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Temperature and frequency dependence of the sound velocity
in vitreous silica due to scattering ofF localized modes
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The behavior of the sound velocity in vitreous silica is investigated in a range of temperatures
around that of the plateau in the thermal conductivity. Localized vibrational modes play an impor-
tant role in thermal transport and inelastic phonon scattering in this temperature regime. A model

based on the idea of a crossover from phonon to fracton vibrational dynamics at frequencies of the
order of the plateau temperature has been developed, and is used to calculate the expected tempera-
ture and frequency dependence of the velocity of sound. The result can be expressed in terms of ex-

perimentally measurable quantities, and contains no arbitrary parameters. Good agreement is ob-

tained with available experimental data.

I. INTRODUCTION

The velocity of sound in a number of amorphous ma-
terials exhibits a temperature dependence that is very
different from that of crystals. The change in the sound
velocity is decidedly nonmonotonic at low temperatures
(see Fig. l) in contrast to the crystalline case. The initial
temperature dependence of the sound velocity in conven-
tional glasses at very low temperatures is rather success-
fully accounted for in terms of two-level systems (TLS's). '

Thus, below 1 K or so, the temperature dependence of
the velocity of sound arises from resonant scattering of
the phonons off TLS's. In the vicinity of 1 K and above,
relaxational scattering is said to come into play, leading
to a decrease in the sound velocity with increasing tem-
perature. The temperature dependence is predicted to be
logarithmic (with the sign reversed with respect to the
resonant scattering regime) and is observed experimental-
ly. With continuing increase in temperature, the sound
velocity exhibits a stronger temperature dependence. It
is in this regime, above 10 K or so, that we suggest effects
due to scattering from localized vibrational modes be-
come dominant. The temperature scale for this regime is
set by the experimental observation of a "plateau" in the
thermal conductivity of glasses. This sets the energy
scale for the onset of localized vibrational excitations, or
fractons in the model that we shall use for the calcula-
tions. In our discussion, we shall use the measured
thermal properties of glasses along with theoretical ex-
pressions for the various vibrational scattering lifetimes
in the problem ' to obtain an expression for the sound
velocity from the temperature of the plateau of the
thermal conductivity —10 K to temperatures -60 K.

Referring again to Fig. 1, the sound velocity decreases
to a minimum at about 60 K, then increases with increas-
ing temperature. The linear increase at high temperature
is linked to a similar increase in the elastic constants. It
has been speculated that this increase is caused by densi-
ty fluctuations, a view supported by the observation that
the slope of the linear region appears to scale with the
melting temperatures of the glasses studied. However,

this linear region is outside the scope of our present mod-
el. Here we shall consider the additional temperature
dependence of the velocity of sound that results from the
scattering of phonons from the localized excitations. The
characteristic energy scales correspond to a range of tem-
perature from about 10 to 60 K or so, where the sound
velocity, U, decreases with increasing temperature. We
use the fracton model developed to treat the thermal
transport in this regime of temperature and find that the
change in the sound velocity in this regime can be ex-
pressed in terms of measured quantities (e.g. , the thermal
conductivity rr). Thus, in addition to the temperature
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FIG. 1. Plot of the fractional change in sound velocity for
vitreous silica as a function of temperature and, for purposes of
comparison, for crystalline germanium (from Ref. 2). The inset
shows an enlarged plot of the typical behavior at small T for
three different frequencies. The dashed line is an estimate of the
slope of the linear region, as discussed in the text.
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dependence of v„which we find to be linear, we provide a
quantitative estimate of the change in v, using the mea-

sured thermal conductivity. A brief outline of our model
now follows.

At the lowest temperatures, phonons are scattered
predominantly by TLS's resulting with a characteristic
tanh(Pc@) dependence of the mean free path for phonon
scattering, where P=(kpT) '. We assume a different
scattering process at "intermediate" temperatures (our
reference being the plateau temperature). Thermal pho-
nons now scatter from localized vibrational modes which
are increasingly excited as the temperature approaches
that of the plateau. We consider here the change in the
velocity of phonon propagation arising from phonon
scattering by fracton modes. These modes are assumed
to couple to the phonon via a third-order anharmonic
coupling term in the elastic Hamiltonian.

Our model assumes the existence of a crossover in the
density of states from extended to localized regimes. The
crossover occurs at a frequency corresponding to the
temperature of saturation of the phonon contribution to
the heat conductivity (the "plateau" temperature). The
energy scale for this crossover is set by a length scale of
the structural disorder in the glass. More specifically,
one assumes that the glass may be considered to be
structurally homogeneous at large length scales, but frac-
tally connected at a microscopic length scale. The cross-
over length scale in our model is that at which the elastic
force-constant connectivity crosses over from three di-
mensional (3D) to fractal. The vibrational modes at short
length scales (high frequency) are termed fractons. They
are taken here to be superlocalized objects characterized
by wave functions which decay faster than exponentially
in distance. The consequences of third-order anharmon-
ic interaction between phonon and fracton modes can be
calculated in terms of this model and compared with a
variety of experimental data.

One such successful application of this model to
glasses, proposed by Alexander et al. , has been the com-
putation of the contribution to heat transport arising
from fracton modes. At suSciently high temperature, it
was suggested that anharmonic interactions allow for
heat transport by localized vibrational-mode diffusion via
phonon-assisted fracton hopping. This has been shown
recently to generate a quantitative prediction for the in-
crease in the hopping conductivity above the value at the
plateau, in good agreement with measured values. Our
consideration of the associated changes in the sound ve-
locity in this paper wi11 be restricted, similarly, to temper-
atures high enough that scattering processes between
phonons and fractons dominate. This is expected to
occur in a range of temperatures starting somewhat
below the plateau in the thermal conductivity up to a
temperature beyond which the model is not applicable
(see Ref. 5 for details). In the case of vitreous silica, this
corresponds to a range of temperatures from 10 to 60 K
or so.

Anharmonic-interaction-induced phonon scattering
from fracton states gives rise to a temperature-dependent
decrease of the sound velocity. Above the temperature of
the plateau, the decrease will be shown to be linear in the

temperature. Furthermore, we will show that the mecha-
nism responsible for the change in sound velocity is the
same as that responsible for thermal conductivity.
Therefore, the sound velocity can be expressed directly in
terms of the hopping contribution to the thermal conduc-
tivity, reducing the number of adjustable parameters.
Expressed in such a manner, the theoretical value for the
decrease in sound velocity with increasing temperature is
found to be close to values measured by experiment.

As noted above, the anharmonic-interaction-induced
phonon-fracton interaction has several observable conse-
quences, one of which is the proposed contribution to
heat conduction in glass. Thus, the same processes that
couple phonons to fractons and give rise to thermal
transport generate an inelastic phonon lifetime. This
would contribute to a diminution of the phonon mean
free path. The temperature and frequency dependence of
the phonon mean free path caused by phonon-fracton
scattering has been calculated, and used in Ref. 5 to esti-
mate the magnitude of the fracton-hopping contribution
to the thermal conductivity. Our approach here is simi-
lar. We express the change in the velocity of sound in
terms of the phonon mean free path, and then use mea-
surements of the latter to determine the former.

We calculate the change in the velocity of sound within
this model in Sec. II, and compare it with experiment in
Sec. III. Section IV contains our summary.

II. COMPUTATION OF THE CHANGE
IN VELOCITY OF SOUND

We make use of a Kramers-Kronig relation between
the real and imaginary parts of the phonon self-energy
due to the processes shown schematically in Fig. 2 to
compute the change in the velocity of sound. The two-
phonon one-fracton process [Fig. 2(a)] has been shown to
result in a phonon scattering rate that is smaller by a fac-
tor ro/co, than that of Fig. 2(b), recalling that co «co, for
the phonons typically studied in experiment. We will
therefore begin by considering the contribution of the
process pictured in Fig. 2(b), the one responsible for the
hopping contribution to thermal conductivity, ~( T).

(b)

l-=~

FIG. 2. Schematic illustration of the processes contributing
to phonon scattering at intermediate temperatures (i.e., in the
vicinity of the plateau temperature). Extended phonon states
are denoted by wavy lines, localized fracton states by double-
dashed lines. Process (a) corresponds to two phonons combin-

ing into a fracton; process (b) corresponds to a phonon combin-

ing with a fracton to form a fracton. Process (b) is responsible
for the phonon-induced fracton-hopping contribution to the
thermal conductivity.
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rb '(co, T ) = C~o) T (2)

at temperatures satisfying the condition k~T) fico, The.
constant Cb is known in terms of the coupling C,z and
various numerical coeScients. It was pointed out in
Ref. 5 that the matrix elements and the parameters are
not known precisely, leading to the possibility of large er-
rors because of the high powers which enter into the es-
timation of Cb in Eq. (2}. One can minimize these errors
by eliminating the matrix element A; k using the expres-
sion for the fracton-hopping contribution to s( T), which
arises from precisely the same process [i.e., that pictured
in Fig. 2(b)j. Doing so enables us to express the contribu-
tion to the phonon lifetime from Eq. (2) in terms of an ex-
perimentally measurable quantity, with some remaining
dependence on the exponents characterizing the fractal
network at short length scales. These are not known, but
as they enter our equations as simple multiplicative con-
stants, and there are physical grounds for believing these
exponents to be small and of order unity for any real sys-
tem, their precise numerical value is not necessary. It
suffices for our purpose here to use values that have been
found in numerical experiments on three-dimensional
percolating networks (although it must be understood
that the small-scale force-constant structure of vitreous
silica, even if fractal, is not that of a percolating net-
work).

Using the results of Ref. 5, the phonon scattering rate
for process (b} is

The interaction between phonon and fracton modes
proceeds by virtue of the lattice anharmonicity which we
express by the form

A;„,=C,s g A; kB; b bq+H. c. , (l)
i,j,k

where the b and b operators create and destroy modes
that are either extended (phonons) or localized (fractons)
depending on the mode frequency, denoted here by the
subscript i or j. The factor A; k is a matrix element that
can be computed from the wave functions of the modes
involved in the scattering process. The anharmonic cou-
pling C,~ is an important unknown parameter. It can be
determined by comparison of our results with experi-
ment, but we shall eliminate it by substitution of experi-
mentally measurable quantities.

The matrix elements A;jk for the two most important
scattering processes, pictured in Fig. 2, have been com-
puted in Ref. 5. The partial lifetime of a phonon of fre-
quency co (co ((co, ) caused by the interaction process pic-
tured in Fig. 2(b) has been calculated to lowest order in

C,&to be
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tion (3) gives us the phonon lifetime caused by the
scattering process pictured in Fig. 2(b) in terms of
measurable quantities, g and a( T). One caveat to be not-
ed is that Eq. (3) is not valid at all temperatures. Our cal-
culations hold only in the range from slightly below the
plateau temperature to an upper limiting temperature
determined by the breakdown of the perturbation expan-
sion in (co, rh, ),where rh, is the fracton-hopping life-
time.

In fact, if one examines the sound attenuation in
glasses (see Fig. 3), a universal behavior is observed when
the inverse scattering rate [equivalently, the scattering
rate given in Eq. (3)] rises linearly with the temperature
(as we calculate) in the temperature range that we consid-
er here. At the upper end of this range, the observed
scattering rate peaks, and then falls to lower values. This
"absorption peak" has been attributed to relaxation by
thermally activated processes. ' This is supported by the
observation that the shifts of the peak temperature with
changes in the frequency are in good accord with an
Arrhenius-type law. However, to explain the experimen-
tal data it is necessary to allow for a distribution of ac-
tivation energies. Fitting the attenuation of phonons in
the range from 20 to 1000 MHz, Hunklinger" found a
fairly broad Gaussian spectrum with a mean activation
energy of 410 K, and a half-width of about 550 K, with a
cuto6' for the lower end of the distribution. We suggest
in this paper that there are additional scattering process-
es which contribute to the attenuation, Figs. 2(a) and 2(b),
which should be taken into account when fitting the data.
Presumably, this might merely serve to alter the phenom-
enological fitting parameters of Hunklinger. " The con-
tribution from the scattering processes we consider is ex-
pected to be quenched at temperatures very much above
the plateau temperature. We shall take Eq. (3) to be appl-
icable immediately above the plateau temperature.

Using the Kramers-Kronig relation to obtain the
change in the sound velocity corresponding to the

~b '(co, T}=0.09(a)lco, ) /k' 'a(T), (3)
0.5-

where the numerical prefactor is evaluated using values
of the various exponents in the problem appropriate to a
3D percolating network. This expression is accurate up
to factors of order unity. The crossover length g is relat-
ed to the crossover frequency co, by co, =2m.v, /g. The
value of the crossover frequency is such that the phonon
mean free path is about equal to its wavelength. Equa-
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FIG. 3. Plot of the inverse mean free path vs temperature for
longitudinal phonons of frequency 20 MHz for vitreous silica
(from Ref. 2). The dashed line represents the linear dependence
expected in the fracton-scattering regime.
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scattering process (b), it is quite straightforward to find

5v,

s (b)

= —(Cb Tco, ln. )

X [1+—,'(co/co, )in[(co, —co)/(co, +co)]) . (4)

Expanding the logarithm, to lowest order in co/co„ this
becomes

5v,

s (b)

= —(CbTri), /n. )[1—(cg/co, ) ] . (5)

In this expression, 5u, Iv, varies linearly with T and is
independent of the phonon frequency for low-frequency
phonons. This is expected to be valid at temperatures
-Ace, /kz, where fracton scattering becomes important.
There is, as well, an upper cutoff determined by the tem-
perature at which the fracton lifetimes become extremely
short so that the phonon-fracton scattering process is
quenched.

We now turn to the second process for phonon scatter-
ing, pictured in Fig. 2(a), involving two phonons and one
fracton. This process, (a), has been shown to result in a
scattering rate given by '

1/~, =C,co T, (6)

where the constant C, depends on a set of parameters
similar to Cb. We can express C, in terms of Cb using
the values of the various exponents appropriate to a 30
percolating network. This is not as reliable as the pro-
cedure which led to Eq. (3) because C, and Cb depend
upon different matrix elements. The Krarners-Kronig
formula for process (a) then yields

5v,

s (g)

= —0. 14(Cb Tco, lm )[1—(co lco, )ln(co, lco )] .

Combining Eqs. (4) and (7), the total change in sound ve-
locity is thus

s (b)

= —(Cb Tco, /~)

X I1.14—(ro/co, ) /[1+0. 141n(cu, /co )]I (8)

III. COMPARISON %'ITH EXPERIMENT

We now make use of the observation that the hopping
contribution to the thermal conductivity, aha (T), is rath-
er simply related to the phonon lifetime:
~h,~(T) =const X(ksco, g '/co r' ') In this rela. tion, co is
any phonon frequency, as in our model the product co ~("'
is frequency independent for process (b), and depends
only on the temperature [see Eq. (2)]. Eliminating Cb in

to leading order (note that the phonon frequencies typi-
cally used are around 20 MHz, far smaller than the cross-
over frequency, co, —10' s ').

terms of thermal conductivity, we find the leading term
from Eq. (8) to equal

5v,

s (b)

= —0. 1(g /2m. u, )[~(T)/T]ks 'T . (9)

The slope of this linear region can be found using Eq.
(6) given the slope of the straight-line region of a.( T), just
beyond the plateau temperature. From the data of Cahill
and Phol, ' the slope of the linear region above the pla-
teau is a(T)IT=8X10 W/mK . From Ref. 9, the
value of g is 15 A. Using the velocity of sound in vitre-
ous silica at the reference temperature to be
v, =5.8X10 m/s at 0.28 K, ' we find

vs

s (b

= —(1.0X 10 K ')T (10)

valid for temperatures from 10 to 50 K or so (after which
deviations from this simple linear behavior may be ex-
pected for the reasons explained in Ref. 5).

Referring to Fig. 1, experimentally one finds that
5v, /v, decreases with increasing temperature above
liquid helium, with a minimum around 70 K, after which
there is an increase with increasing temperature. We
concentrate on the region below 50 K or so, where we ex-
pect our theory to work reasonably well. In this tempera-
ture regime, the experimental plot of sound velocity
versus temperature exhibits curvature, while Eq. (9) ac-
counts for a linear temperature dependence. If one inter-
prets the experimental results in terms of a linear region
sandwiched between crossover regions at either end, a
value for the slope can be extracted. We extract a value
of 5u, /v, for vitreous silica of —(0. 15X10 K ')T.
We must subtract from this slope a positive slope contri-
bution of approximately (0. 12 X 10 K '

) T, which
represents the increase attributed to density fluctuations
(the dominant effect at higher temperatures, as shown in
Fig. 1). The experimental value for the slope of the linear
decrease is thus approximately —0.3 X 10 K '. Our
calculated value [Eq. (10)] somewhat overestimates the
slope. However, the numerical prefactors which led to
Eq. (10) were only approximate, and so the agreement
with experiment can be considered quite reasonable un-
der the circumstances.

Above -50 K, we estimate that there will be substan-
tial deviation from the simple perturbative results used
here. At higher temperatures, moreover, phonon-fracton
scattering becomes less effective because of fracton-
lifetime effects. This in turn implies that the phonon-
fracton scattering contribution to 5u, /u, will diminish so
that the increase due to coupling with density inhomo-
geneities will become dominant. This would then ac-
count for the minimum in 5v, /v, observed around 60 K,
and its subsequent linear rise up to the highest ternpera-
tures measured.

A second prediction is the frequency dependence of
5u, /v„as given by Eq. (8). The leading term is indepen-
dent of phonon frequency. The first correction is quadra-
tic in phonon frequency, but down by (colt@, ) in magni-
tude.
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IV. SUMMARY

We have presented results on the effects of phonon-
fracton scattering on the velocity of sound in glass. It is
hoped that these will provide stimulus for further experi-
ments. In particular, we note that the basic assumption
is that of localized modes which scatter phonons, analo-
gously to the TLS*s, at lower temperatures. These local-
ized modes also contribute to thermal transport by
phonon-mediated diffusion. A relationship between these
processes is established and used to estimate the changes
in the sound velocity as a function of temperature. This
yields results that compare favorably with experiment.
Within the general context outlined here, our discussion
may be applicable to a variety of disordered materials, in-
dependent of the particular assumption of fractal struc-
ture at short range, but requiring extended-localized vi-
brational state interactions.

Note added in proof. The model presented here facili-
tates explicit calculations within the context of the idea

that thermal transport in a disordered solid can occur by
diffusion of localized modes. This idea has existed for
some time, and we note a recent calculation by Cahill
et al. ' 6tting the thermal properties at high tempera-
tures in terms of a model using diffusion of localized os-
cillators. It is to be noted that as the temperature is
raised, our localized fracton excitations evolve into
single-particle excitations, approaching in this limit the
description proposed by those authors. In the oscillators
model it is found that at sufficiently high temperature,
the thermal conductivity becomes essentially independent
of the temperature. This is consistent with our expecta-
tion here that the velocity of sound also ceases to exhibit
temperature dependence due to the mechanism outlined
in this paper at sufficiently high temperature.
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