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Nature of energy transfer processes in F-center —CN -defect pairs in CsCl
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A model which considers the F center and a nearby CN molecule as a whole entity (or "super-
molecule" ) has been proposed to explain the observed anti-Stokes resonance Raman scattering of
F-center-CN -defect pairs in CsCl. It is demonstrated that the vibrational-vibrational energy
transfer process has to be properly taken into account in order to obtain a satisfactory fit of the rela-

tive magnitudes of the various transitions as measured in the Raman experiments.

I. INTRODUCTION

When an electron is trapped at a negative-ion vacancy
in an alkali halide crystal, a point imperfection with a
simple electronic structure and high symmetry is estab-
lished. Such crystalline defects are usually referred to as
F centers. It has recently been demonstrated' that the F
center can be associated with various cationic or anionic
point defects. Unlike isolated F centers, whose properties
are now well understood, these new F-aggregate centers
of reduced local symmetry provide relatively simple and
interesting physical systems for both theoreticians and
experimentalists to investigate a variety of fundamental
energy-transfer processes in solids. For instance, elec-
tronic (e) excitation of such F-aggregate centers by opti-
cal irradiation with laser light produces electronic-to-
vibrational (e-u) energy transfer into the stretching mode
(u) of the attached molecular defect. ' These excited vi-
brational modes can decay by transferring their energy to
nearby isolated molecules through the vibrational to vi-
brational (v-u) energy-transfer process. Although much
progress has been made in understanding the overall be-
havior of this important class of defect, very little is
known about the microscopic nature of their e-v and v-U

energy-transfer processes. Among these F-aggregate
centers, F-center —CN -defect pairs [FH(CN )] and F
center —OH defect pairs [FH(OH )] have been the most
extensively studied. ' Recently, we have analyzed both
the e-v and u-v energy-transfer processes in FH(OH } de-
fects in KC1 in terms of the Dexter-Forster mechanism '

and have demonstrated this mechanism to be appropriate
for both energy-transfer processes. However, this

dipole-dipole interaction mechanism has been found to
be unable to explain the infrared vibrational emission
spectra of the FH(CN } system observed by Yang and
Luty, and so we have not applied this mechanism to our
observed anti-Stokes Raman data. In this paper, we pro-
pose a new model, which considers the F center and asso-
ciated CN defect as a whole entity or "supermolecule, "
to account for the measured anti-Stokes Raman scatter-
ing of FH(CN } defects in CsC1.

II. THEORY

The total differential scattering cross section per unit
solid angle per unit frequency for resonance Raman
scattering is given by'

2 R&5o +a, u;a, u

M5 '" 505co

where 52o, „., „/M5toz is the differential scattering cross
section for a transition from the (a, u) state to the (a, v}
state, p, „ is the initial population of the (a, u) state, ia )
is the electronic part of the wave function, iu ) and u )
are vibrational wave functions for the crystal in the adia-
batic approximation, mz is the scattered-light frequency,
and 0 is the solid angle. We will show in the following
sections the derivation of expressions for (1) the initial
populations p, „using the density-matrix formalism, (2)
the electronic-to-vibrational transition rates involved in
the density-matrix formalism, and (3) the single-level res-
onant Raman-scattering (RRS) cross section.
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A. Time evolution of the density matrix

First, let us determine the population of the various
states by using the stochastic Liouville equation"

5p
5t

iL—p i(—V, p]/fi I p—, (2)

+(i/iri)(V, p, —p, V, )+I',;p„=0,
5r

(3)

where p is the density-matrix operator, I. is the Liouville
operator of the system, V=D(co„)exp( iso„—t )

+D( —co„)exp(ice„t) is the interaction energy of the in-
cident radiation field, and I describes the damping of the
system.

We would like to apply the Liouville equation to the
energy decay in Fig. 1. In our model the incident radia-
tion pumps our system from the electronic ground state
(g) to one of two electronic excited levels F„(1) or
FH(2). Then the electron decays quickly to the relaxed
electronic excited configuration (a). From (ci) the elec-
tronic energy can be transferred to the vibrational
stretching mode of the CN molecules. To a good ap-
proximation, for insulators such as alkali halides the
wave functions are given by the adiabatic approximation.
The time evolution of the diagonal density-matrix ele-
ment of the ath electronic state is given by

where p„ is the diagonal matrix element for the ath elec-
tronic state, p, and p, are oF-diagonal elements be-
tween the cith and gth electronic states, V,g and V, are
the coupling matrix elements due to the radiation field,
I",, is the sum over all the possible decays out of the ex-
cited state a. Now consider the o8'-diagonal elements be-
tween the cith and gth electronic states,

5,s + i co,gP,~ + (i /R) V,s (P« —P„)+ I",ssP,s =0,
5r

(4)

where co, =(E, E)—/iri, E, and E are the eigenenergies
of the respective states, and I', denotes the dephasing
constant for these transitions. If we substitute the expli-
cit expression for V, calculate the elements V, and V „
and use the rotating-wave and steady-state approxima-
tions, we get

—i (p« —p„) D,g (co„)

i (co,g
—co„)+I';s~

where D,s(co„)=(a~D(co„)~g). To obtain these matrix
elements, we have made the Condon approximation so
that the electronic states ~ci ) and ~g ) are appropriate to
the atomic equilibrium configuration R =0 in the elec-
tronic ground state. Then we substitute Eq. (5) into Eq.
(3) to get

+ W,s(co„)(p„—p«)+ I'„'p„=0, (6)

FH{2)

FH{1)

Relaxed Excited
State

CN- Vibrational
Stretching Mode
Excitation

8 i 8
1,m+1

{m+1)

8 f 8r
m, m

m+1, m+1
m, m

{m)

aa 8 i 8 m, mr r r
gg m-l, m-l m-l, m-l

{m-1)

F-center Electronic
Energy Levels
Unrelaxed Excited States

where W,s(co„) represents the rate constant for absorp-
tion.

Next, we consider the matrix elements for the vibra-
tional states

"+'-'-P-+'m'-P--+'m'-' "P-'-. =:
(7)

where the indices m and a stand for the excitation level of
the vibrational stretching mode for the CN and the re-
laxed electronic excited state, respectively, I " denotes
the radiationless transition rate from the electronic state
to the mth vibrational excitation, I +' +' denotes the
transition rate from the (m +1)th vibrational state to the
mth vibrational state, and I ' is the transition rate for
all possible decays out of the mth vibrational state.

Equations (6) and (7) will be the master equations used
to analyze the experimental results for either time-
resolved spectroscopy or steady-state spectroscopy. For
our experimental conditions of Ref. 4, it is appropriate to
use the steady-state solutions of Eqs. (6) and (7). They are

Unrelaxed F-e 1 act rani c
Ground State

F-electronic Ground State (g) and

aa m+1, m+1
mmPaa + Pm m Pm +1,m +1

FIG. 1. Model for the electronic-vibrational energy transfer
in FH(CN ) defect pairs in CsCl (see text for discussion).

Pm, m I m, m
m, m

where the absorption rate W,g(co„) is given by
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2 I&a lD(~, ) g &I'1.,
I, +(co, —co„)

(10)

and

E „=Es+(m+ ,'—)fico'+g (p + ,'—)%co/

J
(13)

B. Electronic-to-vibrational ( e-U) transfer rate E, ,=E, + ,'fico—'+g ( v, + —,
' )A'co, ,

J
(14)

Next, we discuss the calculation of the electronic relax-
ation (a, v) ~(g,p). The radiationless transition-rate
constant can be expressed using the Fermi golden rule
and has the form'

W ...= y. yS. „I(g,~lB Ia, v)l'5(E. „—E, „),aogm g av» a v gp

where H' denotes the perturbation for electronic relaxa-
tion and P, , represents the Boltzmann distribution. In
evaluating W, o. , the adiabatic approximation is gen-
erally used for the basis set. ' In this case the wave func-
tions Ia, v) and lg, p) can be written as products of elec-
tronic wave functions P, (r, R ) and g (r, R ) and vibra-
tional wave functions e, ,(R) and e „(R), i.e.,

(12)

The respective eigenenergies (E, „and Es „)of these wave
functions are given by

where E, and E are the electronic energies, co' is the
CN stretching-mode frequency, and the co 's are all of
the other vibrational frequencies of the lattice. We are
assuming that the normal coordinates in the ground and
excited electronic states are the same except for shifted
equilibrium positions (displaced-oscillator model). Thus
the coj's are the same in Eqs. (13) and (14). A' is the
kinetic-energy operator for the nuclear motion and we
have, approximately,

= —y r'(e, „I5e.„/5q, &(q, 5q. /5q, ),

where the q 's denote the vibrational normal coordinates.
We now apply Eqs. (11)—(13) to our problem. We first

consider the T=O K case. We shall let g, o and g
denote the vibrational wave functions of the CN . In
this case, Eq. (11)can be written as

W, o. IR;(g, a)l'1&x, Ix. o&l'g &x, „15x. o /5q;&I' g '1&x„, lx. o &I'5(E. o
—E ),

P J

where

I & x,, x., o & I' and I & x, ,„ lx. , (17)

are the Franck-Condon factors, and

R, (g, a ) = —iri ( ir'r
I 5$, /5q; ) .

Here, for simplicity it is assumed that there is one promoting mode. Using the displaced-oscillator model, we obtain

(18)

Waog,
2' ai 2(S') e

IR, (g, a) I'
mt

(S, )"'exp( —SJ )
5(E, o E„), —

P J p t

(Jwi )

where a; =co;/iri and the S s are the dimensionless normal coordinate displacements under electronic excitation (i.e.,
electron-phonon —coupling constants). By using the integral representation for the 5 function, we find for the strong-
coupling case

IR;(g, a)l a,
2g2 m!

2m

gS co

' 1/2

exp

co, —co;
—

mcus'

—g S co

J

2 g S&Cd&

J

(20)

where S' and ~' are the coupling constant and frequency for the CN stretching mode, co; is the frequency of the pro-
moting mode, and S and co are the coupling constants and frequencies for the phonon modes. If the temperature
dependence of the electronic relaxation is included, W, o. is given by'

W, o.
IR, (g, a)l a, —S

2%2 m!
2m

g (2n +1~)S,co~J
J

' 1/2

exp

co, —co,
—m co' —g S co

J

2 g (2n, +1)S,co,
J

(21)
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where n denotes the thermal-equilibrium number of pho-
nons in the jth mode,

—1

AcoJ.
n- = exp —1

kT
(22)

C. Calculation of the resonance Raman scattering

Now the calculation of the differential scattering cross
section for a transition from the (au) state to the (au)
state will be shown. Using the Green's-function
method, ' the rotating-wave approximation, the adiabatic
approximation for the wave functions, ' and the Condon
approximation, we find that the resonance Raman
differential scattering cross section is given by

where

(27)

will be taken to be constant and we assume that the
promoting-mode frequency co; is the average phonon fre-
quency co. Here the decay rates of the vibrational levels
of the CN, I ', are composed of two decay rates.
One of them, denoted W, will be a proportionality con-
stant 8 times the quantum number m of the vibrational
excitation. The other rate, denoted W„, accounts for
the u-v energy transfer from the FH(CN ) centers into
the isolated CN molecules, due to the high concentra-
tion (10' CN /cm ) of CN molecules in the sample
used in the experimental measurements. In other words,
we have

(23)

W =mB,

and, to a single phonon-assisted approximation,

(28)

where p1 and p2 are the electronic-transition dipole-
moment matrix elements, cu, „,, is the frequency of the
Raman shift, co, and co& are the incident and scattered
light frequencies, respectively, and

Za, u;a, v

(u In)(nlu)
o l(cob „. „co))+Ib „. (24)

Here, ( u
I
n ) and ( n

I
v ) are vibronic overlap integrals.

Following Refs. 17—19, a detailed multimode derivation
of Z, „., „can be obtained, and we sketch a derivation in

the Appendix.

D. Theoretical analysis

To perform the theoretical analysis, we need to com-
bine the results of Secs. II A —II C. Then we can calculate
the relative magnitudes of the various vibronic peaks in
the Raman spectra.

To calculate the population of the various vibrational
excitations, we will use Eq. (9) from Sec. II A. To simpli-
fy the analysis, we will let the total decay rate I +1™+1
be equal to the single-level decay rate I +' +'. Thus
Eq. (9) from Sec. II A becomes

pm, m

~aa ~m +1,m +1
mmPaa z m + 1 m + 1Pm + 1 m + 1

I m, m
m, m

(25)

Sco [2n(co)+ I]
(S')

mt

X exp
(ci) Scil ci); 172 co )

2Scu [2n(to)+ I]
(26)

We already have derived an expression for the (e-u) tran-
sition rate in Sec. II B, but will now simplify Eq. (21) of
that section by letting X S coj (2n~ + 1 ) ~Sco [2n (co ) + I ],
where co is the average phonon frequency, S is an effective
electron-phonon —coupling constant for the F center, and
n (co) is the thermal population at the average phonon fre-
quency. Then, Eq. (21) becomes

mD(bee )n(hcu )
W, =C

~D m

(29)

where m is the quantum number of the vibrational level,
cu„ is the acceptor stretching-mode frequency (the fre-

quency for the transition from the 0 to 1 levels of the free
CN molecule), ruD is the donor stretching-mode fre-

quency (the frequency for a transition from the mth to
the (m —1)th level for the CN molecule aggregated to
the F center), b, cu =co„—coD, D(bee ) is the phonon
density of states at b,cu, n(bee ) is the thermal phonon
population at bee, and 8 and C are constants that deter-
mine the strengths of the respective transition rates. It
then follows that

III. COMPARISON OF THEORETICAL
CALCULATIONS AND EXPERIMENTAL RESULTS

For all of the RRS theoretical calculations, the anhar-
monic shifts of the various transitions are set at 25
cm ', the incident laser frequency co1 is 18 797 cm ', the
maximum absorption frequency coMA is 17 144 cm ', the
full width at half maximum (FWHM) is 1700 cm ', and

I,„,, is chosen to fit the half-width of the anti-Stokes
RRS signal, which was resolution-limited by the instru-
ments. Figure 2 shows the measured anti-Stokes Raman
signal for FH(CN ) defect pairs ' in CsC1 at T=20 K.
The parameter set which gives the best fit to these experi-
mental results is co, = 13 500 cm ', co = 121 cm

(30)

If we substitute I" = —W, o.g and Eq. (30) into Eq.
(25), then the relative populations of the CN molecule
aggregated to the F center can be calculated by using

~a 0 g, m Paa + ( ~m + 1 + ~U, m + 1 )P m + 1, m + 1

pmm (31)
W +8;

Now we can combine the single-level RRS differential
cross section and Eq. (31) to get the relative magnitudes
of the various RRS transitions.
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FIG. 2. Anti-Stokes resonance Raman-scattering spectrum
(open circles) of FH(CN ) defect pairs in CsCl taken at T =20
K and with A, =532 ni ~„,„= nm. The solid curve represents the best
theoretical fit from the model calculations.

S =30, S~ =0.2, C/B=2. 93X10 ' s, and T=30 K,
together with the weighted relative phonon densit of

or the various phonon frequencies involved in the
ensi y o

the
We notice that the first three parameters are ver 1 tvery c ose to

e corresponding values found for pure F centers.
To demonstrate the importance of including the v-u

energy-transfer process in the theoretical calcul
have lotted i

'
a cacuations, we

p o ed in Fig. 3 a typical theoretical c h' h
no ake into account the u-u energy-transfer pro-

cess. The parameter values are those of the preceding
paragraph, except that T=20 K and C=O. It has b
found that nt no matter how the parameters are ad'usted

t as been

the ma nitudesof hg
' of the lower excitation transitions (m 3)

~ ~

are always either comparable to or larger than th f h
ition. Consequently, it is essential to consider

the u-v energy-transfer process to understand ourour experi-

Figure 4(a) shows a reasonable fit obtained with the pa-
rameter set ~ =13500 cm ' =121a, g , co= cm, S=33,

and S =0.2' t1 e v-v transition-rate parameters are
~ ~

ClB=4.78X10 ' s and T=15 K. The h
si y o states used for these calculations

' '
b h

22

'
ns is given y the

Debye model, i.e., D(b, cu ) o-(b, co ) . H
pect t at if our theoretical calculations are appropriate,
they should also be able to describ th

epen ence (primarily arising from the phonon-assisted

0: EXPERIMENT
THEORY

LaJI—

T ~70K
«apt

OO T ~70K
t h

FIG. 3. Theoretical calculation of anti-Stokes resonance Ra-
man scattering spectrum (solid curve), which does not include
the v-v energy-transfer process. The open circles are ths are e experi-

a a of Fig. 2, shown here for comparison. The temper-
ature is 20 K for both the theory and the experiment

Excitation level
of CN (m)

Phonon
frequency (4co )

(cm ')

Weighted relative
density of states

D (hen )

TABLE I. Wei h'ghted relative phonon density of states used in
the calculations of the h
cess.

p onon-assisted v-v energy-transfe er pro-

a)

—2100

T =20K
empt

T ~15K
th

I I I I

WVVYY~

—2020 —1 980 —1 940

RAMAN SHIFT (crn )

1

2
3
4
5

10
35
60
85

110

FIG. 4. Anti-Stokes resononance Raman-scattering spectra

T=20 K
(open circles) for FH(CN ) defect pair C Cl k

and (b) T =70 K, respectively. The solid curve corre-
spon s to the theoretical calculations bas d th hase on t e phonon-

d
T

requency density of states from the D b d l

iscussion).
e ye rno e see text for



41 . . . F-CENTER —CN -DEFECT PAIRS IN CsCl 3141

v-u energy-transfer process) of the anti-Stokes RRS sig-
nal. As shown in Fig. 4(b), at T=70 K the theoretical
calculations using the above parameter set, including the
phonon density of states given by Debye model, predict a
much more dramatic change of the relative intensities of
the Raman peaks for various transitions when compared
with the T =70 K experimental data. Of course, a realis-
tic curve of the phonon-frequency density of states in a
crystal is not as smooth and monotonic as predicted by
the Debye model, but typically contains many sharp
structures. Consequently, it is not surprising that we find
that a weighted relative phonon density of states such as
the one given in Table I gives a better fit than those of the
Debye model.

Figures 5(a) —5(c) show that, by using weighted relative
phonon densities of states in the theoretical calculations,
we can both fit the experimental anti-Stokes RRS signal
at T=20 K and account for the temperature dependence.
Figure 5(a) is identical to Fig. 2, and the only parameter
varied in the theoretical calculations for Figs. 5(b) and
5(c) was the temperature. We do not try to fit the data
taken at temperatures higher than T =120 K with our
theory because the aggregation of the F centers to the
CN molecules occurs at T-150 K. We estimate that
our measured temperatures have an uncertainty of about
+10 K. On the other hand, our temperature variation
for a good theoretical fit to the experimental results is
about +5 K. The sizable discrepancy in temperature be-
tween the experimental results and the theoretical calcu-
lations for T ~ 100 K is most likely caused by the effect of
disassociation of CN molecules from F centers at such
temperatures.

It is interesting to compare the weighted relative pho-
non densities of states (1:2:2:1:1)that were found to best
fit our experimental data with those (1:4:11:1:10)calculat-
ed by Ahmad et al. with an 11-parameter shell model
for pure CsC1. We believe that the difference is most like-
ly to be due to the defects (i.e., CN molecules and F
centers) in the CsCl crystals of our experiments.

It should be noted that with our best-fit parameter set,
our model predicts the appearance of extremely weak
shoulders on the high-energy side of the absorption spec-
tra for both the FH(1) and FH(2) absorption bands.
However, because of (1) the overlap of the F„(1)and

FH(2) absorption bands, and (2) the width of each indivi-
dual absorption band, the weak shoulders for the FH(1)

I—

LaJI— (o)
= 6QK
= 7QK

—2100
I I I I I I I

-2060 —2020 —1 980 —1 940

RAMAN SHlFT (cm )

FIG. 5. Anit-Stokes resonance Rarnan spectra (open circles)
of FH(CN ) defects pairs in CsC1 taken at (a) T=20 K, (b)
T=70 K, and (c) T=120 K, respectively. The solid curves
represent the theoretical calculations based on the weighted rel-
ative phonon density of states as given in Table I and discussed
in the text.

and FH(2) absorption bands would be very difficult to
detect experimentally.

IV. CONCLUSIONS

ACKNOWLEDGMENTS

This work was supported by the U.S. National Science
Foundation under Grants No. DMR-87-18228, No.
DMR-87-06416, and No. CHE-86-10104.

In conclusion, we have developed a new model which
considers the F center and its aggregated CN molecule
as a whole entity (or supermolecule) to explain the mea-
sured temperature-dependent anti-Stokes RRS spectra of
FH(CN ) defect pairs in CsC1. We have shown that it is
essential to take into account the v-v energy-transfer pro-
cess between the F-aggregate CN molecules and the
nearby isolated CN molecules. Time-resolved RRS ex-
periments are under~ay to further test our model.

APPENDIX: CALCULATION OF Z

This derivation follows that of Ref. 17. If we use

i exp[i (—a +ib ) t ]dta+ib 0

in Eq. (24) of Sec. II C, then

Z, „,, = i f dt ex—p[ —i(cob, —co, )t+i{u + —,')co t —yt](B )(B ),
where T'b ., „ is equal to y for all transitions,

I

B =g g e '""''&a,olb v,') &b v,'la, 0&,

(A1)

(A2)

(A3)
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and
I

8 = pe
'"- '- (a, u ~b, v' )(b, v' ~a, v ) . (A4)

In Eqs. (A2) —(A4), cv, t, is the electronic transition energy between the minima of the excited states and the ground state
(i.e., zero-phonon energy), the subscript m labels the states of the CN stretching mode, and the subscript j labels all
the phonon modes coupled to the F-center electron. First, we will work on 8 in Eq. (A4), suppressing the subscript m

and substituting the harmonic-oscillator wave functions,

~a, v) = e " H„(&ar), (a, u ~= e ' H„(&as),
(2uv1)1/2 " ' '

(2nu1)1/2

1/4 1/4

~b, v') =, e " ' H (&as'), (b, v'i=, e '"' H (&ar')
(2u' Vt1)1/2 (2u' ~1}1/2

We also use Mahler's formula,

(A5)

e
—p( v + 1/2 )

H„(x )H, (y ) =
1n +X 1/2

to do the summation over U', giving

(x+y)2tanh(p, ) (x —y) coth(p)
exp

4 4

[2m. sinh(p)]'/
(A6)

(x'+y') tanh(p, )+(x' —y') coth(p)
(A7)

where D=[2m. sinh(p)2'"+"' !v!u] ', p=itv t, H„(x) and H, (y) are Hermite polynomials, x= t/ar, x'=r+q,
y =&as, y'=s+q, a=fit@ /M in the displaced-oscillator model q =&ad, M is the reduced mass of the oscillator, cv

is the angular frequency of oscillation, and d is the increase in the bond length of the high-frequency oscillator m.
Then, substituting in the integral representation of the Hermite polynomials, we get

n!
2

H„(x)= '. J dz
2~i ~ z" +'

and doing the integration over x and y in Eq. (A7), we obtain

D v! u! „} [, 2( „}] d d exp[2e "zw q(1 —e ")(—z+w)]
v+lo u+1

Using the series expansion

(2e "zw )"
exp(2e "zw ) = g !n=0 n.

and the contour integration

f (z) 2mif ' "(0).
zu —n+1 (V 11 )!

where f ' "(0) is the (v n)th deriv—ative off (z) evaluated at z =0, we find that Eq. (A9) becomes

(A8)

(A9)

(A10)

(Al 1)

1/2

[ 1 2(
—

p) I ]
u. v.

( 1}u+u Z
(2e ")"[q(1—e ")]"

2u + u t1! ( v —t1 )1 ( u —t1 )1
(A12)

If we next substitute q =&2S and use

(
—1}rn!x~

0 p!(n —p)!

in Eq. (A12}, then we obtain

u, u u+u —2n
( lp( + 2 )1(QS )u+u —2n

8 =( —1)"+"&v!u! g g '
exp[ —S(1—e ")—(n+p+ —,')1u] .

n!p! (v —n )!(u —n }!(v+u 2n —p)!— (A13)

The summation over n in Eq. (A13) is only up to the lowest integer value of u or v. If we let v =u =0 and m ~j in Eq.



. . . F-CENTER-CN -DEFECT PAIRS IN CsC1 3143

(A13), then we Snd BJ. of Eq. (A3) to be given by

8 = g exp[ —SJ(1—e ')], (A14)

where is. =ico t, .S =q. /2, and q =+a d . Substituting Eqs. (A13) and (A14) into Eq. (A2), we get

n=0

+~ "
( —1)t (v+u 2n —)!(&S')U+

n!p!(v n—)!(u n—)!(v+u 2—n —p )!

X f dt expI i—[cob, —co!+(n+p —v )co ]t jexp —gS (1—e ' ) —S'(1 e—' ) y—t
j

If we now use a short-time approximation, ' ' Eq. (A15) becomes

+ —2
( 1)t'(„+„—2„)!(gS ).+

Z, „., „= i( ——1)"+"&u!v!
n!p! (v —n )!( u n)!—(v +u 2n ——p )!

X f dt expI i[co—MA co, +—(n+p —v )co ]t )

(A15)

Xexp —S (1—e )— g SJ co& t'
2

(A16)

where coM&=cob, +X S co. is the frequency of the maximum of the electronic absorption, (81n2+ S co )' is the full
width at half maximum for the absorption, and we have assumed that

—,'g. Sjcojt ))yt .

The temperature effect on the RRS can easily be included by changing XJS col~~Sco [2n(co)+1],' ' where co is the
average phonon frequency coupled to the F-center electron, S is the electron-phonon —coupling constant, and n(co) is
the population at the average phonon frequency.
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matrix elements involved in the U-U energy-transfer process
was neglected in Eq. (29), due to our assumption that
C=const. Relaxing this assumption would result in the
phonon-frequency density of states being replaced by a local
"projected" density of states, in which the density of states is
weighted at each phonon frequency by corresponding squared
vibrational amplitudes in the vicinity of the defect. The par-
ticular amplitudes would depend upon the details and range
of the U-v coupling. Such local projected densities of states

generally differ significantly from the pure density of states,
and they are also sensitive to the phonon perturbations aris-
ing from defects. Thus our Ptted weighted relative phonon
density of states should be identified with the appropriate
projected density of states for the U-v transfer process in this
system. Further study of this point would require detailed
modeling of the perturbed lattice dynamics and is beyond the
scope of the present work.


