has a

weak singularity as the chemical potential goes through
zero.

An interesting consequence of the analysis given later,
that does not depend upon either two dimensionality or
on the specific model under consideration, is that E,,,
the gap to single-particle excitations, is not the same as
the order parameter or ‘“gap function” A, provided the
attraction is strong enough to cause the chemical poten-
tial to be reduced below the bottom of the band (u <0).
For non-s-wave superconductors, especially those with
nodes in their pair wave functions, this has important
consequences: Quite generally, we find that the gap to
single-particle excitations is nodeless, for negative values
of the chemical potential, even when the anisotropic pair
wave function has nodes. We give an explicit example in
which the gap and the order parameter do not even have
the same symmetry once the coupling is sufficiently
strong. Thus, from the point of view of experiments that
measure the gap-to-single-particle excitations, strongly
coupled superconductors with anisotropic pairs will ap-
pear to be s wave.

The rest of this paper is organized as follows. In Sec.
II we introduce our model, a dilute 2D Fermi gas, and
describe the two-body T matrix and phase shifts which
will be used in the rest of the paper. (Details of 2D
scattering theory are discussed in Appendix A). In Sec.
I1I we investigate the connection between the onset of the
Cooper instability and the existence of bound states in the
two-body problem. In Sec. III we use a pairing ansatz for
the many-body ground state and derive a renormalized
gap equation. We study s-wave pairing in Sec. V, and
show that the gap and chemical potential equations can
be solved exactly to obtain a smooth crossover from a
Cooper paired state to one with tightly bound pairs. In
Sec. VI we turn to the case of p-wave pairing. The gap
and chemical potential equations have apparent ultravio-
let divergences that are regularized by appealing to the
two-body problem. (The details of the rather lengthy
algebra associated with this regularization are relegated
to Appendixes B and C). We discuss the evolution of the
anisotropic pairs from the Cooper to the Bose limit. In
Sec. VII we discuss a general feature of strong coupling,
which makes it essential to distinguish between the
gap—to-single-particle excitations and the order parame-
ter, or pair wave function. We list some open problems
in Sec. VIII, and summarize our conclusions in Sec. IX.

II. PRELIMINARIES

We will study a 2D Fermi gas of N particles in a unit
volume, each of mass m, with Fermi energy
ep=mHN/m. As stated in the Introduction, the fer-
mions interact via a given two-body static potential V' (r)
which, for example, may be strongly repulsive at short
distances in addition to having a longer-range attractive
part; see Fig. 1. Note that we are not asking for the mi-
croscopic origin of this attraction but are simply assum-
ing that such an nonretarded ‘effective” potential ex-
ists.!® We restrict our attention to a dilute gas, where the
average interparticle spacing k5 ' is much larger than R,
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FIG. 1. Example of a two-body potential ¥ (r) with a repul-
sive core and an attractive tail of finite range R. As explained in
the text, our results will be expressed in terms of quantities that
are independent of the detailed shape of the potential.

the range of attraction in V(r). The diluteness condition
kpR <<1 will allow us to obtain analytical results that
are independent of the detailed shape of the potential V(r).
The two-body potential will enter the final results only
through a few parameters that characterize the low-
energy scattering phase shifts.

Since we are interested in a V(r) which may have
strong repulsion at short distances, its Fourier transform
Vi is not necessarily well defined. To avoid problems
due to the hard core we use, as usual, the two-body T ma-
trix which is given by the sum of the Born series:

T(E)=V+VSWE)T(E) . (2.1

Even in the absence of a hard core, the T matrix and the
scattering phase shifts (to be introduced later) provide the
most economical description of the two-body interaction
in the low-energy limit of a dilute gas.

In the equation above 9, is the free Green function for
the two-body problem

(go(zE))kk'z[z(E_Ek+in)]_]8k’k' N (2.2)

where E is the energy variable, e, =#°k?/2m and —0".
The unusual factor of 2 is introduced for later conveni-
ence. With this convention the energy variable 2E is re-
lated to the relative momentum q by 2E =#%q2/2m,,
where my=m /2 is the reduced mass, so that
E=#%%q?/2m. We thus never need to use the reduced
mass m in the subsequent analysis.

We will find it useful to expand the various matrix ele-
ments in terms of angular momentum eigenfunctions.
We start with the expansion of a plane wave in two di-
mensions in a Fourier series:

expik-r)= 3 i'J,(kr)exp(ild) , (2.3)

I=— o

where ¢ =cos " '(k?) and J,(z) is a Bessel function of or-
der I. Using this we obtain

Ve =(k|VIk')= 3 explil)ViL. 2.4)

I=—o

where 0=cos™~ 1(’IE-’IE') and
V,‘(Q,=2vrf0wdr I (ke )T (K PV (r) (2.5)

A similar expansion of the T-matrix T,  may be used to
write the components of (2.1) as

T.CE)=V{.+ [ %‘i-qvig’( So(2E)),, TLQE) . 2.6

We conclude this section by writing down explicit re-
sults for the s-wave (/=0) and p-wave (I=1) cases,
which will be used in the following sections. Details of
2D scattering theory may be found in Ref. 19 and in Ap-
pendix A.

In 2D the low-energy s-wave T-matrix, T ;.(E)
=71o(E), expressed in terms of the s-wave scattering
phase shift, is given by

=(m /4%*) —cotdy(E)+i] . 2.7)
T()(E)

Further, it can be shown that the low-energy phase shift
in 2D is of the form

cotSO(E)Ziln(E/Ea)+0(E/ER) , (2.8)

where ex =(#’/2mR?), and E, is a parameter with the
dimensions of energy whose physical significance is dis-
cussed later. Note the low-energy logarithmic divergence
in the T matrix, which is related to the discontinuity in
the 2D density of states at E =0.

In Fig. 2 we sketch the qualitative behavior of the pa-
rameter E, as a function of the attractive potential, e.g.,
the well depth V), in a “hard core plus square well” po-
tential. Beyond the threshold Vj, the T matrix has a pole
on the negative real axis at E= —E,, indicating a two-
body bound state. Thus E, is the binding energy of that
bound state. In Fig. 3 we sketch the low-energy phase
shift 84(E).

We now turn to the p-wave case. From (2.5) we find
that Vi)) ~kf(k’) for kR <<1 and arbitrary k’, and con-
sequently [using (2.6)] the low-energy T matrix has the
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FIG. 2. Schematic variation of the parameter E, characteriz-
ing the low-energy s-wave phase shift in 2D as a function of the
attraction. E, is measured in units of g =#*/2mR? and V,, is,
for example, the well depth in a “hard-core plus square-well”
potential. Vp corresponds to the threshold for the formation of
a two-body bound state; for a purely attractive potential the re-
gion to the left of ¥ does not exist since ¥ =0.
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FIG. 3. Schematic variation of the low-energy s-wave scatter-
ing phase shift in 2D as function of energy. The lower curve
corresponds to a potential whose attraction lies between 0 and
Vg in Fig. 2, so that no bound state exists. The upper curve cor-
responds to an attraction large enough to ensure a bound state.
Notice that §y(2¢;) > 0 implies that §,(0) > 0.

form
T\V(E)~kk'r(E) for kR <<1, k'R<<1. (2.9

It can be shown that 7,(E) is related to the p-wave phase
shift via

2
1 1 |m
~— |— | E[—cotd(E)+i] . 2.10
B2 |# [—cot§,(E)+i] ( )
Finally, the low-energy phase shift is given by
E, 1 E
COtSl(E)=?+;ln -E:‘ +O(E /eg) , (2.11)

where E, and E, have unit of energy, and are determined
by the two-body interaction. Note that the leading diver-
gence at low energies is a simple pole.

III. PAIRING INSTABILITY

In this section we study the condition for the onset of a
pairing instability in the many-body system, and its con-
nection with the existence of bound states in vacuum.
We have earlier’ addressed this question by calculating
the two-particle propagator in the particle-particle chan-
nel and looking for the appearance of a pole in the
upper-half plane. Here we shall take a simpler approach
following the original Cooper? calculation. Although this
approach has well-known deficiencies (which we discuss
later), it provides a more intuitive understanding of the
results of Ref. 5.

Consider then the problem of two fermions, interacting
with the given pair potential V(r), above the surface of
free Fermi sea. The Fermi sea affects the pair by forbid-
ding the occupancy of the states below kg. The
Schrddinger equation for the pair wave function ¥ (in

the center-of-mass frame) is
#k?
m

Ut Y Viete=(AE +2ep)Yy ,

k'<kp

(3.1

with ¥, =0 for k <kp.
Introducing the projection operator Q=3 |k ) {(k|,

and using (2.2), we may rewrite (3.1) as

S0 'Qv=0VQy,

where we have suppressed the momentum labels and
summations for simplicity. We may formally eliminate
the potential ¥ in (3.2), in favor of the T matrix using
(2.1) rewritten as ¥ =(1+T8,) " 'T. We then sum the re-
sulting equation over k and cancel 3, Q¥ from both
sides. Finally using the low-energy (kR <<1, k'R <<1)

s-wave T-matrix T3, ~7,, the result may be simplified to

1 1
T()(ZE) 2k<2kp Ek_E ’

(3.2)

(3.3)

where 2E =AE +2¢p.

We are interested in the onset of a pairing instability as
the attractive part of V(r) is increased. This corresponds
to a solution AE <0 of (3.3) such that |AE|/ep <<1. In
the 2D s-wave case, using the low-energy 7-matrix (2.7)
and (2.8), we can solve (3.3) to obtain a solution
AE =—E, satisfying these conditions only if E, <<ep
<<eg (where the last inequality follows from the dilute-
ness condition). Now it is clear from (2.7) and (2.8) that
whenever E, <<gj there is a pole in the two-body T ma-
trix at E,, corresponding to a bound state with binding
energy E,. Thus we obtain the result® that the existence
of a two-body bound state in vacuum is a necessary condi-
tion for a pairing instability. The (more obvious)
sufficiency condition wil emerge from the variational cal-
culation in Sec. V.

A few remarks are in order. First, this result is obvi-
ous for a potential which is everywhere attractive in 2D,
since then a two-body bound state exists®® for an arbi-
trarily weak attraction. However, for a potential with
strong repulsion at short distances [or, more generally,
when [d?’r V(r) does not converge] a threshold must be
crossed before a two-body bound state will exist even in
2D, and our result is nontrivial. Second, our result is in
striking contrast to the three dimensional (3D) case. In
3D the low-energy s-wave phase shift is given by

q cotdy(q)=—1/a,+O0(qR )* ,

where qa; is the scattering length. A pairing instability re-
quires only that @, <0 and not the existence of a two-
body bound state, the threshold for which is a;, — — .
We now make a few remarks on the Cooper calculation
before returning to a further discussion of the above re-
sult. Note that the “binding energy” |AE| in the pres-
ence of the Fermi sea is found to coincide with the bind-
ing energy in vacuum. However, we will find below (in
Sec. V) that the “gap” (or the growth rate of the two par-
ticle propagator; see Ref. 5) is given by A=1/2¢,E,,
which differs from |AE|=E, by a factor of 2 in the ex-
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ponent; in particular |AE|<<A. The reason for this
difference is the simple way in which the Fermi sphere is
put in by hand in the Cooper calculation. A similar fac-
tor of 2 “error” is well known in three dimensions. For
an arbitrary static pair potential in 3D the solution of the
Cooper problem (3.3) is

|AE|=8epe ~exp(—2m/kgla,|)

provided that a, <0 and (kza,)”'— — . On the other
hand, the gap for the many-body problem is larger by a
factor of 2 in the exponent, and is given by’

A=8epe "2exp(—7/kgla,]) .

Returning to our result connecting pairing and bind-
ing, another way to understand it is the following. The
standard relationship between the 7 matrix and the
scattering phase shift [Eq. (2.7) in 2D, or its analogue in
3D] can be used to show that the condition for obtaining
a solution to the Cooper problem (3.3) with AE <0 is that
the phase shift at the Fermi surface be attractive:
8p(2e) > 0. On the other hand, the condition for a two-
body bound state in vacuum is 8§4,(0)>0; in fact, from
Levinson’s theorem §,(0)(modm) counts the number of
bound states.

The s-wave phase shifts as a function of energy are cal-
culated as outlined in Appendix A. From Figs. 2 and 3
for the 2D case, it is easy to see that §4(2¢)> 0 (Cooper
instability) implies 6,(0)>0 (a two-body bound state).
In contrast, the 3D case (see Figs. 4 and 5) can have
8y(2ex) > 0 without necessarily having §,(0) > 0, when the
scattering length a; is negative.

It is perhaps worthwhile to emphasize again the condi-
tions under which the “necessary” result was obtained.
First, it is a strictly two-dimensional result due to the log-
arithmic singularity in the 2D T matrix, or the corre-
sponding nonzero density of states at E=0". Second, it
requires the same two-body potential for the two-body
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FIG. 4. Schematic variation of the s-wave scattering length
a; as a function of attraction in three dimensions. For a purely
repulsive potential (¥, =0), a; > 0 and decreases with increasing
attraction. For attraction greater than V., a; is negative and
diverages at Vjp, the threshold for a bound state. For V> Vp,
the (positive) a; is the spatial extent of that state.

8o(k)
B d=3
T2 = = = = — S ——
(0] f—+ k
2w/R
T/ — = — == -

FIG. 5. Schematic variation of the three-dimensional low-
energy s-wave scattering phase shift as function of energy. The
bottom curve corresponds to 0< ¥V, <V, i.e., an essentially
repulsive interaction, for which there is neither a two-body
bound state nor a Cooper instability. The middle curve corre-
sponds to a potential with a, <0 (see Fig. 4), for which the
many-body system undergoes a Cooper instability even though
the two-body problem in vacuum does not have a bound state.
Finally the top curve represents a deep attractive potential for
which there is both a bound state and a pairing instability.

and many-body problems, i.e., the “effective potential”
V(r) must be independent of the density of the system.
Third, one can construct counterexamples that violate
the diluteness condition and thereby have phase shifts at
zero and at 2e whose signs are not related.

Finally, even in two dimensions this necessary connec-
tion does not hold for higher-angular-momentum (/50)
channels. Attraction at the Fermi level §,(2e,)>0,
which can be shown to be the condition for a Cooper in-
stability in the / channel, does not necessarily imply
5,(0)>0. From Appendix A, one can see that the low-
energy expansion for cotd,(E) has a leading singularity
A,;/E' for 1>0. The sign of §,(0) then depends upon
that of A4,, and is not necessarily fixed by the sign of
6,(2e). In Sec. VI we shall study the p-wave case in de-
tail, and show explicitly the existence of p-state Cooper
pairing in the absence of a corresponding bound state in
vacuum.

IV. PAIRING ANSATZ: GAP AND CHEMICAL
POTENTIAL EQUATIONS

We now turn to an analysis of the many-body ground
state. Within a model of the sort that we are considering,
one can imagine increasing the attractive part of the po-
tential to the point that the two-body solution looks like a
tightly bound pair, or “composite boson.”” We will show
later that the many-body ground state in this limit is a
Bose condensate of essentially noninteracting composite
bosons. The two-dimensional dilute-gas case is especially
interesting because the coupled integral equations result-
ing from the variational analysis given later can be solved
exactly over the entire range from Cooper pairing to the
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Bose limit.

Before proceding with the analysis, it may be useful to
ask what kind of instabilities might be expected as the at-
traction in the two-body potential is increased. If a two-
body bound state exists, might it not be possible to have a
four-body bound state, or, for that matter, a gas-liquid
transition. We know of no general results on conditions
that the two-body potential ¥V (r) must satisfy in order
that these other possibilities not occur. For the problem
of phase separation, one must necessarily leave the
dilute-gas regime, and then it is unlikely that general re-
sults, independent of the detailed shape of the potential,
can be obtained; however, some results are known?' for
specific forms of the interaction. For the remainder of
this paper we shall simply assume that the only instability
taking place in the system is pairing.

Following BCS we make a pairing ansatz for the
many-body ground-state wave function:

(1, ..., N)=A[6(1,2)$(3,4) - S(N—1,N)], (4.1)

where A is an antisymmetrization operator. While this
form for the ground-state wave function clearly makes
explicit the macroscopic occupation of the pair state ¢, it
is not very useful for the purpose of calculations. To
determine the optimal pair wave function ¢ variationally,
we must use the BCS trick of working with a particle-
nonconserving wave function.

The subsequent analysis proceeds along the standard
BCS route (see, e.g., Ref. 2) with two exceptions. First,
the potential ¥V, may be ill defined, as discussed earlier,
and thus it has to be replaced by a low-energy pseudopo-
tential in the gap equation; the details of this renormal-
ization will be given later. Second, and more important,
as emphasized by Leggett,” the chemical potential u for
the fermions is not, in general, fixed at the Fermi energy,
and must be determined self-consistently along with the
gap function A,. We will find that the occupation proba-
bility in momentum space

, (4.2)

E =[(e—pl+4,%)2, 4.3)
will no longer resemble a Fermi function slightly rounded
near €p, as the two-body attraction is increased. The
chemical potential is then determined by demanding that

23 n, =N, 4.4)
k

where N is the total number of particles, taking the
volume of the system to be unity, and the 2 is for spin.
The gap function A; is determined, as usual, from

A, = % s (4.5)
k kZ kk' 5 E, .
A more useful gap equation would be in terms of the T
matrix, since ¥V}, may not even be well defined, possibly
due to a strongly repulsive core. To this end we use a

simple variant of the pseudopotential technique used by
Anderson and Morel? for He. Since, in a weak-coupling
problem, only fermions near the Fermi surface are
significantly affected by pairing, they calculated an
effective kernel for a thin shell around €, integrating out
the contributions outside the shell. As indicated earlier,
in our problem all the fermions are affected as the attrac-
tion grows stronger, and thus we use a renormalization
procedure in which we integrate out the high momentum
contributions in (4.5) and obtain an effective low-energy
kernel in place of V..

We begin by introducing a momentum cutoff
A>O(R "), where R is the range of V(r); at the end, we
will show that the results are independent of the cutoff
and we may take A— «. For k> A, we may approxi-
mate E, ~¢,, provided u and |A,| are sufficiently small,
as we will find at the end of the calculation. This allows
the gap equation to be written as

M= Vg~ Vaye
' kk’ kk’ ’
< 2E, < 2¢p

(4.6)

where we use the superscripts < (> ) to restrict the sum-
mation over k <A (k> A). The second term is the linear
part of the integral equation, which can then be iterated
as usual. This leads to
A=—3 <T e 4.7)
k < kk 2Ek’ ’ .

with the kernel I defined by

1

rkk:= ka' —2 > kau?rknk' . (48)
g K

Introducing projection operators P~ and P < defined
by

P>=3>k){k|, P<=1-P>,
k

4.9)

and using (2.2) we can rewrite (4.8) in a more compact
notation as

F=V+VS(0P>T . (4.10)

We may now eliminate the potential V' between the
definition of the T matrix and (4.10) thus obtaining

F=T(E)—T(E)Sy(E)—8,0)P>]T . (4.11)

The second term can be further simplified by recognizing
that (k|[ $o(E)— G,(0)]|k ), with E =#%q?*/2m, is at most
of O(g?R?*/g, ) for g = A, and thus may be ignored in the

low-energy limit gR << 1. Thus (4.11) reduces to
I'+T(E)—T(E)S(E)P<T , (4.12)

which when written in terms of the angular momentum
components of the kernel I" yields

Tl =Tig(E)
—f<A%q7:qT’(“17)(E)(gO(E))qu;lk)'(E)- (4.13)
q9

Finally, let us summarize the results of the renormal-
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ization of the gap equation. Given the two-body interac-
tion in terms of its T matrix, we can use (4.12), or (4.13),
to obtain the pseudopotential I', which in turn will deter-
mine the gap function A, from the “renormalized” gap
equation (4.7).

V. s-WAVE PAIRING

First consider the case of s-wave pairing: the two fer-
mions in a pair are in a spin singlet and the gap function
A, has no angular dependence. We thus keep only the
I =0 piece of the equations derived in the previous sec-
tions. Using the low-energy form of the s-wave T matrix,
TQ(2E)~7y2E), in (4.13) we find that the equation is
separable and may be solved to obtain

-1

dg g
[0 ~72E) [1+7,2E) [* 24—
@rmo(2B) |14 7(2B) [ 151 2AE—¢,+in)

(5.1)

for kR << 1 and k'R << 1. Note that the E dependence of
the right-hand side of (5.1) is illusory, and I is, in fact, in-
dependent of E, as it must be; thus our final results will
also turn out to be independent of the energy parameter
E.

Using the kernel (5.1) in the / =0 part of the gap equa-
tion (4.7), we find that the gap function is constant, i.e.,
Ay=A, in the low-energy limit kR <<1. Further, A is
determined by

R e
1

- . 52)
[(ex —p P +A2)2

m ‘ro( 2E)

where we have set the upper limit of integration
e, =7%*A%?/2m — w, since the integral is manifestly finite.
The integral above is elementary, and using the expres-
sion (2.7) for the T matrix in terms of the low-energy
scattering phase shift (2.8) on the left-hand side of (5.2),
we find the result?

(W2 + A2 —u=E, . (5.3)

The second equation, which will be used to determine
A and p self-consistently, is the number equation [see
(4.2) and (4.4)]

fmdsk 1— k1 =2¢p ,
0 [(Ek _,LL)2+A2]1/2

(5.4)

where the Fermi energy is related via meg/m#* =N to

the number density in two dimensions. This gives
W+ AH 2+ p=2e, , (5.5

which, together with (5.3), leads to the final results. The
gap function A, =~A for kR <<1 is given by
A=(2e-E,)"?, (5.6)

and the chemical potential for the fermions is

(5.7)

Notice that the interaction V(r) enters the many-body
solution only through E,, the binding energy of the two-
body bound state in vacuum. We should note that the
2D dilute Fermi gas is very special in that the coupled in-
tegral equations for A and u could be solved exactly. The
diluteness condition effectively results in separable in-
tegral equations, and the two dimensionality, with its
constant density of states, led to integrals which could be
computed analytically.
It is also useful to calculate the pair size £, defined by

2 AR
0o > (58)
(Wil )
where the “pair wave function”?® is given by
¥, =Ay/2E,. The matrix elements in (5.8) can be explic-
itly evaluated (using r>— V3) to obtain
~1
_ 1 E +2A _1‘&
+ +tan 5.9
§°4mAAy+A22aA 59

To understand the physical significance of these re-
markably simple results we look at two extreme limits of
the solutions. For very weak attraction just beyond the
threshold for instability, the two-particle binding energy
is extremely small, i.e., E, <<&p, and we find that we re-
cover the BCS results with large, overlapping Cooper
pairs. The chemical potential u=¢, and the gap func-
tion A <<e has the usual essential singularity in the cou-
pling, although this is not apparent from the form of
(5.6). This essential singularity is hidden inside the two-
body binding energy E,; as shown in Appendix A, one
can show quite generally that in two dimensions, E, is €5
times an exponentially small term,? just beyond the
threshold. Finally, from (5.9) we find that {;~7%vg /A so
that §okp~¢ep/A>>1. Thus the pair size £, is much
larger than the interparticle spacing.

In the opposite limit of very strong attraction, or of
very low density, we have a deep two-body bound state
E, >>¢p, and we find that we are in a regime in which we
have Bose condensation of essentially noninteracting
composite bosons or ‘“diatomic molecules”. The chemi-
cal potential u~—1E,, which is one half the energy
to dissociate a tightly bound pair. The pair size &
~#*/mE, is much smaller than the interparticle spacing,
since £okyr <<1. If the preceding calculation is viewed as
a mean-field theory, then it is somewhat surprising that it
should have given sensible results in the limit of tightly
bound pairs. However, viewed as a variational calcula-
tion it is easy to see that the ansatz (4.1) can describe a
Bose condensed state of composite bosons in a dilute sys-
tem.

In between the two extreme limits, i.e., for arbitrary
values of E, /e, the pairing ansatz (4.1) has variational
significance. We postpone discussion of the limitations of
such a trial wave function to Sec. VIII. The condensa-
tion energy can be calculated in the usual way to obtain

AE= 6y~ 6poe=—NE, (5.10)
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for all values of E, /€. It is amusing to note that this is
just the energy of N /2 noninteracting pairs. Alternative-
ly, we may use the 2D density of states per spin
N(0)=m /2m#, and (5.6), to rewrite the aforementioned
result as A6 =—N(0)A?/2. This is the familiar BCS re-
sult which is, in fact, valid for all E, /e, not just in the
BCS limit. Finally, we note in passing that the difference
in the thermodynamic potential (2=&—puN, at T =0)
between the normal and paired states is exactly zero:
AQ=0.

Our results for the many-body ground state suggest
that there is a smooth crossover from the BCS limit to
Bose condensation, since there is no singularity in the
solutions (5.6) and (5.7) of the gap equation and the num-
ber equation as a function of the parameter E, /ey that
interpolates between these two limits. However, there is
a weak singularity if one looks at the excited states, as we
show next.

The gap-to-single-particle excitations are given by
the minimum of the Bogoliubov quasiparticle energy

E g =min [(g, —pu)*+ A, 172 (5.11)

€, 20

So long as p is positive, the minimum occurs at g, =u
and the energy gap coincides with the gap parameter A;
see Fig. 6(a). However, when the attraction is sufficiently
strong to cause the chemical potential to go below the
bottom of the band (g, =0) the minimum in (5.11) is at
€, =0 and the energy gap is no longer A; see Fig. 6(b).
(The latter distinction will turn out to be especially im-
portant in the non-s-wave case treated in the following
section). The gap-to-single-particle excitations for the
s-wave case are thus found to be

A for u>0,
E = ¢

gp | (u?+ A2 for u<O0, (5-12)

and has a weak singularity at u=0, or equivalently at
E,/ex=2. The point u=0 could be argued to mark the
transition between the BCS-type regime (u>0) and the
Bose condensed regime (u <0).

VI. p-WAVE PAIRING

It is interesting to study the evolution from Cooper
pairing to Bose condensation for anisotropic pairing for
the reasons discussed in the Introduction. We now con-
sider the simplest case of anisotropic pairing, where the
two fermions in the pair are in a spin triplet state, and the
gap function has the angular dependence A, ~e’®. (The
analysis for a sinf angular dependence is similar, but
more involved?9).

We do not address the question of the relative stability
of various pairing solutions. For a spin-independent po-
tential ¥V (r), the lowest-energy solution in the tightly

bound (Bose) limit is necessarily the s state one. If V(r)
J

d 3
M. ~kk'r(2E, |1+7(2E,) [ 24— 9
kk T(2E 7y o)fo 21 2Eq—¢, +in)

FIG. 6. The quasiparticle energy E; plotted as a function of
€. In the top figure (a) the chemical potential u is positive and
the minimum of E, occurs at g, =pu, and the energy gap
E,.,=A, the “gap parameter”. The lower figure (b) is for 4 <0,
i.e., below the bottom of the band. The minimum now occurs at
the bottom of the band g, =0, and E,,;, is no longer the same as
A.

has a hard core, for instance, then in the BCS limit the
lowest-energy solution is non s-wave. Thus there will
likely be a first-order phase transition (crossing of free en-
ergy surfaces) between an anisotropic and an s-state solu-
tion as the attraction is increased. On the other hand, for
a spin-dependent potential it is possible to have aniso-
tropic pairing all the way into the Bose regime. In this
section we shall simply confine ourselves to the /=1 or
p-wave channel.

The analysis of the p-wave equations is more compli-
cated than the s-wave case due to the appearance of ap-
parent ultraviolet divergences in the gap and number
equations. We divide this section into three parts. First,
we describe the regularization of the gap equation by us-
ing our knowledge of the two-body Schrodinger equation,
to which the nonlinear gap equation reduces in the
short-distance limit. Second, we regularize the diver-
gence in the number equation using a strategy analogous
to the one in the first part. Finally, we solve the mani-
festly finite gap and number equations, and discuss the
evolution of the ground-state solution from Cooper pair-
ing to Bose condensation.

A. Gap equation

We use the /=1 (p-wave) components of the equations
derived in Secs. IT and IV. Using the T matrix of (2.9) in
(4.13), we obtain the low-energy (kR <<1, k'R <<1) ker-
nel of the gap equation

(6.1)

We make the usual approximation (following Anderson and Morel??) that the solution of the nonlinear gap equation has
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the same angular behavior as that of its kernel. We then find from the / =1 piece of the gap equation (4.7) that the gap

function is of the form

Ay=kAe’® for kR <<1 . (6.2)
The coefficient A, of the gap function, or equivalently, the more convenient variable G defined by
G=mA}/#, (6.3)
is determined by the p-wave gap equation
2
# 1 €A 1 1
27 | — = dege — — (6.4)
m | 7,(2E) fo Rl et —E—in (g, —p)*+2Ge, 112

where the cutoff €, =#?A%/2m.

It is easy to see that the gap equation has a logarithmic
ultraviolet divergence which comes from using the low-
energy form of the kernel and the gap function, and sim-
ply taking the cutoff to infinity. The gap function (6.2)
clearly will not rise linearly with k for arbitrarily large
momentum, and thus the divergence encountered earlier
is unphysical, arising from the improper use of an ap-
proximation outside its domain of validity. (Fortunately
no such problems were encountered in the s-wave
analysis, where just naively taking the cutoff to infinity
yielded finite, cutoff independent answers.)

One way of regulating this divergence is to notice that
the divergent term, (u—G —E)lng,, has a coefficient
which involves an arbitrary parameter E, the argument of
the free Green’s function and the T matrix (restricted
only by the low energy condition E <<gg). Thus by a
proper choice of its value, namely

E=E,=p—G , 6.5)

we are able to eliminate the logarithmic divergence and
obtain a finite answer from (6.4) in the limit €, — co.
While this trick clearly works, it would be satisfying to
know why. Some insight into this may be obtained by
recognizing that the nonlinear gap equation (4.5) rewrit-
ten as

2E. 9 =23 Vet ¥ =4y /2E; (6.6)
o

reduces, in the short-distance limit (kR >>1), to the

linear, two-body Schrodinger equation

2ex —ENW =3 Vit - 6.7)
m

Relating the “‘eigenvalue” E’ of this Schrodinger equa-

tion to the p-wave gap equation parameters, we find

E'=E,, which is the same result as (6.5).

We introduce dimensionless variables G =G /ef,
A=u/ep, etc., and express the left-hand side of (6.4) in
terms of the p-wave phase shift for the two-body problem
using (2.10). With the choice (6.5) the regularized gap
equation can be written as

ll+5—G+(@E—G6)In(|g|—5+G)—(—G)n(a—G)
=—m(fi—G)cotd,(2E,) .  (6.8)

f

Note the appearance of |fi| in the equation above which
signals a singularity at £ =0 (see below).

B. Number equation

The second equation needed to determine the gap and
the chemical potential self-consistently is the number
equation

f dkk |, ExTH
2 [(e, —p)*+2Ge, 112

=N, (6.9)

where N=me/m#* is the number density of fermions.
The above integral cutoff at an energy €,, and expressed
in dimensionless variables, is given by

m
2

{lEl+a+G—G In[(|5| —E+G)/2]+G Int,} .

(6.10)

We thus find a logarithmic divergence if we simply take
the cutoff to infinity, which again arises due to the use of
the low-energy form of the gap function in (6.9) for large
A.

The regularization of the divergence that we previously
encountered was related to the fact that in the short-
distance limit the gap equation reduced to a two-body
Schrodinger equation. Similarly, the number equation of
the many-body problem is analogous to the wave-
function normalization integral in the two-body problem.
Thus the normalization should have the same short-
distance behavior as the integral in the number equation.
We will use this analogy to regularize the divergence in
(6.9), following Ref. 8.

Now the wave function I'/’k0> of the two-body problem

is, in general, not normalizable. For positive-energy solu-
tions (scattering states), this problem can be avoided by
formally giving the energy a small imaginary part. For
negative energies also the normalization is well defined
only for certain discrete values of the energy (bound
states), and not for arbitrary E,<0. However, let us
define the ‘“scattered part” | xko) of the wave function,

where

) = ko) + i)
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with
e, =3 (kN (So(2Eo) T, (2Eo) - (6.11)
k
The normalization integral for y given by
N=3 Ix|*= [drlx(r)?. (6.12)

k

can be shown to be well defined (see Appendixes B and
o).

Our strategy will now be to subtract N from either side
of (6.9), thus obtaining

3 i -+ 3 .k
K<A [(g, —p)*+2Ge, 1" P/t

=N—2xA [ drrlx(r)|?,

(6.13)

where A is, for the moment, an arbitrary free parameter
(with dimensions of L ~%. The aim is to choose A such
that the left-hand side above has a finite limit as the
cutoff A— 0.

We first compute (in Appendix B) the normalization in
momentum space, making the usual low-energy approxi-
mation for the T matrix, and find that it has, as expected,
the same logarithmic singularity as the number equation.
The ultraviolet singular part of 3, . x |x,|? is given by
2

L k2| 7\(2E,)|InE,,

m
— | = .14
e (6.14)
for both positive and negative E, [see Eqgs. (B4) and (BS5)].
Using (6.10) and (6.14), we can now choose
2 ~

# G

A= =1 A 2
m E0|T1(2E0)|

(6.15)

to ensure that a finite, cutoff independent result is ob-
tained on the left-hand side of (6.13) in the limit €, — .

On the right-hand side of (6.13), we use a manifestly
finite result for WV calculated in position space [see Ap-
pendix C; especially Egs. (C19) and (C23)]. Although the
expressions for N are naturally different for E,>0 and
E, <0, we find, as expected the same regularized number
equation to be valid for both signs of E,. After some
straightforward algebra we find the regularized number
equation to be

gzl +5—G In[(|g| —g+G)/2]+G In(a—G)
=2+ﬂ'6 cots,(2E0)+E0’—‘.i.'—cot81(2Eo) ’

(6.16)
where E,=pn—G.

C. Solution of p-wave equations

We will now consider the solution of the many-body
gap equation (6.8) and the number equation (6.16) as
functions of the scattering phase shift which describes the
two-body interaction. As shown earlier [see (2.11)],

cotd,(2Ey)=E, /2E,+(1/m)In(2E/E,)+O(E, /e ) ,

where E,=E, /e, and E,=E, /ey are parameters that
characterize the low-energy (kyR <<1)p-wave phase
shift. Using this in (6.8) and (6.16), we obtain the two
equations that determine G and fi:

lzl+a—G+(a—G)n(|g| —g+G)

=(E—G)InE,—nE,,, (6.17

and

lEl+5—G—G In(|g|—g+G)=2—G IE, . (6.18)
A numerical solution of these equations will be given
later, after we obtain analytical results in various limits
and analyze the singularties of the solution.

First, consider the case of a very weakly attractive in-
teraction. It is easy to show that this corresponds to
E.<<1 and E, >>1. In this situation there is no p-wave
bound state in the two-body problem in vacuum, as there
is a finite threshold for the appearance of such a state.
We find a self-consistent solution of (6.17) and (6.18) with
G <<1 and fi=~1. In terms of our original variables [us-
ing (6.2) and (6.3)], we find the chemical potential and
coefficient of the gap function to be

2 1/2
#E, ]
exp
m

This is clearly the BCS limit in which the pair size can be
shown to be much larger than the interparticle spacing.

Next, consider the opposite limit where the two-body
attraction is sufficiently strong to give a p-wave bound
state whch is deep on the scale of €. (The threshold for
the existence of a bound state is the vanishing of E,, so
that we must have E, <0). We expect that in this ex-
treme Bose limit the chemical potential is negative (u <0)
and, further, that |fi| >>G and || >>1. From (6.18) and
(6.17) we then find that u and G are given by

2|ulin(2|ul /E,) =~ — 7| E, |

ﬂEb
4ep

p=~gp, and A=~ (6.19)

(6.20)

and

2

GZ———_—I'FIH(EC/Z[/.LD . (6.21)

In Appendix A we show that the binding energy €, of a
p-wave bound state is given by [see Eq. (A8)]

€ In(e,/E.)=—ml|E,]| .

Thus, in the extreme Bose limit, the chemical potential of
the fermions is exactly one-half the pair binding energy:

B="781, (6.22)
as might have been expected. The many-body solution
thus describes the Bose condensed state of composite bo-
sons consisting of tightly bound pairs in this limit.

In between these two extreme limits, let us look for
possible singularities of the solutions of (6.17) and (6.18);
see Fig. 7. First notice that the many-body equations do
not have any singularity at E, =0, which is the threshold
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"BCS Limit"
Eb/GF
E /€
o _ =c/cF
. =0
—4/1rr—_—'———————” ———————— Y-
"Bose Limit"

FIG. 7. “Phase diagram” for 2D p-wave exp(if) pairing,
where E, and E, are the two parameters which characterize the
low-energy p-wave phase shift. The upper left-hand corner cor-
responds to the extreme BCS limit with large overlapping pairs,
p=¢r, and a small gap with an essential singularity. The ex-
treme Bose limit is in the lower right-hand corner, with pairs
smaller than the interparticle spacing and |u| one half the pair
binding energy. The line E, =0 is the threshold for binding in
the two-body problem. The chemical potential vanishes on the
dashed line E, /e = —4/m, and the ground-state solution shows
a weak singularity along this line. The dotted lines represent
curves of constant phase shift §,(2e;). The phase shift increases
from O to 7 as we move from the BCS to the Bose limit.

for the formation of a two-body bound state in vacuum.
(For E, small and positive, there are p-wave resonances
in the two-body problem; these also appear not to have
any effect on the many-body solution). However, there is
a singularity at =0, or equivalently at E, = —4/m. The
existence of this singularity is obvious from the appear-
ance of |u| in the equations. A straightforward analysis
of (6.17) and (6.18) shows that the singularity is rather
weak; both G(E,,E.) and f(E,,E.) are continuous,
but their second derivatives are discontinuous at
(E,=—4/m,E,). We have also numerically solved the
p-wave gap and number equations for a particular
“hard-core plus square-well” potential; the results of this
analysis are plotted in Figs. 8 and 9.

Note that the appearance of a singularity in the p-wave
ground-state solution is to be contrasted with the s-wave
results of Secs. V. In the s-wave case the ground state
evolved smoothly from the BCS to the Bose limits, and it
was only in the gap to excited states that a singularity ap-
peared. We should, of course, emphasize that the singu-
larity obtained above is within a variational calculation,
and thus need not necessarily correspond to a physical
singularity in the true ground state. However, we believe
that the point =0, where the chemical potential for the

In(G/eg)
Gleg 0 F
05r
0.4+
-0
0.3+
-isf ,
O02rsg 59
VO / € R
O.l+
1 1 1 1
58 59 6.0 6.1 6.2

VO /€R

FIG. 8. Numerical solution of the 2D p-wave exp(if) gap
and number equations. G=mA?}/#’ is plotted as a function of
the attraction V. The potential used has a hard core of radius
0.1R and a “square well” of depth ¥V, from 0.1R to R;
er =#/2mR?*=100 in units in which ez=1. Note the change
in the sign of the curvature of G at the point where p goes
through zero (see Fig. 9). Also note the exponential behavior of
G in the inset, which is in agreement with the asymptotic solu-
tion in the BCS limit (see text).

fermions goes below the bottom of the band does, in fact,
have a real physical significance. As we shall show in the
next section there is a qualitative change in the excitation
spectrum for non-s-state superconductors when p goes
through zero.

VII. GAP VERSUS ORDER PARAMETER

In the usual weak coupling BCS theory, the energy
gap-to-single-particle excitations E,, turns out to be A,
which was originally introduced as a variational parame-
ter for the pair wave function in the BCS ground state.
An interesting consequence of the preceding calculations

is that E,, the gap-to-single-particle excitations, can

K/ee

VO/ER

FIG. 9. Numerical solution of the 2D p-wave exp(i6) gap
and number equations. The chemical potential u is plotted as a
function of the attraction for the “hard-core plus square-well”
potential described in the caption for Fig. 8. The dashed line is
the asymptotic solution in the extreme Bose limit (see text).
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no longer be identified with the “gap function” A, once
the attraction is strong enough to cause the chemical po-
tential to be reduced below the bottom of the band
(u <0). We emphasize that this is a general result that
does not depend upon either the dimensionality (2D or
3D) or the specific model under consideration.

We will show further, that as a result of this, strong
coupling anisotropic superconductors with nodes in their
pair wave functions will appear s wavelike insofar as their
excitation spectrum is conecerned. As discussed in the
Introduction, there are some experiments that suggest s-
state pairing, or no nodes in the gap, in the high-7, ma-
terials, whereas others indicate “unconventional” pairing.
While, it is not clear at the present time if the high-T, su-
perconductors are sufficiently strongly coupled to have
1 <0, our observation offers the possibility of reconciling
some of the apparently contradictory experimental sig-
nals. For example, the fluctuation specific-heat experi-
ment probes the order parameter'? (which may have
nodes), while the penetration depth!® experiments are
probing the excitation spectrum (which will be nodeless,
provided the coupling is sufficiently strong).

Let us consider a non-s-state “gap function” A, of the
general form

A=glk)f(k), (7.1)

where g and f are functions whose form is determined by

that of the interaction in the gap equation, with f(k)

representing the angular dependence. The gap to single-

particle excitations is given by the minimum of the Bogo-

liubov quasiparticle energy

E (E)zmi%[(sk—p)2+|Ak|2]1/2.
€ 2

- (7.2)

In the BCS limit yu~¢, and we find, as expected, that t/\he
minimum in (7.2) is at g, =y, and E,, (k)~g(kg)f(k).
Thus nodes of the anisotropic pair wave function (zeroes
of f) are also nodes of the excitation spectrum in the BCS
limit.

However, the situation in strong coupling is quite
different, the first hint of which was already seen at the
end of Sec. V (see Fig. 6). When the coupling (i.e., the
two-body attraction in our model) is sufficiently strong to
cause the chemical potential to go below the bottom of
the band (1 <0), the minimum in (7.2) shifts to g, =0,
and the energy gap is no longer just A,. From (7.1) and
(7.2) we find

Egp®)=[|p>+[g(0)2[r(k)2]'2, (7.3)

thus E gap > |u|. For superconductors with nodes in their
pair wave functions this has important consequences:
quite generally, we find that the gap-to-single-particle
excitations is nodeless, for negative values of the chemical
potential, even when the anisotropic pair wave function,
or order parameter, has nodes.

In the extreme Bose limit, this result is easy to under-
stand. The energy gap is then just the “ionization poten-
tial” for the composite boson, which is clearly an isotro-
pic quantity. The preceding argument shows that this
absence of nodes is not just true in the Bose limit, but

(a)

(b)

(c)

FIG. 10. The energy gap for the 2D sin@ solution. Figure (a),
valid for u > G’, shows an angle-dependent E,,, over the entire
Fermi surface (see text). For G'>u >0 the energy gap has an-
gular dependence only in a wedge around the poles, but is
angle-independent outside this wedge, as shown in (b). The case
p <0is shown in (c) and has an isotropic gap: Eg,, =|ul.

persists all the way up to u <0.

We conclude this section with a calculation of the ener-
gy gap for the specific case of 2D p-wave solution with
A, ~kAysin@. As in the previous section one can solve
the coupled integral equations for pu and G'=mA2/#,
the details of which we omit.?

The energy gap for the sin6 solution is obtained from
(7.2) and sketched in Fig. 10. In the extreme BCS limit,
where u=~gp >>G’, the energy gap has the expected sin8
dependence. More generally, for u> G’, we find

E gup =(2uG'sin?0— G %sin*6)! /2 .

For G>p>0 the energy gap has the above angular
dependence in a wedge around the poles, but is angle in-
dependent, and equal to u outside these wedges, as shown
in Fig. 10(b). The angle ¢ of the wedge is given by
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sinX(¢/2)=u/G’. As the chemical potential u decreases,
so does the angle of the wedge, and the overall magnitude
of the gap. Finally, for u <0, the gap is nodeless, as we
had argued on general ground earlier. In fact, it is also
isotropic, and given by E ., =|u/.

VIII. OPEN PROBLEMS

We describe some open problems related to supercon-
ductors with pair size comparable to the interparticle
spacing.

The pairing ansatz (4.1), which has been the basis for
most of our conclusions, has obvious limitations in the
“intermediate coupling” regime, where §okr~1. While
the results obtained from it have variational significance,
and presumably give a qualitatively reasonable descrip-
tion in the intermediate regime, a definite analysis would
involve going beyond this ansatz. Since we have only
taken pair correlations into account in our variational an-
satz, we see that, e.g., in the extreme Bose limit, the com-
posite bosons are noninteracting. Thus in order to make
a virial expansion about this limit, we would need to in-
clude three- and four-body correlations between the con-
stituent fermions.

All our results have been restricted to T=0. A finite-
temperature analysis of the intermediate regime remains
an open problem, although some progress has been
made.!® In the BCS limit the formation and condensa-
tion of pairs occurs together. In the Bose limit, the for-
mation of pairs is a very high-energy (=binding energy
E,) crossover phenomena, while the Bose condensation
occurs at a lower temperature which is determined by the
density, independent of the interactions. A physical pic-
ture for the transition in the intermediate regime is lack-
ing at the present time.

If the transition temperature T, < E,, which is possible
even away from the extreme Bose limit, there will be a re-
gime between these two temperatures where some bound
pairs exist above T,, perhaps leading to anomalous
“normal”-state properties. However, since the bound
pairs are being probed on the scale of their compositeness
(kp&y~1) they cannot be simply treated as point bosons,
thus making the problem difficult.

IX. CONCLUSIONS

We conclude by summarizing our results. We have
studied a two-dimensional Fermi gas with a given two-
body interaction. (1) We find that the existence of an s-
wave bound state in vacuum is a necessary and sufficient
condition for an s-wave pairing instability. (2) This
necessary condition is not true for higher-angular-
momentum channels, i.e., it is possible to have I-wave
Cooper pairing without a corresponding bound state in
the two-body problem. (3) Within a variational ansatz,
consisting of an antisymmetrized product of pair wave
functions, we studied the evolution of the many-body
ground state as a function of the attraction. For the s-
wave case we find a smooth crossover from large overlap-
ping Cooper pairs (kg§;>>1) to a condensate of compos-
ite bosons (kp&,<<1). (4) For the p-wave case we find a
continuous evolution from the BCS limit to the Bose lim-

it, with a weak singularity as the chemical potential goes
below the bottom of the band. (5) The energy gap to
single-particle excitations is, in general, distinct from the
“gap function” or order parameter. We show that, in-
dependent of dimensionality and of details of the model,
the energy gap is nodeless, even if the order parameter is
not, once the coupling is strong enough to cause the
chemical potential to go below the bottom of the band.

The high-temperature superconductors, with pair sizes
comparable to the average interparticle spacing
(kp&y=1-10), appear to be in the interesting intermedi-
ate regime between cooperative BCS pairing and conden-
sation of independent pairs. The use of these ideas in un-
derstanding experiments on the high-7, materials must
await a finite temperature theory of the intermediate re-
gime.
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APPENDIX A: PHASE SHIFTS AND
BOUND STATES IN TWO DIMENSIONS

In this appendix, we briefly review some elementary re-
sults of 2D scattering theory — phase shifts, bound states,
etc.,—which are used in this paper. Reference 19 pro-
vides useful background information.

Consider a potential of finite range: V(r)=0 for r Z R;
see, e.g., Fig. 1. The radial wave function, for energy
E =#k?/2m and angular momentum /, is of the form

Y, (r; E)= A[cotd,(E)J ,(kr)—N,(kr)], r>R (A1)

outside the range of the potential. Here J; and N, are the
Bessel and Neumann functions of order / and §,(E) is the
phase shift of the /th partial wave. Next define the loga-
rithmic derivative of the wave function inside the range
of the potential (i.e., » <R)

1 dyy

l/l[ dr

where (3; is a functional of the potential ¥(r), in addition
to being a function of the energy. Matching logarithmic
derivatives at R we obtain

XNII(X)_BIN](X) .

=1
BIE)=+

, (A2)
r=R"

cotd,(E)= - ; x=kR , (A3)
xJ,(x)—BIJI(x)
where primes denote derivatives.
1. s-wave channel
First consider the /=0 or s-wave case. From an

asymptotic expansion of (A3) we obtain the low-energy
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(E <<ep =#’/2mR?) phase shift of Eq. (2.8):

mcotdy(E)=In(E/E,)+O(E /eg) (A4)
with E, given by
E,=4egqexp —-2y+i , (AS)
Bo

where y is Euler’s constant and f3; is the logarithmic
derivative evaluated at £ =0.

In three dimensions it is conventional to express the
low-energy s-wave phase shift in terms of the scattering
length. For our purposes it is best to use the parameter
E,, with units of energy, to characterize the low-energy
phase shift in 2D. As shown further this parameter has a
simple physical interpretation of binding energy in the re-
gime of our interest (in much the same way as the 3D
scattering length is related to the size of the bound state
once such a state exists). Thus we are able to avoid the
apparently controversial question®’ of the definition of a
“scattering length” in 2D.

Let us now see how E, varies as a function of the po-
tential. For a purely repulsive potential 3, can be shown
to be positive, and thus E, ~O(eg ). Imagine turning on
an attractive tail to the potential (e.g., hard core plus
square well). As a function of the attraction B, decreases
leading to an increase in E,; see Fig. 2. With increasing
attraction [, goes through zero and thus from (AS5) we
find that E, shows discontinuous behavior; E, first
diverges as B;—0+, and then increases from zero with
an essential singularity exp(2/f3,) for small negative 3.

The connection between the s-wave T matrix and the
phase shift is given by Eq. (2.7); see Ref. 19. It is easy to
see from (2.7) and (A4) that for E, <<ey there is a pole in
the T matrix at E = —E, that signals the existence of an
s-wave bound state. Thus 3,=0 is the threshold for the
formation of a two-body bound state in vacuum, and E,
is just the binding energy of this state beyond the thresh-
old.

For a purely attractive potential in 2D there is no
threshold to binding. In this case the essential singularity
discussed earlier can be seen explicitly from the result®®

(~#/m) [ | [arrvin]|.

E,~2¢egexp

(A6)

2. p-wave channel

An asymptotic expansion of (A3), for / =1, gives the
low-energy p-wave phase shift of Eq. (2.11):

E
E

Eb
In + 2 +O0(E /eg) .

COtB](E): E

1 (A7)
7T c

The parameters E, and E_ characterize the low-energy
p-wave phase shift, and can be straightforwardly calculat-
ed from B, and its derivative with respect to the energy,
both evaluated at E =0. Note that the leading singulari-
ty in (A7) is a pole, and in addition there is the logarithm
characteristic of 2D. [We mention in passing, that it can
be shown from (A3) that for arbitrary / the leading singu-

larity in a low-energy expansion of cot§,(E) is an Ith or-
der pole].

From Ref. 19 we can show that the connection be-
tween the p-wave T matrix and the §, is given by Eq.
(2.10). Now, a p-wave bound state corresponds to a pole
on the negative real axis of the /=1 T matrix. From this
we find that the threshold for the formation of a p-wave
bound state is E, =0, (i.e., no bound state exists for
E, >0). For E, <0, the binding energy ¢, of this state is
given by the solution of the equation

Elln(EI/EC):—"T‘Ebl . (A8)

APPENDIX B: NORMALIZATION INTEGRAL

IN MOMENTUM SPACE
Using Eq. (6.11) we obtain
2
2 2T d9 © dkk 1
= — Ty (2E
%lm | s 2E,—e, +in) [Ho'2E0)

(B1)

We retain only the / =1 piece from the Fourier decompo-
sition of Tkko and take its low-energy limit, namely

Tkk0<2E0)=ef0T,£,£L<2E0):eiekkofl(zEO) , (B2)
where E,=#°k3/2m, and the final form is valid for
kR <<1 and k4R <<1, and from (2.10) and (2.11) 7 is
given by
—a? ;
(2Eg) = Ging (kode ™0 (B3)
mkg
If we use this low-energy form of the T matrix in (B1),
we need to introduce an ultraviolet cutoff A in the
momentum integral, since there is a logarithmic diver-
gence at high momenta. The normalization integral, with
the cutoff, is given by

2
a2 1 [m 2 2
kgl\ |Xk —:‘—7;' —h? k0|T1(2E0)| j(Eo), (B4)
with
€
HEg)= [ "—FdE
Inley/Eyl—14+7Ey/q for Ey>0
= linley/Eol—1 for E,<0, (B5)

where €,=#2A2/2m and 7—0+. Notice that in addi-
tion to the expected loge, divergence (for all E;), there is
an additional 1/7 divergence for the positive-energy
eigenfunctions (scattering states), since they are, of
course, non-normalizable. This, as we shall see, will be
compensated by an identical contributon from the
position-space normalization integral.

APPENDIX C: NORMALIZATION INTEGRAL
IN POSITION SPACE

This calculation is somewhat more involved than the
momentum-space calculation given earlier. The main
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trick, following McClure,? is to generalize a result in Lan-
dau and Lifshitz,2° which relates the wave function nor-
malization integral to the scattering phase shifts; [see Eq.
(128.10) and problem 4, Sec. 134 in Ref. 20]. The chief
complication comes from the fact that we want this result
for the normalization of the only the scattered part x(r)
of the radial wave function R (7).

1. Casel: E4>0

We shall first evaluate the normalization for
=#’k3/2m >0. From the /=1 component of (6.11)
we have R(r;ko)=iJ,(kor)+x(r;ky), where J (z) is the
first-order Bessel function. We deﬁne  f(r)=V'korR(r),

fO(r)—l\/korJ (kor), and X(r)=v"kor x(r). f(r) and
folr) satisfy the Schrodinger equations
£ +kg+ia) =U,(n]f(r (C1)

and
Fo(nN+kg+ia—=U,(N]fo(r)=—Ur)folr) . (C2)

Here (ky+ia)*=2m(E,+in)/#* so that a=mn/#*k,
—0+, and U,(r)=U(r)+(12—%)(1/r2), with U(r)
=mV(r)/#* since the reduced mass is my=m /2. X(r)
then satisfies the inhomogeneous equation

X"(r)+[(kg+ia)?=U(n]X(r)=U(r)fo(r) . (C3)

We differentiate (C3) with respect to k, and eliminate
the U, term between the resulting expression and the
complex conjugate of (C3). We then obtain the normali-
zation integral as the sum of three terms:

2(k0+ia)f0’dr|X|2.—_Ql+Q2+Q3 : (C4)
where
PN . _dX ax* ., 3 X
0,=Q(r)—Q(0) with Q ok, or X 3k, or
(C5)
_ . r oX
Q,=—4ikya foer*ako , (C6)
and
r afO aX
= *—_—'— *
Jarum |x ok, kg0 |- (C)

For E; >0, we have to first take the limit » — o, and
then a—0+. In this limit Q, can be shown to vanish.
To evaluate Q,, notice that it can be rewritten as

aX

0, =—4zk0af dr X* =2 3k,

(C8)
where we have dropped the (finite) contribution to the in-
tegral from O to R, the range of the potential, since we
have a vanishing prefactor @. We thus only have to com-
pute the divergent part of the integral in (C8) for which it
suffices to use the asymptotic form of the scattered wave
function X (r). This is given by

X(r)= exp( —ar+ikor—im/4)S, (k)
\/ 27
T S (C9)
Skor ’

for E, >0, with S, (k,)=exp[i26,(ky)]— 1. The sublead-
ing terms in (C9) lead to integrals of the form
“d —2ar)r™" n21, C10

afR r exp(—2ar)r n (C10)

all of which vanish, in the limit a—0+, as a for n > 1,
and as aloga for n =1. The nonvanishing contributions
to (C8) give

EglSyko)* kST ko) dS, (ko)
2 ™ T dk,

(C1n

where we have used n=#%,a/m—0+ and have
dropped terms of order kyR <<1.

The imaginary part of the left-hand side of (C4) is han-
dled in exactly the same way as Q,, and we obtain, as
a—0+

dia [ “dr|X1P===|8, (ko) c12
zafo rlXx| 27'r| (ko) (C12)

Finally we want to evaluate Q;. Substituting X(r)
=f(r)—fo(r) in (C7), and using the definitions used in
(C1) and (C2), we obtain

R*(r) | 3T (kor)+kg

_im [
Q3——?f0 drr V(r)

oJ (kor)
ak,

(C13)

OR (r)

+J1(k0r ako

iR r)+k0

2

To make progress we must recall the identity

(kIVIgy,) =(kIT(2Ep) k) , (C14)
where the argument of the T matrix is 2E, due to our
(unusual) convention [see Eq. (2.2)]. Using the /=1
Fourier component of (C14), and (B3) rewritten as

7(2Ey)=2i#*S (ko) /mk} (C15)
we obtain
m =<} _ k Sl(ko)
o fo drr V(r)J,(kr)R (r;ky)= PR (C16)

for kR <<1, kyR <<1. This result, together with its
derivatives, allows us to express all the integrals in (C13)
in terms of the phase shift. We find

Q3= [S1 ko) +5,(ko)]

i cenip
p- [ST(ky) (C17)

We can now obtain the wave function normalization
integral using (C4) and
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= [ 42 92 2T [ 2
N= [drlx(re’®?= P S arlxnp . (C18)
The final result, valid for E, >0, is
_ 2P 12 . 2 dd(ky)
N—Tn—sm%l(ko);-—k—(z)sm28,(k0)+;;—~w ,
(C19)

where n—0+. Note (1) that although the intermediate
quantities Q; were complex, WV is real as it must be, and
(2) that the 1/7 divergence in the position-space evalua-
tion of W is identical to the one obtained in the
momentum-space result. Both these serve as nontrivial
checks on the algebra.
Finally, we may rewrite A of Eq. (6.15) in terms of the
phase shift, using (B3),
mk3G
A=———— . (C20)
8#%sin%8,(k,)
This expression is useful, in conjunction with (C19), to
evaluate the right-hand side of (6.13).

2. caseIl: E;<0

The calculation proceeds in much the same way as for
E, positive, and is in fact simpler because the wave func-
tions are all real, the T matrix is real, and 7 (or a) can be
set equal to zero at the very outset.

For E,=—#q}/2m the | =1 wave function may be
obtained from the analytic continuation of the E;> 0 re-

sult with k,=ig,. Then
R(r;igo)=—1,(qor)+x(r;ig,) ,

where I,(z) is the first-order modified Bessel function.
Following the logic of the previous computation, we find
[the analogue of Eq. (C4)]

aIl(qOr)
9q,

3R
9q,

2[ “arxn= [ “drr U(r) |R()

—1I,(gor) l (c21)

where X(r)=1/q,r x(r). To evaluate the integrals on
the right-hand side, we use a result similar to (C16)

_m_

fowdrr U(r)I,(gr)R(r;igy)=— Py qq9,7,(2E,) ,

(C22)

and its derivatives with respect to g and g,. The final re-
sult for the normalization integral for E;, <0 is then
found to be

m dT] ( 2E0 )

L e X

.NEZvrfowdrr)(z(r)‘—‘— dE
0

Note that it is simpler to write this result in terms of 7,
rather than the phase shift §,(k,), as we had done for the
E,>0in (C19). This is because the E, <0 phase shift is
complex with Im[cotd,(ky)]=1 as can be seen from
(2.10) and the fact that 7,(2E,) is real.
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