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Ballistic electronic conductance of a wide orifice
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For the ballistic motion of a two-dimensional noninteracting electron gas we compute the
quantum-mechanical conductance of a rectangle of length L whose lateral dimension a is greater
than that of the incoming and outgoing wires b. The global structure of the conductance when

the lateral dimension increases reveals slow decay, contrary to what one expects from the simple
law of addition of resistances in parallel. Closer inspection shows an oscillatory behavior with
well-defined peaks at kra/tt) n No q.uantized plateaus (which occur for a & b) exist. A simple
interpretation is given in terms of localization and resonance tunneling.

Recent experiments by Wharam etal. ' and by van
Wees etal. on ballistic motion of electrons through a
narrow constriction revealed the phenomenon of conduc-
tance quantization, i.e., the conductance increases as a
function of the constriction width by integer values in
units of the fundamental conductance unit. This fascinat-
ing phenomena has been the subject of several theoretical
works. 3 A natural question which arises (and can ap-
parently be tested experimentally), is what happens when
the lateral dimension of the sample, a, is greater than that
of the wire leads connected to it, b For .a & b the (quan-
tized) conductance is roughly proportional to the magni-
tude of the lateral dimension, which demonstrates a
quantum-mechanical law of addition of resistances in

parallel similar to the classical law. The purpose of this
Rapid Communication is to present the results of our ex-
act quantum-mechanical calculations of the conductance
of a rectangle of dimension a &L, connected to long wire
leads of width b & a and to suggest a relatively simple ex-
planation for the structure of the conductance and its
dependence on geometry. The basic quantities we calcu-
late are the transmission-amplitude matrix t, from which
the conductance is evaluated using the linear conductance
formula, G(2ez/h)Tr(tt t). We show that the conduc-
tance is maximum when a b and decreases as a & b,
which demonstrates a violation of the law of addition. Su-
perposed on this global decrease with increasing width
there is a rich oscillatory structure which is partly related
to the spectrum of states of a single particle in a rectangu-
lar box. We correlate our results to concepts of resonance
tunneling and localization in configurations without sym-
metry. Our calculational techniques can be easily extend-
ed to study samples containing impurities and the effect of
a perpendicular magnetic 6eld.

The geometry in the present problem is shown in the in-
set of Fig. 1. Consider the quantum-mechanical motion of
a particle with mass m and (Fermi) energy E in a planer
region composed of two semi-infinite strips defined by
( —no & x ~ 0, 0(y (b), (L ~ x & nn, 0(y (b ), and
a wider strip separating them, with dimension defined by

(0&x~L, O~y~a) with a) b W.e look for a solu-
tion of the Schrodinger equation —hilt„(2ntE/I'i )lit„
corresponding to an incoming initial wave moving from
left to right in a definite channel n, with hard-wall bound-
ary conditions. We use the formalism and the notation
described in Ref. 3 by Avishai and Band, to solve for the
reflection and transmission coefficients, R „and T „and
form the flux-normalized amplitudes r „(k /k„) 'I2

Rmn1 tmn (kmlkn ) Tmn.

We evaluate Tr(tt~) for a rectangle of (dimensionless)
length kL 500 and varying (dimensionless) width

50 & ka & 100 (aspect ratio between 10 and 5) using di-
mensionless wire width kb 50. Actual values of k kF
for the experiment reprted in Ref. 1 using the electron
density of 3.56&10' electrons/m is kF 0.015
The number of evanescent waves in the wide regions and
in the orifice has been chosen such that the effect of add-

ing a few more waves was miniscule. In all cases unitarity
was maintained to 13 digits.

In Fig. 1 we plot the conductance as a function of the
dimensionless parameter ka/tr (which counts the number
of channels with real momenta in the rectangle) in the
range 16 & ka/tt & 32. The structure of the conductance
reveals three interesting features. (i) There are no traces
of quantization [the dominant feature for the narrow con-
striction (a & b) geometry]. Indeed, for a & b (see Glaz-
man and Lesovicks), the conductance was proportional to
the number of propagating waves in the narrow constric-
tion, and the results were insensitive to the width of the
wires. For each mode j in the orifice (j 1,2, . . . ,J) with

wave number qt there was a mode trt (j) in the wire leads
whose wave number k il) was the closest one to qj. [Ac-
tually, irt(j) (jb/a). ] The mode m(j), which came
from the left-hand side, excited the mode j and the degree
of excitation was determined by the impedance matching
between the two wave numbers. On the right-hand side of
the orifice, this mode matching picture was repeated, this
time the mode j excited the mode m(j). What we had
then is a transmission through a barrier of length L such
that the wave number outside the barrier is k ~J~ and in-
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FIG. I. Conductance (in units e'/h) of a rectangle of length L and width a situated between two wire leads of width b (a (inset)
for a two-dimensional electron gas with Fermi momentum k. The conductance is plotted as a function of ka/s between 16 and 32, for
kL 500.

side the barrier is qJ. (Equivalently, a plane wave whose
wave number is k &J& penetrates through a barrier of "po-
tential" whose height VJ is given by 2m&~/ft k—qj. ) The transmission coefficient for this penetration
was close to unity and the expression for the conductance
just summed incoherently the contributions from all
modes in the orifice. This is no longer the case for a )b.
The number of contributing waves is now determined by
the width of the wire. Increasing the width of the rectan-
gle does not add any definite conductance, and hence
quantization is absent. The dependence of the conduc-
tance on the width of the rectangle is addressed in the
next two points. (ii) There is a global trend for the con-
ductance to decay as the width of the rectangle increases,
contrary to what we expect from the law of parallel addi-
tion of conductances. This can be understood intuitively.
It is clear that the larger the width of the rectangle, the
greater the chance of the electrons being trapped in the
box. The electrons find their way out of the box after
some time, and this trapping time gets longer as the ratio
of the dimensions of the box and the diameter of the pipe
increase. It has been argued recently that electrons stand
a chance of becoming trapped in a resonance state, since
modes with wavelength larger than the wire diameter will
prefer to stay within the box rather than be squeezed into
the wire. Yet another view on the decay of the conduc-
tance is provided by the connection between decay of con-
ductance and localization. This possibility of obtaining lo-
calized states without disorder has been substantiated re-
cently by Entin-Wholman and Azbel. They considered
electronic spectra of infinite quasi-one-dimensional
disorder-free systems of varying width and of low geome-
trical symmetry, and showed that the low-lying states are

localized. The fact that the decay is not monotonic is dis-
cussed next. (iii) Figure I shows a rich oscillatory struc-
ture which is dominated by peaks close to integer values of
ka/n. Unlike the steep increase of the conductance for
a (b at integer values of ka/n (the onset of the next pla-
teau), the conductance here is roughly symmetric around
the peaks, indicating a resonance phenomenon. To ex-
plain this result we recall that in one-dimensional double-
barrier tunneling, the transmission coefficient peaks at the
resonance energies of the double barrier, which in the lim-
it of infinite barrier height become bound states. In the
present case, the states in the rectangle are almost bound
states with energy k and standing-wave numbers q,

nn/L and q~ r(k -q, ) mn/a. Thus, there exists a
bound state if ka/n (m +n a /L )'~. The dominant
peaks will be those with small n, which for a small value of
a/L are close to integer m When a/L becomes larger, the
peaks are slightly shifted to the right as is verified by
closer inspection of the numerical results. The smaller
peaks in Fig. I are apparently those belonging to
n 2, 3, . . . . Thus, the dependence of the conductance
versus ka is in this case an excellent probe for scanning
the spectrum of states in the sample. The idea of relating
the conductance directly to the geometrical size of the
sample through its spectrum reminds us of the scaling
theory of conductance.
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