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Surface adsorption: Quantum re8ection versus polaron collapse
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We present a quantum theory for surface adsorption of low-energy charged particles on a dielec-
tric fluid. Quantum effects suppress adsorption (quantum reflection), while polaronic-mass enhance-

ment and coherence loss for the wave function assist it. We provide additional evidence that the
sticking coefficient has a singular dependence on the coupling constant which enters the particle-
substrate excitation interaction. The system exhibits a transition from perturbative quantum-

mechanical regime to a strong-coupling classical regime. We use a time-dependent generalization of
the Lee-Low-Pines variational wave function to study the critical regime of intermediate-coupling

constants where the transition takes place. The onset of classical adsorption is found to be triggered

by the appearance of collapsed bound states on the substrate surface.

I. INTRODUCTION

The behavior of a particle near a solid or liquid surface
has been a subject of renewed interest in the last decade. '

From a number of experiments it has become clear that
the results could not be explained by a purely classical
description. In particular, for a low-temperature sub-
strate hit by a particle with low incident energy, quantum
effects play an important role. Edwards et al. found that
for He atoms impinging on He surfaces, so-called quan-
tum reflection (see below) dramatically suppresses the ad-
sorption probability. Neon atoms hitting flat metal sur-
faces, investigated recently, also show strong quantum
effects.

The classical description of surface adsorption was due
to Iche and Nozieres. They treated the surface interac-
tion by introducing a phenomenological damping term
and a noise source in the equation of motion of the parti-
cle. At low energies, the incoming particle is then inevit-
ably captured by the surface. Subsequently, much effort
was dedicated to provide a microscopic theory for this
damping term. Using the work of Brenig, Kumamoto
and Silbey showed how a classical equation of motion
can be derived from the microscopic Hamiltonian of a
particle interacting with a "bath" of surface excitations.
In a different context, this was done earlier by Knowles
and Suhl. The results obtained by those methods agreed
with the theory of Iche and Nozieres while giving expli-
cit expressions for the damping term.

The quantum properties of the particle have received
much less attention. It is actually here that new phenom-
ena incompatible with classical physics are expected.
The first peculiar quantum effect is "quantum reflection, "
as discussed for instance by Landau: A particle skim-
ming a potential is reflected if the potential undergoes a
sudden variation, because of a mismatch between the
wavelengths on each side of the potential step. This has
an important effect on the adsorption coefficient a(E) (E
is the incident-particle energy). Within perturbation
theory (distorted-wave Born approximation), a(E ) is pro-
portional to the time r(E) spent near the surface times

the probability
~
T(E ) ~

of reaching the surface. Bethe's
law states that r(E) is proportional to E 'rz, while for a
sharp potential step the transmission coefficient T(E) is
proportional to E'r . This means that for small E, a(E)
is proportional to E' . Thus, quantum perturbation
theory predicts a(0) =0, not a(0) = l as in classical phys-
ics. This suppression of adsorption by quantum
reflection was first noted by Lennard-Jones and De-
vonshire and discussed for the case of hydrogen adsorp-
tion by Kagan and Shlyapnikov. ' A decade ago,
Brenig" proposed a nonperturbative Green's-function
approach and showed that for a closed system with a
short-range surface potential, the elastic-reflection
coefFicient goes to unity in the limit of low incident ener-
gy. Unitarity of the S matrix then implies a(0)=0 for
any value of the coupling constant. Experimentally, how-
ever, it is known that for heavy particles even at low en-
ergies, the classical result still hoMs. In a previous pa-
per' (hereafter, I), we investigated the fate of quantum
reflection within strong-coupling theory, as we increase
the coupling constant which enters in the interaction be-
tween the particle and the surface excitations. We only
allowed for the wave packet to spread in the direction
normal to the surface. We discovered that there appears
to be a critical value of the coupling constant where
quantum reflection is rather suddenly "turned off" and
the prediction a(0) = l of classical physics becomes valid.
In this paper, we hope to give some insight on the transi-
tion from quantum to classical behavior, explained as a
suppression of quantum reflection for sufficiently large
coupling constants.

The reduction of the classical adsorption coefficient by
quantum reflection is aided by a second quantum effect.
If we allow wave-packet spreading in the plane of in-
cidence, we must obey in-plane momentum conservation.
If a particle of parallel momentum P~~ emits a surface
phonon of wave vector q then P~~ is reduced by Aq and the
particle energy E by A'co, where co is the surface-phonon
dispersion relation. At low incoming energies, this great-
ly reduces the available phase space for phonon emission
and absorption. It thus works in the same direction as
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quantum reflection. In particular, the cutoff for phonon
wave vectors is P~~ and not the Debye wave vector of the
phonons. In a second paper' (hereafter, II), we used per-
turbation theory (weak coupling) and the distorted-wave
Born approximation to study this effect. Qne finds that
the adsorption coefficient for a charged particle hitting a
dielectric fluid depends on E as (E/E~ )', where E„ is a
typical bound-state energy. This result is due to a corn-
bination of quantum reflection and momentum conserva-
tion. As perturbation theory predicts that a(0) =0 to all
orders, the fact that a(0) is finite for large coupling con-
stants suggests that there is a critical coupling constant
below which a(0) is zero and above which it is finite.

The third striking feature is polaronic "self-
trapping. "' A particle trapped in a bound state on a
translationally invariant surface shares many features
with electrons in polar crystals. " Similar to real pola-
rons, a surface polaron' can either be an extended plane
wave ("large polaron") or can create a localized dimple
on the surface ("small polaron"). As one varies the cou-
pling constant, one encounters large polarons for small
coupling constants and vice versa. We showed in a third
paper' (hereafter, III) that the normal component of the
surface-polaron wave function collapses before the in-
plane component. The collapse of the polaron wave func-
tion is a purely static effect. However, it should also
affect the transport properties. In the small-polaron lim-
it, the in-plane effective mass is considerably larger than
in the large-polaron limit. If the normal component of
the wave function has collapsed, deep bound states ap-
pear close to the surface with enhanced effective coupling
constants to the surface modes. This dramatic reorgani-
zation of the bound-state wave function occurs in the
same ranges of coupling strengths where in I we
discovered the onset of "classical" adsorption. This sug-
gests that polaronic mass enhancement could be an im-
portant mechanism for the supression of quantum
reflection.

A fundamental problem for the interaction of a particle
with an adsorptive substrate is that in general we are nei-
ther in the strong- nor in the weak-coupling limit. More
precisely, far from the surface we are always in the
weak-coupling regime, while close to the surface we may
or may not be in the strong-coupling regime. We thus ex-
pect that as the particle approaches the surface it can
evolve from an extended wave packet (far from the sur-
face) to a "collapsed" surface state. The collapse would
be brought about by a combination of mass enhancement
and the destruction of phase coherence through inelastic
scattering.

This observation raises considerable doubts on the va-
lidity of the strong-coupling theory of I: If a particle un-
dergoes quantum reflection before it ever enters the
strong-coupling regime close to the surface, a(0) could
indeed be zero for all coupling constants, as perturbation
theory claims. A proper definition of the sticking
coefficient is thus needed. In the context of perturbation
theory, the definition of cx provides no difficulties: the
Fermi "golden rule" explicitly connects initial and finite
states for an open, infinite system. However, in a numeri-
cal calculation, or in an experimental setup, we are con-

strained to measure o. over a finite time, thus introducing
some ambiguity in the result. The maximum time T~ for
the measurement is limited by the characteristic size L of
the system and the classical particle velocity
Ud (TM- L/—U„). Also, when dealing with a closed sys-
tem, the energy absorbed by the surface excitations after
collision may be restored to the particle after a long time,
say ~(L). Obviously, the adsorption measurement must
be terminated in a time smaller than both T~ and w(L ).
As we are to compare our theoretical predictions with ex-
perimental results, we shall elaborate more on this subject
when dealing with the strong-coupling regime, where we
must rely on numerical calculations.

To investigate the possibility that a(0)=0, we will

present in this paper a calculation of the sticking
coefficient in the weak- to intermediate-coupling regime.
We will assume that the wave function is extended along
the plane of the surface. In the strong-coupling theory
[time-dependent Hartree (TDH) approximation], the
wave function was assumed to be collapsed in the plane.
The outline is as follows. In Sec. II, we discuss the Ham-
iltonian and show how to derive the TDH approximation
of Kumamoto and Silbey, as well as the classical limit of
Kqowles and Suhl. In Sec. III, we present our formalism
for the intermediate-coupling regime which conserves
momentum. It is based on a time-dependent Lee-Low-
Pines (LLP) variational wave function. In Sec. IV, we
discuss a mean-field method to solve the variational equa-
tion. In Sec. V, we define o., present our numerical solu-
tions, and compare the results with TDH. We conclude
in Sec. VI.

II. MODEL HAMILTONIAN AND TDH
EFFECTIVE HAMILTONIAN

$2+2
(2a)

H hgAco a a
q

H;„,= g V (z)(a e "+c.c. ) .
q

(2b)

(2c)

In the above formulas, Vo(z) and V (z ) are, respectively,
the elastic and inelastic surface potentials. Furthermore,
co is the frequency of a surface excitation with a wave-
vector q, r~~ is the particle position along the surface,
while z is the distance perpendicular to the surface. Fi-
nally, m is the mass of the particle. Derivations of H for
various special cases are discussed in Refs. 7, 10, 13, and
18.

The connection with the existing semiclassical Hartree
theory is established by reducing the many-body Hamil-
tonian to a self-consistent single-particle Hamiltonian
(TDH approximation ). This approximation is valid in

The Hamiltonian of the coupled particle —surface-
phonon system is

H =Ho+HP} +Hl~t )

where
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~'&—Igpg&= QAco, a a +{g(H,„,(g&, '(P „& .
a

(4a)

(4b)

The particle acts as an external tine-dependent drive on
the surface phonons and vice versa.

The effectiive-phonon Hamiltonian in Eq. (4b) is quad-
ratic in the creation-annihilation operators aq and aq. It
can therefore be diagonalized, and the expectation value
of H;„, in Eq. (4a) can be evaluated. The resulting self-
consistent particle Hamiltonian reads

HTDH =—
2m Bz

+ Vo(z)

——g V, (z ) f dt & g ~ V, ~g &,

q

Xsin[co (t t')] . —

The third term in the Hamiltonian depends on the past
history of the wave function (i.e., the process is non-
Markovian). The time kernel is a function of the
surface-phonon-dispersion relation. The nonlocality in
time is due to the emission of a surface phonon at time t'
and its subsequent absorption at a later time t.

The wave-function g must still be determined self-
consistently. Numerical solutions were discussed in I (see
also Fig. 6). HTDH still contains the competition between
quantum reflection, which suppresses adsorption, and in-
elastic scattering, which is necessary for the energy
transfer and which also suppresses quantum reflection
through destruction of wave-function coherence. Howev-
er, since it does not include the in-plane component of
the wave function, it cannot describe the polaronic mass
enhancement near the surface. Obviously, it also violates

the strong-coupling limit, where the particle wave packet
is of a narrow extent and where the kinetic energy of the
particle is large compared to the average vibrational en-

ergy of the surface modes. A Born-Oppenheimer approx-
imation is justified in that limit where one writes the
wave-function ~g& as a product of a particle wave func-
tion and a phonon wave function:

l0(r, &) & =g(r~~, z, &)lymph(&) & .

The spatial degrees of freedom appear only in the particle
wave function g(r~~, z, t)

To simplify the problem, we only consider normal in-
cidence and we assume that g(r~~ z t)=5(r~~)g(z, t),
neglecting the spreading of the wave packet in the direc-
tion parallel to the surface. The problem is then reduced
to the motion of a one-dimensional wave packet along the
direction normal to the surface.

The wave-function
~ f & is determined variationally (see

Sec. III), which leads to the following two coupled equa-
tions for g and

~ Pzh &:

8 I 8if—g= —,+V,(z)+{y,„~H,„,~y,„&, g,
2m gz'

X dt'V zi t'

Xsin[co (t —t')] . (6)

By expanding the memory kernel around t'=t, one finds
a frictional force y(dz, ~

ldt ) on the right-hand side of Eq.
(6), with

T

QO BVq(z„(t ) )
y(r)= f d—r~go, az

sin( co~r ),

the friction coefficient. If y(t) is finite, we recover the
classical description of Iche and Nozieres (at zero tem-
perature), so that the adsorption coefficient at low in-
cident energies equals unity. Whether the integral in Eq.
(7) converges depends on the small-q limit of the phonon
density of states. We shall assume a finite y (so-called
Ohmic damping).

III. MOMENTUM-CONSERVING FORMALISM

The most interesting aspect of the surface-adsorption
problem is the crossover from quantum to classical phys-
ics, a regime where both perturbation theory and the
strong-coupling TDH method are expected to fail. In
this section, we will discuss how one can deal with the
intermediate-coupling regime. The method we propose is
a time-dependent extension of our previous work on the
static surface polaron, which in turn finds it roots in the
Lee-Low-Pines' (LLP) variational method.

In the weak-to intermediate-coupling regime, the wave
function of the whole system is extended in the direction
parallel to the surface. It is then natural to look for
eigenstates of the total parallel momentum. Let P be the

momentum conservation along the surface. The TDH
approximation is, as mentioned, only valid for well-
localized wave functions. However, both in the weak-
coupling limit, and far from the surface, wave functions
are extended. In particular, TDH cannot reproduce
lowest-order perturbation theory. If the incoming energy
is nearly degenerate with the energy of an excited state of
the particle-surface system, we can have resonant-energy
transfer, an effect which is easily demonstrated by pertur-
bation theory but which is absent in the TDH method.
We also note that a strong-coupling theory such as TDH
can only be valid close to the surface. Even if strong cou-
pling is valid on impact, it is certainly invalid if the wave
packet is far from the surface.

The classical limit is derived from TDH by going one
step further and also neglecting wave-packet spreading in
the direction normal to the surface. One thus replaces
{g~V ~g &, by V~(z,~(t')), where z,~(t') is the average (or
classical) position of the particle at time t'. The resulting
Hamiltonian describes a classical particle governed by
the following equation of motion:

Bvo(z„(t))
m z,i(t)=-

az
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total momentum of the combined particle-phonon sys-
tem. It follows that p=P —g fiq a a is the particle
momentum. The first step in the LLP method is to go to
the rest frame of the particle in order to eliminate the r~~

dependence of the wave function. This means that we
perform the unitary transformation a(q( ' a(a, (q() a~

(13a)

The variational principle is 5F=0. When ~g) is an exact
solution of Schrodinger s equation, one can immediately
check that

with

~y(z, t ) ) = Ug(z, t ) ~0),

where U is again a unitary transformation:

U=exp gf'(z, t)a —fq(z, t)aq

(10)

lS=exp ——P —giriqa a ri
q

Here, ~P(z, t)) is a particle-phonon many-body wave
function which depends only on the normal coordinate z
and the time t. The second step is to use the LLP ansatz
for the dependence of

~ P(z, t ) ) on the phonon coordi-
nates:

and

(13b)

We are thus guaranteed that the exact solution obeys
5F=O. The TDH equations can also be derived from
this variational principle using the Born-Oppenheimer
approximation as a variational ansatz. ' In the Appen-
dix, we discuss why this variational principle is an im-
provement on the conventional pseudoquantization of the
Hamilton-Jacobi equations. This is discussed in further
detail in Ref. 21.

The calculation of the functional is tedious straightfor-
ward. To simplify further expressions, we introduce the
two quantities

In this expression, g represents the particle wave function
and fq

is the amplitude of the phonon mode with wave
vector q. In III, we showed that for a surface-adsorbed
polaron, this ansatz is valid in a number of limiting cases,
provided that the wave function is extended along the
surface.

Computing fq
and g is in general a daunting problem.

For static problems, they are determined by minimizing
the total energy. For dynamical problems, we will use
the following variational principle. We introduce the
functional

(14a)

and

(14b)

Here, g represents the fraction of the total parallel
momentum which is absorbed by the vibrations of the
surface, and 5 has the form of a superposition of
quantum-mechanical fluxes.

The functional can now be written as

+ a) oo p2 $2F= t z 1 —g g
0 2m 2m

1 a —i5 gi Bz

2

2

fi 8 $2 2

+ 'Vo+g
~ fq + ~,+

2 If, l'+V, (fq+fq)

q

(15)

Minimizing Fwith respect to g and the amplitudes f yields the following system of coupled equations:

2 2p2 f2 2
(1—i)) + —. i5 +Vo—+ g f + +%co ~f [ +V (fq+f*)

iA, 8

q

(16a)
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Igl
~ fq+ g

~ g+g~ g 25igl
5 fq

(16b)

Equation (16a) is a time-dependent Schrodinger equation for the particle wave function. It contains a variety of
terms: the elastic potential Vo, and the time-dependent terms involving g(z, t ), 5(z, t ), and f~(z, t), which can change
the energy of the particle. In particular, note the term —i5. It has the form of a time-dependent scalar potential. The
physical meaning of 5 is clarified when multiplying Eq. (16b) by g* and subtracting the complex conjugate. This yields
the conservation law

B. A', c} c}, 2 c}

c}z 2m c}z clz cjt
g* g —g g'+25lg ' =—Igl'. (17)

There are thus two contributions to the probability flux in the z direction: the usual particle current, and the "phonon
current" 5lg I

.
An important check on the validity of our variational ansatz is to see whether it reproduces time-dependent perturba-

tion theory in the weak-coupling limit and thus properly includes momentum conservation and resonant energy
transfer. For simplicity, we set the elastic potential to zero, so that the eigenstates of the noninteracting system are
plane waves. The initial state is assumed to contain no phonons, so that lgo& =go(z, t )IO&, with

i fi k I'
go(z, t)=exp ikz ——— + (18)

2m 2m

and f =0 at t =to If we a.llow a small coupling to be present, then the correction to f will be of the order V [see Eq.
(16b)]. On the other hand, the correction to g in Eq. (16a) will be of the order ( V ) since all effective potentials are
quadratic in f and V . We can neglect the latter to lowest order. The resulting equation of motion for the phonon
modes now reads

fi 5 f . ft'k c} f + A g +$ fiq P f + V $ c} f2m gz 2m Bz 2m ~ m q q
'

a~

This equation can be solved via a Fourier transform:

f (z, t ) = —— d r exp ——fico +g 0 (P —A'q)

q fi ' 2m
' 1/2

2m

X j dz' V (z') . m(z —z') . , i A' k
exp i +ik(z —z')+-

2Aw fi 2m
(20)

The many-body wave function can then be written as

lg& =golo&+gof, ct, I0&+0( V, )' .

The overlap of Ig& with an eigenstate lk', P'
& of the noninteracting system is then

(21)

l i Ak'(k', P'Ill &
= ——Jdz exp

fi 2m

Ak P'
+

2m 2m

p2

2m
( t t )+i(k——k')z f (z, t )0 q

= ——exp( —ico t)I dt'(k', P'I V lk, P & .
0

(22)

Equations (21) and (22) reproduce lowest-order perturba-
tion theory (Born approximation), which of course
satisfies inplane momentum conservation. The present
variational calculation thus takes into account quantum
fluctuations, and it at least treats one-phonon interaction
processes corectly, while the TDH method fails to do so.

For normal incidence, the equations of motion simplify

because of isotropy in the plane parallel to the surface.
Since we do not allow any motion along the surface, the
global system is in a zero parallel-momentum eigenstate,
so P=0. For a given wavelength, all phonon amplitudes
must be equal, regardless of their direction. By rotational
invariance g is zero. Integrating the current equation
over position, we can eliminate 5(z, t ) from Eq. (16b):
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+ ++~q Ig I fq+ vq Ig I
=i&Ig I f

$2 Q2
~MF=—,+Vo

2m Bz'

——„gv,f dt &v, ),,

q
0

(23) X sin Aq +m (t t')—
2m

The average of fq is found by integrating this equation
over position. Defining

& f, & = f—"d.Ig I'f, ,
'

+inca, &f, ) + & V ) =i' &f, & .—
I

(25)

i Rq

L

&fq &, =&fq &Oexp —— +~)t~, (t —t, )

dt'exp —— +iris' (t —t')i I, i Wq
fi &o A' 2m

(26)

Thus, the modulus of the average phonon amplitude pro-
gressively differs from its initial value as the overlap be-
tween the particle wave packet and the inelastic potential
builds up. In particular, even if initially no phonons were
present (&f )O=O), they will be generated once & V ),
becomes appreciable.

IV. MEAN-FIELD THEORY

We shall only treat Eqs. (16a) and (16b) in the mean-
field approximation. This means that we will neglect the
spatial variations of f around its average & f ). Replac-
ing f by its expectation value Eq. (26) and inserting in
Eq. (16b) leads to the following effective Hamiltonian for

The above equation is a time-dependent generalization of
the Lee-Low-Pines equation for the phonon amplitude of
a bulk polaron. ' It can be solved as an initial value
problem with the solution

(27)

This mean-field Hamiltonian closely resembles HTDH ex-
cept for the fact that we replaced Ace by A q /2m +%co .
Note that A q /2m is the particle energy evaluated at a
phonon wave vector. If the particle is sufficiently heavy,
then fi q /2m (&ficoq, and we recover HTDH. However,
for most practical circumstances the opposite is true.
For instance, for electrons impinging on a He surface,
the above inequality could only be valid for unrealistical-
ly large wavelengths. The effect of the new term is to
reduce the memory time of the kernel from co

' to
2m /fiq . As we shall see, this will suppress the effects of
dissipation.

How good is mean-field theory? For the statics, we
showed earlier that if ii. —= [(dVq /dz ) /Vq ] ' is the
characteristic length scale of the inelastic potential, then
mean-field theory is valid for q))A, ', i.e., for smooth
potentials.

Turning to dynamics, the fluctuations of f satisfy the
following equation:

A'—[&f ) —&f ) ]=2Im[&V f ) —&V )&f )]. (28)
a

It follows from Eq. (23) that if V (z) is smooth compared
to Ig I, to lowest order we can neglect the first two terms
of the left-hand side of this equation. The corresponding
solution is time independent:

Vq(z )

f, (z, t)= (29)
fi q /2m+Rcoq

Since f is real, it follows from Eq. (27} that
&f ) —&fq) is also time independent. The error we
make in neglecting the fluctuations does not grow as a
function of time. In particular, if fq =0 at t = —~, then
& fq ) =

& fq ) at later times. We conclude that the validi-

ty condition for mean-field theory is the same as that for
the statics, i.e., we are restricted to smooth potentials.

To explore the impact of the replacement of %co by
ficoq+(A' q /2m ) in the memory kernel, we go to the
classical limit. We follow the method of Knowles and
Suhl to derive the corresponding classical equation of
motion. In the memory term of Eq. (27), we expand the
potential as

Vq(z„(t ) }
Bz(t )

dz, i(t) d z„,(t),
V(qz, &(t')) = (Vzq, (t)i} +(t' t ) + ,'(t' t ) 2— ——

dt
(30)

and calculate the first three moments, introducing a small imaginary frequency to perform the time integrals. This pro-
cedure is justified by noting that phonons do not have infinite lifetimes. Phonon decay is modeled by just such an imagi-
nary frequency. For a state which is extended (MF) along the surface, the renormalized potential VM„, the friction
coefficient yM„and the effective mass m M„are
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qD gq V (z„)
p'MF = Vo 1+ dq

2m[Ace, +(fi'q'/2m )] Vo(z„)
(31a)

av, (z„)
az

2

1

[co +(Aq /2m)]

yMF= 11m
q-o 2 [cu +(Aq /2m)]

1 eu Sq 8 V~(z„)
mM„=m 1+—f dq

(31b)

(3lc)

where p h is the phonon density of states, and S is the
surface area. Using the fact that V is proportional to
S ', we note that none of these quantities depend on
the size of the system. Their values should be compared
to those obtained using the equation of motion in the
TDH case of Kumamoto and Silbey:

~XDH = ~O

yyDH
= lim

q~o

qu gq Vq (z,( )

o 2M' Vo(z„)
r '2

pp„(e~q ) a Vq(z„)
2 co& Bz

(32a)

(32b)

BV (z„)
m fDH =m 1+—f dq

m o fin Bz

2

1
(32c)

Q)q

V. NUMERICAL SOLUTION

We first define the adsorption coefficient. Let L~~ (L~ )
be the typical size of the system in the direction parallel
(perpendicular) to the surface, g' the range of the surface
potential (the Bohr radius in our case), and T the surface
temperature. The particle is thus astrained to move in a
box of dimension L ~~L~, one side of which is the adsorb-
ing surface. During an inelastic collision, phonons are
emitted, and then absorbed back after a characteristic
time r(Lt~). However, r(L~~) ao when L~~ ao (the sur-

Comparing first the mass renormalization for the MF
and TDH limits, we note that m M„ is always less than

m&DH. In particular, the reduction of the mass enhance-
ment for the former case is large if the bare mass m is
small. For a dispersion co =cq, with c the velocity of
sound, the small-q limit in the integral of Eq. (31c) is
dominated by co, while the large-q limit is dominated by
Aq2/2m. The "crossover" is located around q'=mc/A'.
For an electron (q*) '=1000 A and for a proton
q* = 1 A. In the former case, the suppression of the mass
renormalization by momentum conservation is clearly
significant and TDH is a poor approximation. In the
latter case, m zDH

——m M„and TDH should be reasonable.
The friction coefficients yM„and y»„are exactly the
same for phonon dispersions which satisfy co =q~ with

g & 2 at small wave vectors. This is the case for both bulk
and surface phonons. This indicates that momentum
conservation will have a greater impact on the mass (and
the potential) renormalization than on the friction
coefficient.

face then acts as a reservoir, as in an open system, where
irreversible processes are allowed). If we denote by
~+z(In~, T)„r,t)) the many-body wave function of the
coupled electron-phonon system, we can introduce the
quantity

~g,'-(z, r)~ —= (q, ~q, ), , (33)

where the subscript z indicates that the spatial integra-
tion over z has been omitted. We define a time-dependent
adsorption coefficient as

L
(aE, t)= lim lim f dz g 1(z, t)

L~~~, L~ oo T~O 0
(34)

a(E)= lima(E, t) .
taboo

(35)

The ordering of the limits in t and L
~~

is crucial if we want
physically meaningful answers.

We now wish to follow the evolution of a wave packet
incident on the surface as it interacts with the surface ex-
citations. For the Hamiltonian, we will either use HzDH
[Eq. (5)] or HM„[Eq. (27)]. Neither is rigorous, but they
describe the limiting behavior with the wave packet ei-
ther extended or localized in the direction parallel to the
surface, and those two limits can be expected to act as
bounds on a(E ).

Both Hamiltonians depend on the behavior of the wave
packet at all previous times through the memory kernel.
We will start with an initial wave packet far away from
the surface, where the inelastic interaction can be
neglected, and allow it to move towards the surface, using
the integration scheme of Goldberg et al. As it ap-

with g «L "«L „and with L " the distance over which
the adsorption coefficient is measured (measurement
length). The measurement time t must be chosen with
care. First, we must demand that t &&L*/u„, with

u, ~
=(2E/m )' the classical velocity of the particle out-

side the surface region. This assures us that the center of
mass of the recoiling wave packet is located outside the
measurement length L* for o;. To avoid reAection on the
wall opposite to the surface, we also demand t «L~/u, ~.

Finally, to avoid "phonon return, " we impose t « r(L
~~

).
Since we have already taken the limit L~~ ~~, the last of
these constraints is automatically satisfied. We set the
surface temperature T=O to avoid reevaporation. Our
definition of the energy-dependent sticking coefficient
a(E) is then
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proaches the surface, we calculate the kernel step by step.
For a given time step, we first compute the time integral
of the kernel and then update the particle wave function.

The physical system on which we concentrate will be
the same as discussed in papers I—III: charged particles
(electrons) incident on the surface of liquid He. The
elastic potential is the screened static image charge po-
tential:

~o
z ~zc-

z

2
Ao

V,„(z)=— f dt'( )t, ,K(t t')—,
3no z 'o z

with E equal to either one of the following:

(38)

of order 10 cm or shorter. Since typical values of z for
the wave packet during the collision are in excess of 100
A (see Fig. 1), we are in the regime qz )) l.

We can perform the sums over the phonon modes in
the memory kernels. We write the two inelastic potential
in the form

Vo(z)= ' Ao', 0&z~z,
Zc

(36) KTD„(t ) =
1 co—s(coD t )

(39a)

+00, z &0,
where Ao=e (e —I)/4(e+ I) and e is the dielectric con-
stant of liquid He. The cutoff z, is the distance from the
surface where the image potential approximation breaks
down. The infinite potential barrier prohibits the elec-
tron from entering the bulk, which is true for small in-
cident energies. The inelastic potential is taken to be

Vq(z)=
A'q

2pco S

1

1/2
2, z

Ao'
OKZ&z

zc

where p is the He density, cr the surface tension,
co =(0/p)' q is the dispersion relation for Rayleigh
waves on a thick helium film, and S is the surface area.
This inelastic model potential overestimates the contribu-
tion from low-energy excitations. ' The actual inelastic
potential for He phonons vanishes for qz «1. This
could potentially affect the long-time behavior of the
memory kernel. However, the surface excitations which
are relevant for the adsorption process have wave vectors
of order q*, with e +v=1, where ~ is the characteristic

q
time for the collision process. For incident energies of
order 1 K or larger, r is of order 10 ' s or shorter. The
relevant phonon wavelength X'=r (cr/p)'~ which is

I

' 1/2

KMF(t)= — f dq q' sin
p 0

Rq +co t
2m

(39b)

Here, ~D (qD ) is the Debye frequency (wave number) of
the surface phonons. The Debye frequency for He sur-
face phonons is not known. We will assume it to be of or-
der 10"s

Comparing the two kernels, one can make a qualitative
comparison: the "extended" kernel oscillates far more
rapidly than the TDH kernel, due to the presence of the
free-electron dispersion. Consequently, only short-term
rnernory is expected in the momentum-conserving for-
malism. We recall that for extended wave packets, less
energy will be exchanged with the phonons during a col-
lision on the surface because momentum-conservation re-
quirements reduce the number of phonons that can be
emitted.

Since we are interested in the quantum regime, we im-
pose incident electron energies which are much smaller
than the Rydberg [(mAO/fi ), of order 10 K for elec-
trons]. For the TDH Hamiltonian, this allows us to
choose a typical time step of the order dt=10 '2 s.
However, the maximum frequency entering in I( MF is
several orders of magnitude larger ( =10' s ') than the
Debye frequency, and we cannot reduce the time step to
include those frequencies (for numerical reasons). We
thus separate the integral in Eq. (39b) in two parts:

' 1/2 ' 3/4
1 c7 2mK (t)=-MF

p fi

coD AqD /2m

f dc@, sin(cot )+f de, sin(ut )
CO coD N

(40)

In these expressions, we have neglected the phonon-dispersion relation when compared to the free-particle dispersion.
The second contribution is sharply peaked near t =0 and represents the short-term memory of the system. When in-
serted in the effective potential (38), it plays the role of a 5 function which is centered at a time t close to t. The
effective inelastic potential is then

VMF
02

4n(cr/p)' z

' 3/4

I d) I)) Jdm, ~'sin'[ra() )]+)— (41)

We first begin without any inelastic interaction, and
follow the evolution of the wave packet, which starts far
away (10 A) from the surface (see Fig. 1). The initial
state is a Gaussian wave packet of average energy 0.2 K.

The particle energy is chosen to be several orders of mag-
nitude smaller than the Rydberg energy. As the wave
packet enters the well of the elastic potential (left-hand
side of the figure), the large momentum contributions can
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40
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150

0.2

in Fig. 3. The particle hits the surface after 80 ps, after
which it looses its energy in a time scale of order 20 ps.
The velocity v of a classical particle would be roughly 10
A/ps, so the collision time is of order tttt/U. There is a
small recoil effect with the surface returning some of the
energy dissipated by the particle. The relaxation of the
trapped wave function to the ground state is apparently
slow since E(t ) does not apparently change after the col-
lision.

For A, =2.7, there has been a qualitative change. To a
great extent, the wave packet got trapped. The trapped
wave function has collapsed onto the substrate. In III,
we showed that with increasing A, there is a collapse of
the normal part of the wave function. Evidently, the rap-
id increase of a(0) around A, =2 is triggered by this col-
lapse. To put it in picturesque language, it seems as if the

(a)
FIG. 1. Density probability of a wave packet initially 10 A

away from the surface in the absence of coupling with the sur-
face. The surface is on the left-hand side of the picture. The
time in picoseconds is displayed in the upper-right corner of the
pictures. The ordinate scale is normalized to the maximum of
the wave packet.

150

100

250

penetrate the well and bounce off the hard wall at z =0,
while the low-energy contributions suffer quantum
reAection. The oscillations of the probability density seen
during the collision are interference effects between the
incoming and outgoing part of the wave packet. '

With the same initial conditions, we now turn on the
interaction. The dimensionless coupling constant
A, = ( u ) ' /att, where ( tt ) ' is the root-mean-square
amplitude of the zero-point motion on the surface and az
is the bound-state "radius" for an electron on He
(tt~ =60 A; (u )' =1 A).

After a collision, the wave packet in general has bro-
ken into two distinctive parts. One part stays close to the
surface while the remainder moves out to in6nity. To
monitor adsorption, we compute the sticking coeScient
and the quantity

, hq

(b)

0.2

z (1Q5A)

300

60

p, 4 0.2

z (1Q5A)

120

0.4

tglHMFlg ~, ~~t~~ded
E(t)=

(g IHrDHlg ), localized . (42) 180 240

We will treat E(t )
—E( —~ ) as a measure of the energy

transfer between the particle and the ripplons.
We start with the TDH Hamiltonian.
For A, ((1,we note little adsorption. The evolution of

the wave packet is similar to Fig. 1. The physical value
of A, for electrons is in this range (k =0.02).

For A. =1.8 [Fig. 2(a)], a small fraction of the wave
function gets trapped. The distinction between trapped
and rejected parts, however, is not very clear. The
characteristic length scale of the trapped wave function
(last frame) is of the order of several Bohr radii, so that
the effective potential is presumably not yet strongly
affected. Given the extent of the trapped wave function,
it is obviously not in the ground state of the elastic poten-
tial. The particle energy is plotted as a function of time

300 360

0 0.2

& (10'A)

0.4 0.2

z (1QSA)

Q.4

FIG. 2. (a) %ith the same initial condition, the particle in-
teracts with the surface exitations via the mean-field Hamiltoni-
an H»H. The state is localized in the plane of the surface, and
the coupling constant is A, =1.8. (b) Same as Fig. 2(a) with a
coupling constant k =2.7.
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1.0

C)

0.5-

LLJ

(a) sticking coefficient of TDH is always larger than that of
the extended case. The basic results are first, that in ei-
ther case, for sufficiently large values of the coupling
strength, the particle wave function loses its coherence
and starts behaving like a classical object, and secondly,
that momentum conservation reduces the adsorption
coefficient. it does however change the qualitative depen-
dence of the adsorption coefficient on A, .

0-
0

1.0

0,5-
C)

UJ

0-
LLJ

200 400
VI. SUMMARY AND CONCLUSION

In the Introduction, we raised two questions: first, are
the results of TDH trustworthy, and is a(0) indeed singu-
lar? Second, what is the relation between static polaron
collapse and nonzero a(0)?

We have found that for a Lee-Low-Pines variational

(0)
-05- 40 80

180

t (psec)

360

FIG. 3. Particle energy as a function of time for a localized
state in the case of (a) A, =1.8, (b) A, =2.7. (The energy is nor-
malized to the initial energy of the particle. )

120 160

strong inelastic scattering for small z "sucks in" the wave
function towards z =0 and overcomes quantum
reflection. In Fig. 3(b), we show the energy loss. The er-
ratic behavior of E(t) after the collision is probably a
combination of the "ringing" of the surface and transi-
tion between bound states.

Next, we go to the extended case (MF). The required
coupling constants for adsorption are considerably larger.
In Fig. 4(a), we show A, =17. Most of the wave packet
still manages to escape, but a small part has broken off
and may be trapped. There is a strong recoil effect which
returns about —,

' of the initially adsorbed energy. For
A, =20 [Fig. 4(b)], the sticking coefficient has increased
considerably and, as for the TDH case, collapsed bound
states now appear. The escaped fraction of the wave
function has initially a narrow extent (150& t &250 ps)
and then rapidly disperses (250& t &300 ps). This is an
interesting demonstration of the strong —weak-coupling
crossover as we move away from the surface. Close to
the surface, inelastic scattering and mass enhancement
lead to highly localized wave functions. As the wave
packet moves into the weak-coupling regime,
Heisenberg s uncertainty principle forces a rapid disper-
sion. The particle energy behaves again erratically.
There is no well-defined time of impact and there is a
continuous loss of energy [see Fig. 5(b)].

We can now plot the sticking coefficient a(0) as a func-
tion of the coupling constant for the two cases (see Fig.
6). The transition from weak to strong coupling is rather
abrupt, especially in the extended case: as the coupling
constant is increased by a factor of 2, we go all the way
from weak to strong adsorption. For HTDH the transi-
tion occurs in the region 1~A. 5. As expected, the

200

I

0.1

c(tO~A)

0.2 0.1

z (105 A)

0.2

(b)
50 100

150 200

250 300

0.15

z (10~A)

0.30 0.) 5

z (105A)

0.30

FIG. 4. (a) With the initial conditions of Fig. 1, the particle
interacts with the surface phonons via H&s in the momentum-
conserving formalism. The coupling constant is A, =17. (b)
Same as Fig. 4(a), with a coupling constant A, =20.
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FIG. 5. Particle energy as a function of time in the
momentum-conserving formalism, in the case of (a) k= 17, (b)
A, =20.
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FIG. 6. Adsorption probability as a function of the coupling
constant for the localized and extended cases. The value A,s+ is
the coupling constant at which strong renormalization of the
elastic potential is expected for the ground state of the static ex-
tended system. The curves are a guide to the eye.

wave function —which is valid for weak- to intermediate-
coupling constants —we recover results which are qualita-
tively similar to TDH if we use a mean-field approxima-
tion. This provides additional evidence for singular
dependence of a(0) on the coupling constant X. In the
"critical" region, there is a very rapid transition from
quantum to classical physics. The main question con-
cerning this conclusion is the validity of the mean-field
approximation for the variational equations. The mean-
field approximation should be valid for potentials Vz(z)

whose characteristic length scale is large compared to the
particle wavelength. This, however, means that quantum
reflection is weak in the validity range of mean-field
theory. We cannot rule out the possibility that at very
low energies, mean-field theory breaks down and a(0)
would go to zero. Thus, although we have provided addi-
tional evidence for it, we did not prove the singular
dependence of a(0) on the coupling constant.

These findings obviously are in strong disagreement
with Brenig's (rigorous) result a(0)=0. There are a num-
ber of possible origins for the discrepancy. First of all, it
could be argued that Brenig's result is valid only for a
closed and globally coherent system, while we assumed
an open system. For a closed system, irreversible pro-
cesses, such as adsorption, are strictly speaking not possi-
ble. In the derivation of our effective "single-particle"
Hamiltonian, we implicitly included a small but finite
lifetime for the phonons. However, if this were the cause
of the problem, a(E ) would have been zero also for finite
incident energies in Brenig's proof, which was not the
case.

A second possibility is that Brenig implicitly assumed
that perturbation theory is convergent. We previously
also found that a(0)=0 term by term in perturbation
theory. However, this need not be valid anymore if the
perturbation series does not converge.

Finally, Brenig could be right after all. Our results are
numerical, and we cannot exactly go to E=0, since the
De Broglie wavelength would exceed the sample size.
Nevertheless, if this was the answer, we would expect a
strong dependence on E in the adsorption coefficient
a(E). In particular, the onset of nonzero a(E) should
have shifted to larger k values on reducing E. We did not
observe this, although of course we cannot rule out a
strong E dependence in a(E ) for extremely low E. Even
if this were the case, we would still expect our results for
a to remain valid experimentally, since the asymptotic re-
girne E~O would require unrealistically low energies.
The puzzle still remains to be solved.

On the second question, we have shown that the transi-
tion in the adsorptive behavior both for the LLP and
TDH variational wave functions occurs very close to the
critical coupling constants for which collapsed bound
states appear close to the surface. In III, we found that
for the present model problem, the ground-state wave
function of a surface polaron collapses around A, =2.
This is close to the value of A, where a(0) becomes notica-
bly different from zero in TDH, but somewhat less than
the LLP value (A, =20). However, the numerical solution
for LLP still showed that for A, ~ 17, the trapped part of
the wave function is extended in the normal direction and
collapsed for A, ~17. This demonstrates clearly that the
onset of adsorption is indeed triggered by the appearance
of collapsed surface bound states. Obviously, the
effective coupling to the surface excitations is much
larger for the collapsed states so that the result is intui-
tively reasonable. The finiteness of a(0) thus appears not
to be due to wave-function coherence by inelastic scatter-
ing (and suppression of quantum reflection), but rather to
polaronic mass enhancement in the normal direction
close to the surface. This leaves us with the possibility
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that if we go to much lower energies for large A, , we could
still recover a(0) =0.

The problem of energy transfer between a particle and
an adsorptive substrate is remarkably subtle —even for
the simplest possible model problem discussed here. The
heart of the problem lies in the manner in which quan-
tum mechanics is suppressed as we couple a particle to a
"heat bath" such as phonons or electron-hole pairs. Loss
of wave-function coherence, polaronic mass enhance-
ment, and potential renormalization all lead to substan-
tial changes in the wave function. Loss of coherence and
mass enhancement both aid adsorption. For our prob-
lem, mass enhancement and potential renormalization
have obscured a possible loss of coherence.

For quantum tunneling problems the same questions
have arisen. At least for the case of escape from a meta-
stable well, a coherent description has emerged. As sur-
face adsorption and quantum-reflection problems have to
deal with a continuum of scattering states, we are faced
here with a considerable challenge.

Experimental tests of the predicted critical dependence
of a(0) on A, seem quite possible. Electrons refiecting off
He are, as mentioned, always in the weak-coupling re-

gime. Hydrogen atoms have A, values around 10—20 in
the critical regime. The question of whether a(0)=0 or
not for hydrogen atoms is of considerable importance for
achieving Bose condensation for spin-polarized hydrogen.

The most useful experiment would be one where A,

could be varied. One possibility would be the adsorption
of charged partic1es on Si surfaces, while one varies the
dielectric constant through doping.

Finally, we limited ourselves to a zero-temperature cal-
culation. Finite-temperature effects are likely to change
the dependence of a(0) on A, . For low incident energies,
we expect the adsorption probability to have a finite
(nonzero) value, even in the weak-coupling regime. The
transition from weak to strong adsorption is also expect-
ed to be less abrupt, as renormalization effects are
damped by thermal motion (see I). An extension of the
present formalism to include finite-temperature effects is
possible but goes beyond the scope of this paper.

z, = f "dxz,
0

and the Lagrangian density X is defined as

(A3)

X=/'Hg —ill' —g . (A4)

This Lagrangian is a functional of the quantities
fq,fq, g,g" and their time derivatives. To obtain the
equations of motion, we can proceed as in Sec. III, or, a1-

ternatively, we can write the Hamilton s principle associ-
ated with the above extremum principle. Here, we take
the latter point of view. The canonical conjugate ~ of
fq

is by definition

quantization of the molecular displacements leads to a
phonon representation. Davidov used the single-phonon
approximation to model the wave function of the global
system, which corresponds to our LLP ansatz.

To obtain the evolution equation of the wave-function
parameters, Davydov proceeded as follows: in the classi-
cal regime, one can write exact Hamilton-Jacobi equa-
tions for the displacements of the molecular chain and
their associated canonical conjugates. To quantize this
system, Davydov replaced the classical variables in the
Hamilton-Jacobi equations by the expectation values of
their quantum-mechanical analogs. This approximation
is certainly justified for systems which are close to the
classical regime, such as DNA molecules. However, as
we will see at the end of this section, it does not yield the
correct equations for the quantum-mechanical evolution.

In our system, the "intuitive" Hamilton-Jacobi equa-
tion can be written as

fi(H&,
t&—(f lg I') =

dt $f»

The equation of motion obtained from 5F=O differs
from the above equation. The functional was defined as

F=f dtl. ,

where we introduce the Lagrangian
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APPENDIX

In this section, we point out the differences between
the extremum principle and the Hamilton-Jacobi equa-
tions for variational wave functions which were proposed
by Davidov. We then explain why our method yields
better results.

The particle-phonon Hamiltonian we are concerned
with is similar to the one used by Davydov to describe
the propagation of excitons in one-dimensional molecular
crystals. The exciton position amplitude at site n, corre-
sponds to our particle wave function at position z. The

(a),+ ' g f dzlf l'$f' 2 o q Bt
q

=is—(f, lgl') .
a

(A7)

This equation corresponds exactly to the equation of

The Hamiltonian density % associated to the Lagrangian
density X is then defined by the expression

8
q

q

=-@*H~-' Zlf l' ' (A6)
2 q Bt

so that the "true" Hamilton-Jacobi equation takes the
form



3184 TH. MARTIN AND R. BRUINSMA 41

motion (15b) of Sec. IV. However, it is easy to see that it
differs from Eq. (Al). To see why Eq. (A7) should be
used instead of Eq. (Al), we go to the exact solution: if
the wave-function ansatz described by Eqs. (7)—(10)
represents an exact solution of the time-dependent
Schrodinger equation associated to the particle-phonon
Hamiltonian (1), then it certainly extremizes the func-
tional F. This is demonstrated in the derivation of Eqs.
(12a) and (12b). Assuming that the exact solution is of
the variational form prescribed, Eq. (A7) is obeyed while
Eq. (Al) is not.

The conclusion we have drawn here is in agreement
with the work of Brown et al. on the applicability of
Hamiltons equations in quantum dissipative systems.
Nevertheless, when the system behaves classically, the
particle wave function is well localized so that we can for-
get about the spatial dependence of the phonon ampli-
tudes. In this situation, the Hamilton-Jacobi equation
(Al) coincides with the extremal principle (A7). The
views we have expressed here are also confirmed in a
series of recent publications ' on the evolution of Davi-
dov solitons.
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