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Temperature-dependent resistivity of heavily doped silicon and germanium
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We present a calculation of the temperature-dependent resistivity for heavily doped silicon and
germanium. In addition to the contribution from impurity scattering, we include the contribution
from electron-electron scattering, caused by the anisotropy of the conduction-band minima. The
effects from this anisotropy on the impurity contribution are fully taken into account as well. We
use the generalized Drude approach, which leads to results in closed form.

I. INTRODUCTION

A heavily doped semiconductor can for doping densi-
ties higher than n„ the density of the metal-to-nonmetal
transition, be viewed as an impure metal and behaves in
many respects similar to an ordinary metal. However,
the smallness of its Fermi energy EF results in a much
stronger response to external perturbations; since the
Fermi energy decreases with decreasing doping density,
this strong response is accentuated for densities near n,
An applied magnetic field, e.g. , might spin polarize all the
carriers, while the strongest magnetic fields available in
laboratories can flip the spins for a small fraction only of
the electrons in an ordinary metal. This has dramatic
effects on the magnetic susceptibility and the magne-
toresistance of the doped semiconductors. For n-type
doped silicon and germanium, the many-valley character
of the conduction bands leads to a further reduction in
the values of the Fermi energies. Near n, the Fermi ener-
gies are much smaller than the Debye temperatures. This
means that an interesting temperature dependence in,
e.g., the transport properties can appear at low tempera-
tures before phonon contributions set in. In the ordinary
metals the phonon contributions dominate and mask the
temperature dependence of other contributions.

In this work we are interested in the temperature
dependence of the electrical resistivity. For both n-type
silicon' and germanium, ' close to n„ the resistivity ini-

tially increases with temperature, has a maximum near

TF, the Fermi temperature, decreases, has a minimum,
and increases again when the phonon contributions set
in. For increasing donor density these structures gradu-
ally fade away and the resistivity increases monotonically
with temperature. This behavior was initially considered
anomalous and was together with a similar behavior of
the Ha11 coefficient taken as strong support for the idea
that the electrons were in an impurity band, situated
below the conduction-band edge (for a review of these
ideas see Ref. 4). Kurosawa et a/. , representing the
competing idea that the electrons occupy the states in the
host conduction band, proposed a phenomenological
theory. They assumed that the resistivity was due to ion-
ized impurity scattering and that the relaxation time r(E)
was a function of E/EF, independent of both tempera-

ture and impurity concentration. By varying the func-
tional form of r(E) they could fit the temperature depen-
dence of the resistivity for germanium quite well. Saso
and Kasuya ' managed to calculate the resistivity for
germanium with the Boltzmann approach, taking the
temperature-dependent screening into account. The an-
isotropy was partly included. They obtained qualitative
agreement with experiments; also for the Hall coefficient.
They extended the calculation to include nonlinear
screening and effects from electron lifetime broadening
and improved the agreement to semiquantitative.

In the present work we rely on the so-called general-
ized Drude approach to obtain the temperature-
dependent resistivity of heavily doped silicon and ger-
manium. This approach has been found to work well for
the contributions to the resistivity from phonon scatter-
ing, ' impurity scattering, " and electron-hole scatter-
ing. Here, the effects from the anisotropy on the impuri-
ty contribution are fully included. The anisotropy of the
conduction-band valleys gives rise to extra scattering pro-
cesses where two electrons from different valleys take
part. This means an additional contribution to the resis-
tivity. This contribution is included for the first time in
the present calculation. Our approach has the advan-
tages over the Boltzmann approach in that the electron-
electron contribution can be obtained in the whole tem-
perature range (not just in the quantum and classical lim-
it ' ), and the results are obtained in closed form. The
fact that electron-electron scattering can give contribu-
tions to the resistivity in anisotropic systems has been dis-
cussed before. ' ' It has been considered in connection
with semimetals, ' ' and very crudely for many-valley
semiconductors. "

In Sec. II we present the prescription for the general-
ized Drude approach and summarize the cases where its
results have been compared to the results from more
well-established approaches. Its success in reproducing
results from other approaches is taken as an indirect
proof of its validity. The derivation of the Drude expres-
sion for the dynamical conductivity and its high- and
low-frequency expansions are presented in Sec. III. The
high-frequency expression as obtained from the Kubo
formalism is also given and 1/~(co) is identified. The nu-
merical results are presented in Sec. IV. Section V, final-

1y, contains a summary and conclusions.
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II. THE GENERALIZED DRUDE APPROACH

The generalized Drude approach (GDA) consists of
three steps. In the first step the high-frequency limit of
the dynamical conductivity is derived within the Kubo
formalism and diagrarnrnatic perturbation theory; in the
second step, this result is compared to the high-frequency
expansion of the generalized Drude expression for the
dynamical conductivity and the relaxation time ~ is here-
by identified (the generalization of the Drude expression
consists of allowing the relaxation time to be frequency
dependent); in the third and last step the obtained expres-
sion for ~ is assumed to be valid at zero frequency. This
is a bold step, since ~ was obtained from a high-frequency
treatment.

The validity of the approach is not well established,
since there is no strict, theoretical proof to back it up.
However, there are indirect proofs or strong indications
in favor of its validity.

In the case of impurity scattering"' ' in a metallic
system, GDA exactly reproduces the Ziman result ' for
the resistivity in impure metals. The elusive (1—cos8)
factor, which is so difficult to reproduce in a standard
diagrammatic perturbation expansion based on the Kubo
formalism, is here obtained automatically. Assuming
that the obtained expression for ~ is valid for all frequen-
cies and not just for zero and high frequencies, the GDA
exactly reproduces the result for the dynamical resistivity
as obtained from the so-called energy-loss method.

For acoustical-phonon scattering ' in metals the
GDA produces analytical results identical to those from
Ziman's solution to the Boltzmann equation.

Very recently GDA (Ref. 8) was used to calculate the
resistivity from the electron-hole scattering in highly ex-
cited semiconductors. The results were compared to the
numerical results from a Boltzmann approach. ' Due to
the very complicated situation, the Boltzmann approach
could only be used in the quantum and classical limits.
In those limits the GDA gave, as far as one could tell,
identical numerical results. In the case of electron-hole
scattering the GDA has the advantages over the
Boltzrnann approach in that it produces results in a
closed form, and that the results are not limited to the
classical and quantum limits.

However, one should mention that in all the cases dis-
cussed above only the lowest-order contribution to the
high-frequency dynamical conductivity was included.
The other approaches included only the lowest-order
scattering events, as well. If the Born approximation is
not good enough one should include higher-order contri-
butions. Whether the GDA works also in that case has
never been tested. We plan to investigate this in a future
work. As mentioned in the Introduction the interesting
structure in the temperature dependence of the resistivity
increases in magnitude towards n, . Unfortunately, the
Born approximation works less well towards n„which
means that we can only hope for qualitative agreement
with experiments. We could improve the experimental
agreement by using nonlinear screening along the lines of
Ref. 7, but this will introduce uncertainties regarding the
relative importance of impurity and electron-electron

scattering. For the same reason we do not include pho-
non contributions. This means that our results for the
resistivity will lack the upward curbing for higher tern-
peratures. We should keep in mind that our results are
the lowest-order contributions from impurity and
electron-electron scattering.

III. DERIVATION OF THE DRUDE
EXPRESSIONS AND APPLICATION OF THE GDA

TO FIND THE STATIC RESISTIVITY

In this section we first derive the Drude expressions for
the dynamical conductivity in heavily doped silicon and
germanium and find its high-frequency expansions and
zero-frequency limits. The high-frequency expansions
are compared to the results from a derivation based on
the Kubo formalism and diagrammatic perturbation
theory, whereby the various relaxation times are
identified. These are, following the prescription of the
GDA, inserted into the zero-frequency limits of the con-
ductivity. As a result we obtain the static conductivities
and resistivities. Since the band structures of silicon and

germanium are different we treat the semiconductors sep-
arately.

A. Silicon

mlvl 2n
(3.1)m, v, ( ice) =eE——

and

m, v2( iso) =eE ——mtl2 n—n —(v2 —vi» (3.2)

The conduction band in silicon has band minima, val-
leys, in the six equivalent (100) directions inside the
Brillouin zone (BZ}. The valleys are anisotropic and the
Fermi volumes are ellipsoids with their main axes point-
ing in the (100) directions. The energy dispersion
around the bottom of the valleys are characterized by the
longitudinal and transverse effective masses mI and m„
respectively; these have the values 0.9163 and 0.1905, re-
spectively, and the background dielectric constant has
the value 11.40. The anisotropy has the effect that at an
applied electric field the carriers in each ellipsoid will, in
general, have an average velocity not pointing in the
direction of the field. However, due to the cubic symme-
try, the total average velocity and current will point in
the direction of the field and the magnitude will be in-
dependent of the direction. This means that we are free
to choose the direction of the electric field at will. Let
the field point in the (1,0,0) direction. This choice groups
the carriers into two groups; group number 1, the carriers
belonging to the two valleys in the (+1,0,0) directions, are
characterized by the mass mI, group number 2, the car-
riers belonging to the four valleys in the (0,+1,0) and
(0,0,+1}directions are characterized by the mass m, . Let
the average velocities for the two groups be denoted by v,
and v2, respectively, and the corresponding relaxation
times from impurity scattering by ~I and ~2, respectively.
The equations of motion for the two groups of carriers
read
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where n is the total carrier density, and g the coeScient
of mutual friction. This coeScient is related to the relax-
ation time 7 for scattering between the two groups of car-
riers. This relation is obtained from realizing that as the
electric field and impurity scattering is turned off the rel-
ative velocity between the two groups of carriers decays
with the decay constant 1/7 Fo. r vanishing E, 1/r&, and

1/~2, Eqs. (3.1) and (3.2) reduce, after the inverse Fourier
transform has been taken, into

and 7 can be identified as

2 11gn—
3 ml

1 2 1
(v —v ) ~exp —rln — +

1 2 m
(3.5)

(3.6)

and

2n

dt 3m
(v —v ) (3.3)

Solving Eqs. (3.1) and (3.2), substituting ri in favor of ~
according to Eq. (3.6) and noting that the conductivity 0.

can be expressed as
d V2

(v) —vq) .
dt 3m,

(3.4) ne
(v&+ 2v2), (3.7)

Subtracting the last of the two equations from the first
leads to the following time dependence of the relative ve-
locity:

we arrive at the following expression for the dynamical
conductivity:

r

ne 1 ne 1—+ 1 CO

,'(2m'+—mi } r 3mI T2

2ne 1+ l CO

3m,
(3.&)

l t
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(2m~+ I) r m

1 1
1 CO

m, 7&

The high-frequency expansion of this expression is

1 1

ne 1 1 2 1 2ml mt ' ~ 1 . 1 2 1—+ —+ +ECO +
3mI r& 3m, r2 9 ,'(2m'—+m

Q)~ 00 (3.9)

and the zero-frequency result is found to be

1 1 2o(0)=ne — +
3 ml m

'2
7

9 ml m,
r

1 27, 72 1 2 1+ +7— +
3 ml m, 3 ml m,

(3.10)

We are further interested in two limits of Eq. (3.10), viz. ,
the limit of vanishing e-e (electron-electron) scattering
and that of infinite e-e scattering. These limits are

ne 71 272
o(0)= +

ml m
(3.11)

and

0(0}= ne

2m) +
72 71

7~0, (3.12}

respectively. It is interesting to find that in the limit of
extreme e-e scattering the conductivity depends only on
the impurity scattering. The reason is that the e-e
scattering determines the relative velocity between the

two groups of carriers. In the extreme limit of strong e-e
scattering both groups of carriers move with the same ve-
locity and this velocity is determined by the impurity
scattering. One should further notice that there is no
resistivity at all in the absence of impurity scattering
(since we have neglected the contribution from phonon
scattering).

The high-frequency expansion of the Drude expression
for the real part of the dynamical conductivity given in
Eq. (3.9} consists of three terms, each containing one of
the three different relaxation times; the first term is the
impurity scattering contribution from the carriers of
group 1; the second is the corresponding contribution
from group 2; the last term comes from e-e scattering be-
tween the group 1 and group 2 carriers. The three
different relaxation times are identified through a com-
parison with the corresponding results as obtained in Ref.
27. The first comparison [with Eq. (3.14) of Ref. 27] gives
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ne 1 1

3mi ~,
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mI KCO 271

[Za&(q, co) —Za&(q, O)]
X dqcos (q, g)lm

eq, co eq, O

(3.13)

where g, a, (q, co), and e(q, co) are the unit vector in the
direction of the electric Geld, the polarizability from one
of the two valleys belonging to group 1, and the total
dielectric function, respectively. Please note that the po-
larizabilities in this work have ~, the background dielec-
tric constant of the host in their denominators. Some
further modifications made here are: The present expres-
sion is slightly less complicated from the fact that we
here are dealing with a nonpolar semiconductor; we have

I

further assumed random distribution of dopant ions,
which means that the structure factor S(q) in Ref. 27 is
replaced by 1; since the polarizabilities are nonisotropic
we have to keep the angular intergrations.

The total dielectric function is given by

e(q, co)=1+Za,(q, co)+Zaz(q, co)+Za3(q, co) . (3.14)

The polarizability from valley number i,a;(q, co), can be
expressed in terms of ao(q, co), the corresponding polari-
zability in the case of isotropic band minima character-
ized by the density-of-states effective mass m d, . The rela-
tion is

a, (q, co)=y '~ [1—(1—y)cos28, ]

Xao(qy '~ [1—(1—y)cos 8;]'~,co}, (3.15)

where 8; is the angle between q and the main axis of el-
lipsoid number i and y =m, /m~. In the limit of zero fre-

quency, Eq. (3.13) results in

(d /dao)[lma, (q, co)]„0
dq cos'(q, f')

r, (0) m, ~~' [1+Za, (q, 0)+Za2(q, 0)+Za3(q, 0)]~

where

d fi q y
'~ [1—(1—y)cos 8, ]

[Ima &(q, co) ] o= 1 —tanh —P
aA' q y

' [1—(1—y)cos 8 ]'~ Smd,

The parameter P is the usual temperature parameter 1/k~ T, and p is the chemical potential.
The relaxation time ~z is obtained in an analogous way with the result

(3.16)

(3.17)

1

r2(0)
3e (d /d co)[Imaz(q, co ) ]

dqcos (q, g')
m, ~m [1+Za,(q, O)+Za2(q, O)+Za3(q, 0)]

(3.18)

RPco/2

sinh APco, /2

where a2(q, co) is the polarizability for one of the four valleys belonging to group number 2.
Finally, the relaxation time r is obtained from the comparison of the third term in Eq. (3.9) with the zero-frequency

limit of the first integral in Eq. (2.30) of Ref. 27. This gives

1 1
'

ne 2mim, m& m, 1 8e
9 —,'(Zm t+mt } ~ 3 m

dq ~ 2
Zlma&(q, co& )Imaz(q, co& )

X 3q cos (q, g')
(Zm ) e(q, co, )

After rearrangement we obtain

1 36fiP 1 2 1 dq 2
Ima, (q, co, }Imaz(q, co, }+

2 3 q cos (q, g)
n 3 ml m, 0 Zm sinh2fgco, /2 (2~)3 /e(q, co, ) [

This completes the derivations of the relaxation times for silicon.

(3.19)

(3.20)

B. Germanium

The conduction band of germanium has anisotropic
valleys in the X points, i.e., in the eight (111)directions
just at the BZ boundaries. This means that effectively
four equivalent ellipsoidal Fermi volumes are filled with

electrons in heavily doped germanium. The anisotropy is
larger in germanium than in silicon and the ellipsoids are
here cigar shaped, which means that e-e scattering is ex-
pected to be more important in germanium than in sil-
icon. For Ge the effective masses m I and m, have the
values 1.58 and 0.082, respectively, and ~ the value 15.36.
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which leads to

1 2
v2 ~ exp —qn — +

3 mi m,
(3.26)

and

(3.27}
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Equations (3.22) —(3.24) and (3.27) give
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Here we cannot, like we could for silicon, choose the
direction of the field parallel to a symmetry axis for each
ellipsoid. We choose the field to point in the (1,0,0) or x
direction, i.e., symmetrically with respect to all four ellip-
soids. This has the effect that only one relaxation time
appears from impurity scattering ~;, and one from e-e
scattering ~. The average velocity is in each valley non-
parallel to the average momentum. Hence, we have to
keep the momenta in the equations of motion. The
momentum and velocity of each ellipsoid will lie in the
plane spanned by the main axis of the ellipsoid and the x
direction. Let p, and v, be the components of the
momentum and velocity, respectively, in the x direction,
and p2 and v2 the modulus of the corresponding com-
ponents in the y and z directions. The following relations
between the v s and p s hold:

r

The equations of motion are identical for all valleys and
are given by

nev&

E

p, ( ice) =eE——p&

+imp
(3.23)

3 1=ne
(2m, +m&) 1/r; ico—

p2( ice) =——p&
'gn v2

lmP

(3.24)

(3.25)

The first equation is the result in the x direction and the
second in the y direction. The z direction gives a redun-
dant result.

For vanishing E and 1/r; Eqs. (3.22) —(3.24) give

dvz 1 2 1= —gn — + v2,
dt 3 mi m,

1 1

2m mt mi m,
+

9 —,'(2m, +mI )

x 1/r+ 1/r; —i cg

The high-frequency expansion of this expression is

(3.30)

ne 1 2 1
g +

2 m( +imp

1 1
'

2m m mI mr
+ +le +

9 —,'(2m, +m&) r 3 m, m&
Q7~ 00 (3.31)

and the zero-frequency result is found to be

1o(0)=ne
—(2m, +mi)
1 1

+imp

The limit of vanishing e-e scattering is

1 2 1o(0}=ne r; — +, r~oo
3 m m

(3.33)

and that of infinite e-e scattering

2m)m, mj m,
+

9 —,'(2m, +mt } 1 1—+
1mP

2ne +impo(0)=, , r~0 .
—,'(2m, +m&)

' (3.34)

(3.32) The high-frequency expansion of the Drude expression
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for the real part of the dynamical conductivity given in

Eq. (3.31}consists of two terms, each containing one of
the two different relaxation times; the first term is the im-

purity scattering contribution; the second term comes
I

ne2 1 2 1

3 m, mI

from e-e scattering. The two different relaxation times
are identified through a comparison with the correspond-
ing results as obtained in Ref. 27. The first comparison
[with Eq. (3.14) of Ref. 27] gives

2

[a,(q, co ) —a, (q, 0) ]
X Im

e(q, co)e(q, O)
(3.35)

g~ + + qy+gz
dq 1 2 1 1 1

q 3 m mI 3 mI

1

(0) m,
K7T +21 2 1

3 mt mI

Here and below we number the valleys with main axes in the (1,1,1), (1,—1,1), (1,1,—1), and (1,—1,—1) directions from
1 to 4 in the given order. The function a;(q, co) is the polarizability from valley number i

In the limit of zero frequency, Eq. (3.35) results in

2e 1

(d/dco)[Ima, (q, co)] =o

[1+a,(q, O)+a2(q, O)+a3(q, 0)+a~(q, O)]
(3.36)

Finally, the relaxation time 7. is obtained from the comparison of the second term in Eq. (3.31) with the zero-
frequency limit of the first integral in Eq. (2.30) of Ref. 27. This gives

1 1

ne2 2m

CO

ml m

—,'(2m, +mI ) mI m

16e A 1

9'

Rearrangement gives

1 4iriP1 2 + 1

r(0) n 3 mI m,

fX
~ d i ftPco/2

sinh iriPcoi &2

d q
(2m. )

(q~+ q, ) Ima, (q, co, }Ima4(q, co, }+2q~Iinai(q, co, }Imaz(q, coi )
X
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CO) 1

sinh fiPcoi/2

(q~+q, ) Ima, (q, co, )Ima4(q, co, )+Zq Ima, (q, co, )Ima2(q, co, )
X

(2n. )' e(q, ~&) I'

(3.37}

(3.38)

This completes the derivations in this section.

IV. NUMERICAL RESULTS

In the previous section we derived all the necessary in-
gredients for the calculation of the temperature-
dependent resistivity from impurity scattering and e-e
scattering of heavily doped silicon and germanium. The
polarizabilities entering the expressions are the retarded
temperature-dependent RPA (random-phase-approx-
imation) functions. Unfortunately, the real parts of these
functions are not available in analytical form. However,
the imaginary parts are. In this work, the real parts
have been obtained from the imaginary parts through the

Kramers-Kronig dispersion relations. Since this is rather
time consuming we have also calculated the results using
the zero-temperature (analytical) versions of the real
parts. This is to find out how far one can reach without
invoking the full treatment.

In Fig. 1 we have collected the results from impurity
scattering in Si at the donor density 4.0X10' cm . The
relaxation times obtained from Eqs. (3.16) and (3.18) have
been inserted into Eq. (3.11), and the resistivity is just the
inverse of the conductivity. The full result (full effect
from anisotropy and finite temperature) is presented as
the solid curve. The long-dashed curve is the result when
the zero-temperature screening is used. A comparison
between the curves shows that the temperature-induced
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n =30 ~ 10 cm
17

n=40x)0 cm
18 5
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T(K) T(K)

reduction of the static screening (only static screening
enters the impurity contribution) is important.

The other curves are for two common isotropic ap-
proximations. The long-dashed-short-dashed curve is

4-
o o ~ 0

o \ Si

FIG. 1. The temperature-dependent resistivity from impurity
scattering in silicon at a donor concentration of 4X 10" cm
The solid and long-dashed curves are the results when the full

anisotropy of the system has been taken into account exactly.
For the solid curve the finite-temperature version of the real
part of the dielectric function was used and for the long-dashed
curve the zero-temperature version. The long-dashed-short-
dashed and the dashed-dotted curves are the corresponding re-
sults for an isotropic approximation where the density-of-states
effective mass was used to characterize the conduction-band
dispersion. The short-dashed and dotted curves are the corre-
sponding results when instead the optical effective mass was
used.

FIG. 3. The same as Fig. 1, but now for germanium at the
donor concentration 3 X 10"cm

the result from using the density-of-states effective-mass
for the electrons and the long-dashed-dotted curve is the
corresponding zero-temperature screening result. The
short-dashed and dotted curve are the same, but are from
using the optical effective mass. Krieger et al. ~ pro-
posed that the big deviation between the experimental
and theoretical magnitudes of the resistivity in many-
valley semiconductors was due to very strong reduction
in the screening due to the anisotropy. We can conclude
from our results that this is not the correct explanation.

In Fig. 2 we have included the effects from e-e scatter-
ing. The dashed curve here denotes the full result from
impurity scattering (solid curve of Fig. 1). Before the ac-
tual calculation of the e-e scattering effect it can be useful
to see if the calculation is worth doing by studying the re-
sult from Eq. (3.12), which gives the maximum possible
effect from e-e scattering. This result is shown as the dot-
ted curve. The maximum effect is not negligible.

The full result is obtained from Eq. (3.10), where the

40

Ge

30

n=4.0 ~ 10 cm
18 -3

I

200

T(K)

I

300

20-

CL

10

n =30.10 cm
17

FIG. 2. The temperature-dependent resistivity in silicon at a
donor concentration of 4X10' cm . The dashed curve is the
same as the solid curve in Fig. 1, i.e., the contribution from im-
purity scattering when the effects from the anisotropy and the
finite temperature are fully taken into account. The dotted
curve is the result if maximum possible electron-electron
scattering is present (see the text for details). The solid curve in-
cludes the actual electron-electron scattering contribution but
the zero-temperature screening was used in this contribution.
The solid squares are the results when the finite-temperature
screening was used, and are hence the final results.

I

100

T(K)

I

200

FIG. 4. The temperature-dependent resistivity in germanium
at a donor concentration of 3 X 10' cm '. The dashed curve is
the same as the solid curve in Fig. 3, i.e., the contribution from
impurity scattering when the effects from the anisotropy and the
finite temperature are fully taken into account. The dotted
curve is the result if maximum possible electron-electron
scattering is present (see the text for details).
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Ge
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n=30 ~ 10 cm

17 -3
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T(K)

300
0.1

)017

l t t s i i i'll

)0 18

n(cm )

)019

FIG. 5. The temperature-dependent resistivity in germanium
at a donor concentration of 3 X 10"cm '. The dashed curve is
the same as in Fig. 4, i.e., the contribution from impurity
scattering when the effects from the anisotropy and the finite

temperature are fully taken into account. The solid curve in-

cludes the actual electron-electron scattering contribution, but
the zero-temperature screening was used in this contribution.
The solid squares are the results when the finite-temperature
screening was used and are hence the final results.

additional relaxation time from e-e scattering is taken
from Eq. (3.20). The result from the less-time-consuming
version, using the zero-temperature screening, is given as
the solid curve, and the full result from using the finite
temperature screening as the solid squares. The tempera-
ture effects are much weaker in this case. The full result
is slightly above the approximate one for low tempera-
tures and slightly below for higher temperatures. The
effects from e-e scattering are rather weak in silicon.
Since the anisotropy is much stronger in germanium the
effect should be stronger there.

In Fig. 3 we have collected the results from impurity
scattering in germanium at the donor density 3.0X10'
cm . The notation is the same as in Fig. l. The results
are from Eq. (3.33} with r; obtained from Eq. (3.36).
Figure 4 demonstrates that e-e scattering might lead to a
dramatic enhancement of the resistivity. The dotted
curve is the result with maximum e-e scattering from Eq.
(3.34), and the dashed curve is the result in absence of e-e
scattering. The actual effect from e-e scattering is
demonstrated in Fig. 5, where the notation is the same as
in Fig. 2. The full result is from Eq. (3.32) with the relax-
ation time for e-e scattering taken from Eq. (3.38). As
predicted, the effect is more important here than it was
for silicon. The temperature effect on the screening is
similar to in silicon.

Finally, we show in Fig. 6 a comparison between the
results for the zero-temperature resistivity in germanium
from this work (solid curve}, and from a numerical solu-
tion to the Boltzmann equation as given in Fig. 1 of Ref.
7. The agreement is within five percent and this is prob-
ably the accuracy in the Boltzmann calculation. This
comparison can be viewed as another test of the validity

FIG. 6. Comparison between the results from the present
GDA and the Boltzmann approach. The results are for the
zero-temperature contribution to the static resistivity of heavily

doped germanium as a function of donor density. The solid
curve is the present result. The solid squares are the results
from a numerical solution of the Boltzmann equation as ob-
tained in Ref. 7.

of the GDA. Unfortunately, only zero-temperature re-
sults from the "exact" solution to the Boltzmann equa-
tion were presented in Ref. 7. It would have been in-
teresting to see how the methods compare for finite tem-
peratures.

V. SUMMARY AND CONCLUSIONS

We have performed a calculation of the temperature-
dependent resistivity for the many-valley semiconductors
silicon and germanium. The calculation was performed
with the generalized Drude approach. The effects from
the anisotropy on the impurity contribution were fully
taken into account. Included, as well, was the extra
electron-electron scattering contribution induced by the
anistropy. This contribution was found to be small for
silicon, but important for germanium, where the anisot-
ropy is bigger. The calculation was performed to the ac-
curacy of the first Born approximation, which means that
only qualitative agreement with experiments can be ex-
pected. We found the same temperature behavior as in
experiments and in earlier calculations based on the
Boltzmann approach; for densities near n„ the resistivity
increases with temperature, has a maximum for tempera-
tures near the Fermi temperature, and then decreases
again.
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