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A theory of one-phonon resonant Raman scattering in diamond- and zinc-blende-type semicon-
ductors in a magnetic field is developed. We consider the deformation-potential and Frohlich in-

teractions for the electron-one-phonon coupling. Explicit expressions for the Raman eSciency as a
function of the laser energy %col and the applied magnetic field H are given. The Landau levels and
the spin splitting are considered in the framework of the envelope-function approximation using a
three-band parabolic model. In both types of electron-phonon interaction, the Raman intensity as a
function of A'coI and H shows a set of incoming and outgoing resonances corresponding to different
interband magneto-optical transitions. Selection rules and conditions for double resonance are de-
duced for different scattering configurations with circularly polarized light. An extension of the
theory to consider an admixed-valence-level structure is outlined. On these grounds the essential
features of recent magneto-Raman experiments discussed in the following paper can be explained.

I. INTRODUCTION

Recently, it has been demonstrated, that one-phonon
resonant Raman scattering (RRS) in a magnetic field is a
useful technique to obtain enhanced sensitivity for the
observation of interband transitions in semiconduc-
tors. ' The sharpening of resonant features due to the
one-dimensional density of states as introduced by the
external magnetic field H together with the modulation
spectroscopy aspects of resonant Raman scattering lead
to strong oscillations in the scattering efficiencies. The
intensity of the Stokes Rarnan LO phonon as a function
of 0 can be interpreted in terms of band-structure prop-
erties and electron-phonon interaction: The quantitative
assignment of interband transitions to experimental reso-
nances provides a test for sophisticated band theories
and enhances our understanding of the complicated
valence-level structure. The observation of resonant
magnetopolaron effects in Inp (Ref. 3) highlights the im-
pact of electron-phonon interaction in polar serniconduc-
tors. Resonances in different scattering configurations
can be attributed to Raman processes mediated by defor-
mation potential or Frohlich interaction.

This qualitative picture for the Raman processes, how-
ever, is not sufficient to understand problems such as
those of incoming and outgoing resonances and their rel-
ative strengths or possible conditions for magnetic-field-
induced double resonances. In order to obtain a con-
sistent description of the resonances observed in different
scattering configurations with circularly polarized light
one has to go beyond the assignment of experimental
features to theoretical interband magneto-optical transi-
tions: a theoretical model for one-phonon RRS in a mag-
netic field, which includes different mechanisms for
electron-phonon interaction, is necessary. In the past in-
terband and intraband light scattering in a magnetic field
has been investigated theoretically in the context of elec-

tronic scattering processes or cyclotron-phonon reso-
nances. ' In Ref. 16 the cross section for first-order
Raman scattering in a magnetic field considering the de-
formation potential as the electron-phonon coupling
mechanism was calculated within a two-band model. The
results obtained there cannot be used to explain the
above-mentioned features of the one-phonon RRS spec-
tra. Double resonances, for example, cannot be obtained
in a two-band model, since the two denominators which
appear in the scattering efficiency (incoming and outgo-
ing resonances) never vanish sitnultaneously for the same
Landau n.

In this paper we develop a theory of one-phonon RRS
in diamond- and zinc-blende-type semiconductors in a
magnetic field in which deformation-potential and
Frohlich interactions are considered to mediate the
electron-phonon interaction. It is organized in the fol-
lowing way: In Sec. II we introduce some general rela-
tions concerning the Rarnan efficiency and the band mod-
el we use; the case of deformation-potential interaction is
considered in Sec. III where selection rules for one-
phonon RRS in different scattering configurations are
studied and the double-resonance condition is analyzed;
Sec. IV is devoted to Frohlich interaction. An extension
of the theory is made in Sec. V in order to take the mix-
ing of valence levels and a realistic band structure into
account. Theoretical results obtained from this are
brieAy compared to experimental spectra. Section VI
presents the conclusions.

II. THEORY OF ONE-PHONON RRS
IN A MAGNETIC FIELD

To calculate the one-phonon RRS cross section we
consider a model with parabolic nondegenerate bands
and uncorrelated electron-hole pairs as excited states.
Figure l(a) schematically shows the band structure and
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FIG. 1. Terms contributing to the Raman efficiency in a magnetic field for a zinc-blence-type semiconductor in the vicinity of Ep
and Ep+ Ap critical points in the simple parabolic band model. (a) Parameters used to describe band structure and Landau levels as a
function of magnetic field. {b) Transitions between Landau levels which contribute to Raman processes in the z(+, —)z and

z( —,+)z scattering configurations: deformation-potential interaction. (c) Idem for the z(+, +)z and z{—,—)z scattering
configurations: Frohlich interaction. Open arrows represent interband magneto-optical transitions, solid arrows the transitions

mediated by the electron-phonon interaction.

the parameters used for its description which can be ap-
plied to a zinc-blende-type semiconductor in the vicinity
of the Ep and Ep+Ap critical points.

A. Hamiltonian of the system

Hp =g fico(a„,a„,+ —,
' )+g ficop(q)(bqbq+ —,

'
)

v, e

+g E;(d;d;+ —,
'

)

a, l

(2)

corresponding to the free photon, phonon, and electron
fields, respectively. In Eq. (2), a „,and bq represent the
creation operators for photons and phonons, z and e are
the wave vector and polarization of the light with fre-
quency co, and cop is the frequency of a phonon with wave
vector q. d, is the creation operator for an electron in
the band i with quantum number a and energy E,-. For
an electron in the band i with a constant magnetic field H
parallel to the z axis and in the framework of the
envelope-function approximation, the E; are the eigen-
values of the equation

r

A V . AeH 8 m ~
2 pa~

3' + 3' + g.
2m, * m,*c Bx 2 2

=E. , %. , (3)

The total Hamiltonian is given by

&=Hp+HE Ic +H~ p

Hz z and Hz ~ are the electron-radiation and electron-
phonon interaction Hamiltonians, respectively. Hp is the
unperturbed Hamiltonian equal to

where o, is a Pauli matrix and pz is the Bohr magneton.
co„, m;*, and g;* are the cyclotron frequency, the effective
mass, and the g factor of the electron in the band i, re-
spectively. In this case the quantum number a includes
n, k„, k„and m, =+—,

' for the two different spin states.
From Eq. (3) it follows that the energies E„k and thei' iz

electron wave functions 4 are given by

Ak, ,E„k = +%co„(n;+—,
' )+lj.,aHg;*m„,

t gZ Sl
l

with n; =0, 1, . . . ,

(r)= V '~ e ' 4„(y)ic, p(r),

(4)

~here u; p is the electron Bloch function in the band i for
k=O, 4„are the harmonic oscillator functions, V is the

t

volume of the crystal, and p = (x,z).
The electron-radiation interaction Hamiltonian can be

expressed in the dipole approximation by

HF „=g(a„,+a
mp Van

e-p,

&j IH& „I
i &

= e&j I p li &

m p Veen
J

X $I

mp and e being the free-electron mass and charge, n the
refractive index, p the momentum operator, and e the po-
larization of the photon field. If we consider the direct-
allowed electron transition between two bands i,j and
make use of the wave function (5), the matrix element
&j ~ HF „~i & can be written as
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In Eq. (7) the + signs correspond to the absorption or
emission of one photon by the electron.

Since first-order Raman scattering involves one step
mediated by electron-phonon interaction, the correspond-
ing Hamiltonian is linear in the phonon operator and bi-
linear in the electron operator, that is,

Hz p= g [S ',J(q)d ~ d, b ]+c.c. ,
a, a'

I,J

(8)

where S ';J is the electron-hole pair to phonon coupling
constant. In this paper two different mechanisms of
electron-phonon coupling which contribute to the Raman
cross section will be investigated: the dipole-allowed
deformation-potential (short-range) and the intrinsic
dipole-forbidden Frohlich (long-range) electron-phonon
interaction. '

B. Raman scattering ef5ciency

+five nonresonant terms . (10)

The indices ph (k =i,j) refer to intermediate electron-
hole pair states with lifetime broadenings I & and energies

g2k 2 g2k 2

E„=Eg + + +%co«(n, + —,')
2m* 2m*

e h

+&~,h„(nh„+ ,' )+ijAH(g, 'm„-gh'„m h„)—

The Raman scattering efficiency dS/dQ per unit
length and unit solid angle dQ and the scattering ampli-
tude per unit time IVF, are related by the equation

3 3
dS ~1~s n l ns V

l IVFi((ii„e, ;(ui, ei ) l
. (9)

(2ir ) c (fuo( )

In the initial state lI & of the system there is an incident
photon of frequency co& and polarization e&', the final state
lF & has a photon of frequency co, =(ui —

coo and a phonon
cop. In the following the indices I and s always refer to in-
coming (laser) and scattered (Stokes) light, respectively.
Using Eqs. (1)—(4) in lowest-order perturbation theory
the scattering amplitude for a semiconductor in a mag-
netic field can be written as

&FIHh a I(ui &&(uj IHF pl(u; & &)M; IHF ~ II &

IVF, = g (fico, E„+iI „)()—)i(o, E„+iI', )—
P;sPj j j I

with Eg being the energy of the gap associated with the

valence band k and the conduction band and m,* (mh' )

the effective electron (hole) mass. In Eq. (10) the first
term dominates for laser energies near interband critical
points. The other ones are nonresonant and only cause a
small background. Therefore they shall be neglected in
the following.

III. DIPOLE-ALLOWED
DEFORMATION-POTENTIAL INTERACTION

To calculate the Raman efficiency in a magnetic field
we choose a three-band model consisting of the conduc-
tion band (c) and two valence bands (v; and u ). In this
case the electron-hole pair phonon coupling constant is
equal to'

ap being the lattice constant, up the phonon zero-point
amplitude of the relative sublattice displacement, ' and
D (r ) (a=e for the electron and h for the hole) the
deformation-potential constant as defined by Bir and
Pikus. ' In our three-band model the deformation-
potential interaction can only act between different
valence bands. The matrix element &clD, (r, )lc &=—0.
Thus, in the Raman process, the electron in the conduc-
tion band does not change its quantum numbers via
electron-phonon interaction. Furthermore, using the
wave function (5}and Eq. (12) it is possible to show that

(13)

where D„' =&u, lDh(rh)lv, &, xoh = A. kh, A, =(—i)ic/
I

eH)' is the cyclotron radius, andf,(q„,q )=f dx 4„(x)e "

Acq„X4, x+
Ilg eH

(14)

Introducing expressions (7), (11), and (13) into Eq. (10)
and only keeping the term which dominates near reso-
nance, the scattering amplitude can be written as

S ';J(q)= &a',j lD, (r, )e ' —Dh(rh)e "la,i &,
2Qp

(12)

FI

& c le,
'

pl v, &D.
"'

&'u; 1ei pic &

T

mp Vn, n((co, co()' &p g „A'k''
+Aco',"

2pi

e " '"f„„(q„,q }5 05

Ak
(n+ —,

' —P„) +fico,' '(n+ —,
' —P,i)

J

(15)

where

k=i,j
~((s) Eg paH($, ' —gh' )m„+—il h-

~l(s)k (h)
%co

(16)
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with co',"'=eH/pkc and pk the reduced effective mass. In Eq. (15) we have taken K( K =0 and made use of spin con-

servation. The Bose-Einstien phonon population factor was neglected because we consider only Stokes Raman scatter-
ing at low temperatures. Using the fact that gk exp( iq„—xp)=(V ~ /2irA, )5~ p and integrating over k, in Eq. (15),

x

we find that the scattering amplitude of a Raman process where the hole is scattered from valence band i to j is given by

W„,(i ~j ) =IPRDP(P( P,i.),
where

(17)

Dp } li&I sj g (()~(j) g P p p~e c n=0 li sj
(18)

and

I =—
0

,~2 & c le,'.plu, )D„"& u, le, pic ) „,v 3

(%co(fico, )
'~ moao

(19)

u„'„=l-', , +-,'&= l(x+iY)y&,
2

I(X—iY)J)1

with aH and RH being the hydrogen Bohr radius and

Rydberg, respectively.
The above result differs from the scattering amplitude

obtained in Ref. 16 in the denominator P(;-P,j, which ap-
pears on the right-hand side of Eq. (18), and in the two, in

general, different gaps Eg and lifetime broadenings I kgk

introduced in Eq. (16). This is due to the fact that a sim-

ple parabolic two-band model is considered in Ref. 16,
while we are dealing with a three-band model. It can be
seen from Eq. (18) that the scattering amplitude is pro-
portional to H. As in Ref. 11, the limit H ~0 can be ob-
tained from Eq. (18) for the uncorrelated electron-hole
scattering amplitude. Finally, the Raman efficiency of a
process involving the transition U; ~v is given by

dS(ij) =SDp IRDp(P(&&Ps~ )I
2

SDp—
Vu0

ii( 2~ a c iri I0 0

n,

xl&cle,'.plu, &D„"J &v, le, pic&l'. (21)

A. Selection rules

We consider the case of backscattering from a (001)
surface of a cubic semiconductor in Faraday
configuration (Hll+z, ki; h, ll TH}. In this case, the ma-
trix representation of Dl, is

0 1 0
D~ =dp 1 0 0

0 0 0
(22)

where dp is the optical deformation-potential constant.
In III-V compounds, in the vicinity of the Ep and Ep+ kp
critical points, different transitions between the conduc-
tion band and the three valence bands, corresponding to
heavy (hh), light (lh), and spin-orbit split-off (so) holes,
will contribute to the resonances [see Fig. 1(a}]. The
valence-band wave functions

l J,J, ), where J is the total
angular momentum and J, its z component (J=—,'for I'((

and J=—,
' for I'6 and I'7), can be represented as '

v+ =li, +-,' &=

u(h =l—2' 2

v
+ =

l —,', + —,
' )

l(x+i Y) l 2z1—),1

6

l(x —i Y)1+2z 1 ),1

6

l(x+i Y) l+zy&,1

3

1

V'3 l(X —iY)f —ZJ ),

(23)

EJ=O, +1,
hm, =m„—m, &

=0,
An =0,
bJ, =J„.—J, =2 for z( —,+)z,

(24)

and

hJ, = —2 for z(+, —)z .

where the [001] direction has been chosen as the quanti-
zation axis. The wave functions for the conduction band
lc) are lSt) and lSJ, ).

For circularly polarized light [e+=a = (e„hie~ )/
v'2] Raman processes mediated by deformation-potential
electron-phonon interaction are possible in two scattering
configurations: z(+, —}z or z( —,+ }z. It immediately
follows from Eqs. (22) and (23) that there are no processes
allowed by this mechanism in the z(+, +)z
configurations.

Table I(a) shows the nonzero matrix elements

(cle~ plvj)D„'(u;le+ pic) for the different diagrams

which contribute to resonant Raman scattering in the re-
gion of the Eo and Ep+bo gaps. It can be seen that via
deformation potential the spin-orbit valence band

l —,', k —,
' ) can only be connected with the heavy-hole

valence band l
3, 7 —,'). The light-hole states l

3,i—,
' ) cou-

ple with the
l —,', + —', ) heavy-hole states. Furthermore,

conduction-band states with spin up and down are both
involved in Raman processes for each configuration.

The following selection rules for deformation-potential
scattering are obtained:
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TABLE I. Values of (a) (cle~ pl u, )D,'(v;le~ pic) and (b) (cle~ plu, ) (v, le~ pic) for the

diferent transitions involved in the vicinity of Ep and Ep+Ap critical points. f ($) denote spin up
(down) of the conduction-band wave functions involved in the respective Raman processes.

transition

(a) (c le~.pl u, )D„' (u, le ~ pic )

r( —,+)z transition r(+, —)z

+
Vhh ~Vlh

+
Vlh ~Vhh

+
Vso ~Uhh

+
Vhh ~Uso

l t')E p

(1)p

1 p

(1)p

+
Uu

+
Ulh ~Vhh

+
Vso ~Uhh

+
Vhh ~Uso

—i dp ($)

—i dp (t')

2lpl'd (t)p

p

transition

+ +
Uhh ~Vhh

+ +
Ulh ~Vlh

+ +
Vso ~Uso

3

(1)
3

Vhh ~Uhh

Ulh ~U1h

Vso ~Uso

(b) (cle~ plu;)(v;le~. pic)
Z( —,—)Z transition z(+, + )z

3

(t)
3

For dipole-allowed interband magneto-optical transitions
the usual selection rules hn =0, hJ, =+1 for cr polar-
ized light are used. Using these selection rules and the
results of Table I(a) it is possible to obtain the total Ra-
man efficiency by adding the different contributions
coherently. In the z( —,+ )z configuration, for example,
we have

+ —
( +

~DP(vso vhh )lT~DP(vhh vlh )

Y) DP( ih hh ) DP("so Vhh )

+J~ DP("hh (25)

Figure 1(a) schematically shows the Landau levels as a
function of the magnetic field for the I'6, I'

t), and I"7
bands. The different interband magneto-optical transi-
tions and the transitions mediated by deformation-
potential interaction for the z(+, —)z and z( —,+)z
scattering configurations are presented in Fig. 1(b). As
can be seen in Fig. 1, no valence-band mixing has been
considered in the simple parabolic three-band model
studied here. If the valence-band mixing is taken into ac-
count, the magnetic levels have admixtures of Landau
states which differ in the quantum number n, but the
selection rules for J,J, and the spin remain. Further-
more, the selection rules hJ, =+2 cause differences be-
tween the spectra in the two scattering configurations
with opposite circular polarizations. For example, let us
consider the resonant so~hh valence-band transitions:
In the z( —,+)z configuration the Raman process cou-
ples via a spin-down conduction-band level with scatter-
ing of the hole between U,+, and u&z states, whereas in
z(+, —)z a spin-up state and the u and u„+h states are in-
volved. The electron and hole g factors lead to a
difference in the interband transition energies for the two
processes which is given by

AE=paH(g, *—gh* ) . (26)

For fixed laser energies the difference in magnetic field of
incoming (outgoing) resonances involving levels with the
same Landau n but occurring in the two complementary
configurations is

hH„=
(Aru((, ) Eg )(g,' —g—h* )

J J (27)

ill p (2n+1)
ge A,

hE is independent of n while bH„decreases like (2n)
If the spin quantization can be neglected or if g,'=g&*,

J
the same behavior of the Raman efficiency as a function
of Ace& or H should be observed for both configurations.

B. Double-resonance condition

When the incident and scattered light are simultane-
ously in resonance with electronic interband transitions,
the conditions for doubly resonant first-order Raman
scattering (DRRS) are fulfilled. The condition for
DRRS, which is that the difference in energy between
two electronic transitions must be equal to the energy
Scop of the phonon under consideration, has been ob-
tained previously by several methods: choosing the ap-
propriat'e thickness of a quantum-well structure, apply-
ing an electric field, or a uniaxial stress. Experimental
and theoretical evidence for magnetic-field-induced dou-
ble resonance was found in the course of this work.
The presence of an external magnetic field splits the I"6,
I (), and I 7 bands into singlets [see Fig. 1(a)]. A suitable
magnetic field can induce an energy splitting equal to
fKop. Assuming that the incident light is in resonance
with an interband magneto-optical electronic transition
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~DR
n

%coo Ez +—E
I J

from one of the valence bands to the conduction band,
and that the scattered light is in resonance with a transi-
tion from another valence band to the same conduction
band, the condition for double resonance will thus be
fulfilled when the two valence levels can couple via
deformation-potential electron-phonon interaction. The
double-resonance condition can be obtained using Eqs.
(16) and (18). It follows that the critical magnetic field
H is given by

Ep =1519 meV'

m, =0.068mp
m hh =0.491mp'
m )h =0.086mp'
m ~ =0.176mp'

hp=341 meV'

g, = —0.32'

Asap=37 meV'

I, hh=1 meV

I, )h=3 meV
I,„=10meV

'Reference 31.
Reference 32.

'Calculated from Luttinger parameters given in Ref. 27.

TABLE II. Parameters used for the evaluation of the Raman
efficiency near the double resonance condition in GaAs (Fig. 2).

pg
Pl;

Plo
(2" + l ) pa(gh gh )m..m'

%co& "=Es +%co", (H„)(n+ ,' )+@AH—„(g,' —g&' )m,

(29)

Figure 2 sho~s the Raman eSciency due to the U &h
~U hh

1 —~e L =165 eV
z(o, o )z

Vl

"&L=164eY

JD
l
U

8 -~~L=1.63eV
Vl

6 5

2 -Q~L=1.62 eV
Cf

h~L =1.6leV
6

(28)

and the laser frequency for which the double resonance
occurs is equal to

term in the z(+, —)z configuration for laser energies
below and above the DRRS condition as a function of the
magnetic field. In the calculation parameters for GaAs
were used. The effective band parameters m', g* were
evaluated using the expressions from Ref. 27 and they are
summarized in Table II. For an incident laser energy of
Azar=1. 61 eV one recognizes the typical oscillations of
the intensity due to incoming and outgoing resonances
for different Landau quantum numbers n as a function of
the applied magnetic field. The incoming resonances
(dashed arrows) correspond to light-hole —to —conduc-
tion-band magneto-optical transitions while the outgoing
ones (solid arrows) are due to transitions between the
conduction and heavy-hole Landau levels. According to
Eq. (20) the Raman efficiency should increase like H .
The ratio between I', „„and I', ,h determines the relative
strength of the incoming and outgoing resonances. As
the laser energy is increased the incoming and outgoing
resonances for each n move closer towards each other.
For Ace, =1.63 eV the resonances of the incoming and
scattered light coincide at the DRRS critical magnetic
fields H„and a maximum in the Raman intensity is ob-
tained. The denominators in the expression for the Ra-
man eSciency vanish except for the lifetime broadenings.
In this case the phonon intensity c1early shows the para-
bolic dependence on the magnetic field mentioned above.
Due to the small value of p, sH(gz' —gz' )m, compared to

the cyclotron energies, the critical laser energies are prac-
tically independent of the Landau quantum number n.
Neglecting the g-factor contributions one obtains

6 8 10 12

Magnetic Field (T)

mhh me +~lh=E,+. . .&~o
~e ~hh mlh

(30)

FIG. 2. Raman intensity as a function of the magnetic Seld
for laser energies near the double resonance condition in
z(+, —)z configuration. For clarity only the U&h ~vhh term is
shown. The parameters used in the calculation are typical for
GaAs (see Table II). Dashed arrows label the incoming reso-
nances while the solid arrows point to the outgoing resonances
for Landau quantum numbers n.

which gives Am& =1621 meV using the parameters of
Table II. For laser energies above AcoI, the incoming
resonance for the same n occurs at lower magnetic fields
than the outgoing resonance, whereas the reverse is true
for laser energies below Ace& . This clearly demonstrates
that magnetic-field-induced DRRS is obtained when the
two magneto-optical transitions differ by the energy of a
phonon and the lh~hh transition is mediated by
deformation-potential electron-phonon interaction.
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IV. DIPOLE-FORBIDDEN FROHLICH
INTERACTION

s;/(q)= &a', jle ' —e "la i),
C = i(e

—1 e
—1)1/2(2~e2$~ /V}1/2

(31)

(32)

The coupling constant for the interaction between elec-
trons and long-wavelength LO phonons (Frohlich in-
teraction) is'

I
sq„x0

&i 2IHE ~i@i)=(&„.„&„„
lq xo—5, 5, 5, e ")

k ,k kh, kh ql ~h'&h

CF*
x

I I

f„ „ (q„,q ) . (33)

Using expressions (7), (11),and the above matrix element,
the scattering amplitude becomes

eo being the static and e„ the optical dielectric constants.
Introducing expression (5) into Eq. (31) the matrix ele-
ment & pzIHz p Ip, ) can be written as

Wpi = A t)Rp(pt) p J).
where

(34)

R~(Pi, P, ) =
(i}tco',J') m&' +m,' & „=0 [(pi n ——

—,
' )(psj —n —

—,
' )]'

J

—&cle; plui&&v, leg pic& Ill
n, n, mo(iii~, t~, }'" q

(35)

(36)

y„=%co,'J'(n +—,
'

) (37)

and converting the summation g„ into 1/%co',I'Jo dy.
After evaluating the integral the well known uncorrelated
electron-hole model for the Frohlich interaction is ob-
tained

. v'2= —iFI

m' —m*
Ao

mq' +m,*

' 1/2

X
I'e -E+irI g

%coo %coo

—E +irS g

Rcoo
(38)

As in the deformation-potential case the scattering ampli-
tude is proportional to the magnetic field. The Raman
intensity is given by the expression

J 1 —S IR (p p )I2 (39)

SF=
'2

co, n, y'
I CF I

'
(A,q, )

col nI 2m. c4fi m q

x l&cle,'plu, ) &u, le, pic) I'.
Unlike in the case of deformation-potential interaction,
0RRS cannot be achieved with dipole-forbidden
Frohlich interaction in the framework of this simple band

Since the wave vector of phonons being involved in the
one-phonon RRS is very small, we only include terms
proportional to q in Eq. (34) and f„„(q„,q~) is approxi-
mated by 1. The fact that HE z may couple only intra-
band and intralevel has already been considered in these
equations. The limit H~O can be recovered from Eq.
(34) by substituting

I

model. Defining the scattering configurations as in Sec.
III and using the wave functions given in Eq. (23), the
selection rule hJ =0, hJ, =0, Am, =0, and hn =0 is ob-
tained, which allows for scattering in the z(k, k)z
configurations. The z(+, +)z configurations are forbid-
den. The nonzero values of &c le+.pluj ) & v~ le+ pic ) for
the Eo and Eo+bc critical points are given in Table I(b).
The different interband magneto-optical transitions, the
Landau levels, and the transitions mediated by Frohlich
interaction for the z(+, k)z configurations are shown in
Fig. 1(c}. For the z(o+, o+)z configuration, for example,
the total Raman efficiency is given by
dS

F( hh hh )IRF(uhh ~vhh)+ 3Rp(v~h ~v~h )

+ 23RF(u.o ~u„)12 . (41)

As a function of RcoI or H the Raman intensity shows a
series of resonances for the incident and scattered light
whenever fin&~„=Es +%co',J'(n+ ,' )+p&H(g,' —g—h' )m, .

l e

From Eq. (39) and Fig. 1 it can be understood that the
resonances for the same Landau quantum number n
occur at different magnetic fields or laser energies for the
two scattering configurations z(+, +)z, a fact which is
due to the g-factor splitting. As in the deformation-
potential case, the energy separation bE (for constant H)
and b.H (for constant energy) between two peaks originat-
ing from the same Landau n in the two types of spectra
are given by Eqs. (26) and (27), respectively.

V. ADAPTATION TO A REALISTIC
BAND STRUCTURE AND COMPARISON

WITH EXPERIMENT

In the attempt to fit the theory just developed to exper-
imental results it is found that the parabolic three-brand
model is only a rough approximation for the complex
features which are observed experimentally. As is well
known, the valence levels of cubic semiconductors in a



41 THEORY OF ONE-PHONON RESONANT RAMAN SCATTERING. . . 3035

magnetic field are not pure product states of Bloch and
oscillator wave functions. Diagonalization of an 8 X 8
k.p Hamiltonian yields rather a sum of these basis func-
tions which may be admixed to a considerable degree.

Since, however, our theory was developed for general
basis product functions [Eq. (5)] it can easily be adapted
to any sophisticated wave functions obtained from the
more accurate Hamiltonians. This is accomplished by
applying the selection rules found in Secs. III and IV and
multiplying with the corresponding weight coefficients.
The Landau ladders are in general not going to be
equidistant any more, especially for small oscillator quan-
tum numbers n where quantum effects become evident.
This can readily be taken into account within the frame-
work of our theory by siinply converting the magnetic en-

ergies into effective masses according to
E=(efiH/rn'c)(n+ —,'). Thus the effective mass is no

longer treated as a constant but rather as a function of
Landau n and magnetic field H. The nonparabolicity of
the conduction band can be incorporated in the same way
and corrections due to Coulomb interaction between elec-
trons and holes may be treated as a renormalization of
the levels. A step away from the parabolic model to-
wards a more realistic band structure in a magnetic field
was given in the work of Luttinger and Kohn. ' In the
approximation k, =0, which is justified by the divergence
of the one-dimensional density of states and the low tem-
peratures at which these experiments are usually per-
formed, the 8 X 8 k.p Hamiltonian can be separated into
two 2 X 2 blocks for the I 8 valence bands and be solved
analytically. Admixed wave functions

il12 =bi ~n
—2, —,', + —,

' )+b~ ~n, —'„——', ), (42)

are obtained for the eigenvalues E (1—), E (2—) for
heavy-mass ladders and E(1+), E(2+) for light-mass
ladders. When dealing with these solutions the assign-
ment of single ~n, J,J, ) states to heavy- or light-hole lev-

els becomes meaningless. The terminology of heavy- or
light-mass levels should rather be used in order to charac-
terize the narrow or widely spaced ladders which consist
of admixtures of both heavy- and light-hole states of the
simple three-band parabolic model. The valence-level
structure resulting from this extension is schematically
presented in Fig. 3. The parameters used to describe
these levels are the Luttinger parameters ' ' and g-
factor splittings are now implicity incorporated in the di-
agonalization of the 2 X 2 blocks, which couple oscillator
functions difering by hn =2.

A comparison of the energy levels calculated with
Luttinger's formulae to the more precise theory by Tre-
bin et al. gives good agreement for the heavy-mass lev-
els, whereas the light-mass ones show differences of more
than 5 meV for n & 5. However, the admixing factors ob-
tained from both theories are pretty similar and the com-
parison suggests that the approximation of the valence
levels by the analytical results is valid for GaAs. In the
case of InP, however, the wave functions are found to be
dominated by three or even four admixtures and thus
this approximation is probably not too realistic.

Maintaining the parabolic approximation for the con-

duction and split-of levels, and using the I'8 valence-level
structure just described, additional Raman processes be-
come possible which are shown in Fig. 3. While leaving
the detailed discussion of the consequences of this exten-
sion to the following paper we note that due to the
valence-level mixing there are now also channels for
magnetic-field-induced double resonances with Frohlich-
interaction-mediated processes observable in z(+, +)z.
This is possible because states ~n, J,J, ), which partici-
pate in intraband and intralevel Frohlich coupling, are
now admixtures of both heavy- and light-mass levels. A
problem is, however, still left. While the g, +—,') coin-

ponents of the light- and heavy-mass eigenstates now
couple via Frohlich interaction, so do the corresponding

~ —,', +—,
' ) components. Orthogonality makes the total cou-

pling again equal to zero. In what follows we neverthe-
less treat this coupling as nonvanishing, a fact that can be
easily justified if the in-plane wave vector of the phonon
is not zero. In our backscattering configuration this can
only be achieved through scattering by defects. A quanti-
tative understanding of these problems requires further
work. Under the assumptions just mentioned the cou-
pling light- and heavy-mass levels can be split by a mag-
netic field to have a separation of one LO phonon leading
to double resonance, whereas in the model discussed be-
fore they can only contribute to incoming or outgoing
resonances. The results obtained by this approach are
justified by our experiments. ' Furthermore there are
now two series of double resonances for each scattering
configuration which involve phonon emission by scatter-
ing of holes between light- and heavy-mass levels.

A comparison of experimental spectra (solid lines) with
the theory (dashed lines) for four different scattering
configurations is given in Fig. 4. In the calculations all
terms of Fig. 3 were considered. The parameters used to
calculate the Landau levels are given in Ref. 26. The
conduction-band nonparabolicity' and Coulomb correc-
tions were incorporated as just described. A term
b, H+bo (b„bo constant) was coherently added to the
calculated spectra in order to phenomenologically de-
scribe the background that is found for increasing mag-
netic fields. We have some indications that this back-
ground is due to multiphonon scattering in the excitonic
polariton regime. The lifetime broadenings were
chosen as a compromise between recent results and the
widths of the features that we observe in our spectra and
taken as constants for all Landau n and at all magnetic
fields. This approximation is actually not valid since the
rapid decreasing of the experimental features for larger n

supports the model that the lifetime of states becomes
shorter the further they are away from the Eo fundamen-
tal gap, which is due to acoustic-phonon emission. Due
to the complications involved with a lifetime which de-
pends on Landau n and H, we decided to treat the
linewidths as constants rather than to obtain a better fit
at the expense of clarity.

As described in more detail in the following paper, all
the spectra of Fig. 4 except the one in the z( —,+)z
configuration correspond to situations which are close to
double resonance. In the spectra where Frohlich scatter-
ing contributes, the phonon is emitted by coupling be-
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tween the admixtures of J,= —
—,
' [z(+,+ )z] and

J =+—' [z( —,—)z] in the light- and heavy-mass levels.2

The resonances in the z(+, —)z spectrum where
deformation-potential scattering occurs originate from

couphngs e weenb t J = ——' (in) to J =+—' (out) wavez 2

functions. The oscillator quantum number n is conserved
in our theory and is indicated in Fig. 4. The spectrum in
z( —,+)z configuration is typical for a region remote

(a)

(b) Z0' )0 Z

E(1 (2-)

n —2, z, +& )3 3 + in, -, —-

In+2, 2, —
2 &

E(1

In —2. 2 +& &3 3
& +in, ;, —;&

in, 23, +23& + i In+2, -, , --, &

Raman e%ciency in a magnetic field using the Luttinger formulas for the mixedFIG. 3. Terms considered in the calculation of the Raman e%ciency in a magne ic e u
Landau levels which contribute to Raman processes in t ez, —zI 8 valence levels. (a) Transitions between an au eve

) and z( —,—)z scattering configurations: Frohlicing configurations: deformation-potentia inial interaction. (b) Idem for the z(+, + z an z —,—z
11 d 'n the Raman processes, solid arrows the transi-interaction. Open arrows represent interband g - pma neto-o tical transitions a owe in e a

tions mediated by the electron-phonon interaction.
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onant Raman scattering in a magnetic field. It can be
used to describe the essential features of magneto-Raman
experiments when adapted to a realistic band structure.

VI. CONCLUSIONS

Ul

c 10

I
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z(o, o )z
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C0 2
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6 8 10 12

Magnetic Field (T)

FIG. 4. Calculated Raman intensities (dashed lines) vs 0
compared to magneto-Raman spectra of GaAs (solid lines) for
an incident laser energy ficoI =1.64 eV in four different scatter-
ing configurations. The theoretical resonances are labeled with
the respective Landau n. See text for details about the transi-
tions.

We have developed a theory of one-phonon resonant
Raman scattering in a magnetic field in diamond- and
zinc-blende-type semiconductors. Deformation potential
and Frohlich interactions were considered to mediate the
electron-one-phonon coupling. Selection rules were ob-
tained which show that the Raman tensor is not sym-
metric and that its components have different values for
different scattering configurations: the dipole-allowed
deformation-potential mechanism leads to coupling in
z(+, —)z and z( —,+ )z, while the intrinsic dipole-
forbidden Frohlich interaction can be seen in z(+, + )z
and z( —,—)z. The nonsymmetric characteristic of the
Raman tensor arises from the Landau-level spin splitting.
The calculated Raman efficiencies exhibit strong oscilla-
tions as a function of laser energy or magnetic field which
correspond to incoming or outgoing resonances with
Landau levels. Conditions for magnetic-field-induced
first-order doubly resonant Raman scattering by LO pho-
nons were investigated. An extension of this theory was
presented, which treats the I 8 valence levels in the frame-
work of the Luttinger theory and takes into account addi-
tional terms which arise from valence level mixing. In
this case double resonances may also occur in Frohlich-
interaction-mediated Raman processes which cannot be
understood in a simple three-band model. As discussed
in detail in the following paper agreement between this
theory and the dominant features of the experimental
spectra is found.

from double resonance. There a multitude of incoming
and outgoing resonances show up in the theoretical spec-
trum and a detailed analysis of each term separately is
necessary to sort out the different contributions.

This comparison between experiment and theory, ex-
panded in the following paper, shows that the theory
developed in Secs. III and IV is an adequate model of res-
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