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The temperature-dependent linewidth of excitons in semiconductor quantum wells due to the in-

teraction of the exciton with LO phonons is studied with use of perturbation theory for the exciton-

phonon interaction and by assuming an infinite-barrier-quantum-well model. The interaction is tak-
en to be of the Frohlich form, and the scattering of the exciton to both bound and scattering states
of the interacting electron —heavy-hole system has been taken into account. The dependence of the

linewidth on the quantum-well width and on the choice of the heavy-hole mass is discussed, and

comparison is made with available experimental data. The effects of the confinement of the optical
phonons on the exciton linewidth are also studied and are found not to alter substantively the re-

sults for the dependence of the linewidth on the quantum-well width.

I. INTRODUCTION

The optical properties of semiconductor heterostruc-
tures are of considerable interest for possible applications
in optoelectronics. ' Emission and absorption near the
band gap in high-quality direct-band-gap semiconductors
are dominated by excitonic features. In GaAs/
Ga& Al As multiple quantum wells, excitons exist up to
room temperature and thus are especially interesting for
possible applications. The shape of these optical
features is determined by the exciton linewidth. For the
GaAs/Ga& „Al,As system grown by molecular-beam

epitaxy, a number of experimental results for the exciton
linewidth has been reported based on optical absorp-
tion, ' optical reAection, and luminescence ' ' studies.

The observed temperature dependence of the linewidth
comes from the homogeneous broadening due to
exciton-phonon interactions. The physical mechanism in
the case of quantum wells is the same as that in bulk
semiconductors with direct band gaps. ' '" For weak
exciton-phonon interaction the absorption, which is cal-
culated from the imaginary part of the exciton Green's
function, has a Lorentzian line shape with a half-width
given by the imaginary part of the exciton self-energy
evaluated at the exciton resonance frequency. ' ' The
exciton lifetime is related to its calculated linewidth
through the energy uncertainty principle.

The contribution of the homogeneous broadening to
the linewidth can be written in the form

I ham('r) =~'r+rNt. o('r) .

The first term on the right-hand side arises from exci-
ton interactions with acoustic phonons. The second term
arises from interactions with longitudinal-optical (LO)
phonons, and it is proportional to the phonon population

function NLo(T). This form of the temperature depen-
dence assumes dispersionless bulk LO phonons and will
be modified by the effect of the multiple-quantum-well
system on the optical phonons, as shall be discussed later.

In this work we present a detailed study of the LO-
phonon contribution to the temperature-dependent
linewidth arising from a process which involves the ab-
sorption of a LO phonon accompanied by the exciton be-
ing scattered to a bound or to a continuum state. " In
general, scattering to all energetically accessible inter-
mediate states should be taken into account. In this work
we use an infinite-barrier quantum-well model and the
effective-mass approximation to.study the dependence of
the linewidth parameter y on the quantum-well width L.
We also discuss the dependence of the results on the
choice of heavy-hole mass for the nonparabolic valence
bands. The importance of the contribution from the con-
tinuum states to the linewidth in bulk semiconductors
was pointed out previously. ' '" In this work, we treat
the continuum states as scattering states of the interact-
ing electron-hole pair. In this respect our calculations of
I significantly differ from other recent theoretical treat-
ments. '

A brief version of these results was given in a previous
publication. ' There the phonons were assumed to be
three-dimensional bulk modes, and the resulting
line width I depended on confinement through the
electron-hole wave function. The interaction was as-
sumed to be of the Frohlich form. In the present paper
we provide the details of the calculations, and we investi-
gate how the confinement of the optical phonons affects
the calculated values for the exciton linewidth. In the
present work we shall not include "polariton effect" in
the linewidth calculations. This effect gives a
modification in the linewidth due to the strong resonant
coupling of the light and the exciton. In the bulk case we
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discussed this effect and showed that it resulted in a
reduction of I ." This reduction, however, was not as
significant as the reduction we used previously' and it
will not be included here. Some relevant discussion of
this point is given at the end of Sec. IV. We also note
that the more detailed treatment of all relevant contribu-
tions to the linewidth given here makes its dependence on
the well width L at small values of L more pronounced
than given previously. ' This, however, is further
modified by the effects of phonon confinement as dis-
cussed in Sec. V.

The calculational scheme for y follows closely the one
employed previously for the bulk case." For the
quantum-well case considered here we assume that both
the electron and the heavy hole are confined in the first
subband of their corresponding wells. ' The exciton
states then will be characterized by the in-plane two-
dimensional wave vector and by the internal state of the
exciton. The exciton self-energy is calculated to the
lowest order in the exciton-phonon interaction (the
Frohlich interaction can be treated as weak for GaAs as
shown in Ref. 11). Thus, for the exciton initially in a
ground state only, 1-LO-phonon transitions are involved.
From our results for the bulk case" and from the exact
results for the two-dimensional limit given here (see
below) we know that the dominant contribution to y is
obtained from the scattering of the exciton to the contin-
uum states of the interacting electron-hole pair. In the
present work scattering to the exciton ground state (the
intraband contribution) and to continuum states (the
dominant part of the interband contribution) will be tak-
en into account by employing variational wave functions
for the ground state' and two-dimensional (2D)
Coulomb wave functions for the scattering states. These
calculations assume spherical parabolic carrier bands,
and we estimate the uncertainty in the values of the exci-
ton mass by studying the dependence of y on the choice
of the heavy-hole mass. To investigate the effects of pho-
non confinement on I we calculate both intraband and
interband contributions as functions of the well width L
where both the exciton and the optical phonons are taken
to be confined modes.

This paper is organized as follows. In Sec. II the basic
formalism for the line width contribution from the
exciton —LO-phonon interaction in the presence of
confining potentials is given. The strictly 2D exciton lim-
it, for which all the contributions to y can be summed ex-
actly, is considered in detail in Sec. III. In Sec. IV we
employ variational wave functions for the ground state
and 2D scattering states to calculate the dependence of
the linewidth parameter y on the quantum-well width L,
and the results are compared with the available experi-
mental data. In Sec. V we calculate linewidth I (T)
taking the effects of the confinement of the optical pho-
nons into account. In this calculation the interactions of
the exciton with the interface modes and with the bulk-
like confined modes are included, and different approxi-
mations for "confined bulk modes" are discussed.
Several lengthy expressions that appear in the results for
the linewidth in Secs. III and IV are given in the Appen-
dix.

II. QUANTUM-WELL EXCITONS
AND THE EXCITON LINEWIDTH

DUE TO INTERACTION WITH LO PHONONS

A general electron-hole state can be written as

I%',.) = g F(k, k')c„dg IG ),
k, k'

(2. 1)

where
I
G ) is the ground state of the semiconductor, c

and d are the electron and hole creation operators, and
k is the 3D wave vector. The electron-hole wave function
in real space is defined by the Fourier transformation of
F(k, k'):

%(x„x&) = g F(k, k')exp(ik x ik—'
x& ) .

k, k'
(2.2)

where Eg is an energy gap, and m, and m& are masses of
the electron and heavy-hole obtained from the band
structure near the origin in k space.

We use the Coulomb interaction screened by the static
dielectric constant E'p of the quantum-well material. This
form results from the screening by the bound elec-
trons' ' giving e /e„r and a —contribution from the
LO phonons of (e /r)(1/e„1!eo). T—his approxima-
tion is valid in the large-exciton limit. The criterion for
the validity of a large-exciton approximation in this case
is E~ &AcoLQ where E~ is the binding energy and ~„Q is
the LO-phonon frequency. We do not include the effects
of the image charges from the barrier material. '

The pair-creation operator is defined as

Bf(x„xz)=V 'g exp( —ik x ik' xl, )—czd& . (2.4)
k, k'

In the exciton subspace of the electron-hole-phonon
Hilbert space we can rewrite the carrier-phonon Hamil-
tonian in terms of the exciton operators defined as

Bzq= f d x, f d x&%'«( „x)Bxh(x„xq), (2.5}

where q, k is a set of quantum numbers which distin-
guishes between the solutions of Eq. (2.3). At low exciton
density excitons can be treated as bosons,

[B,, B', , ]=a»,a„.+O( (2.6)

Because the motion in the plane of the quantum well is
translationally invariant, we transform the in-plane coor-
dinates to the in-plane center-of-mass (c.m. ) system and
separate the c.m. motion from the relative motion of the
electron and hole,

Xe&XA ~I, ,Ze, Zg (2.7)

In the effective-mass approximation' ' for the exciton
in the quantum-well potentials W, (x, ), Wz(xz ), one ob-
tains the Schrodinger equation

$2 $2
V, — V'„+ W, (x, ) —W„(x„)

me mg

e 2
' +(x„x„)=(E—E )+(x„x„}, (23)

Ep
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where r and R are 2D vectors referring to the relative
and c.m. motion, respectively, and the Jacobian of the
transformation is unity.

Then,

where p is the exciton reduced mass defined by
p '=m, ' —

ml, '. With Eqs. (2.1)—(2.4) we can now
rewrite the electron-hole —phonon Hamiltonian,

+(x„xz ) = A ' exp(iq. R)cp(r, z„z& ), (2.8)

i}i c)

2m, Qz2

fi c)

~
—$V, (z, ) —Wh(zh ) — V„

2m& QzI2 2p

where A is area and 4(r, z„zl, ) satisfies the usual
envelope-function equation for the motion of the exciton
in a quantum well, '

H..=y E.,~~(q)~.(q»
A, , g

H h=+ A'coga (Q)a(Q),
Q

H,„ph
= Q V (q)Bi„(k+q)8i, (k)

A, , A. ', g, Q

X[a(Q)+a ( —Q)],

(2.10)

(2.11)

(2.12)

2

[r +(z, —z„) ] '~ 4(r z„z„}
6'p

AqE E —— 4(r, z„zI, },
2M

(2.9)

where q is the 2D component of the 3D vector
Q = ( q, q, ), and the optical phonons are treated as three
dimensional.

The interaction matrix element can be written as'

V"(Q)=ug fd'r fdz, fdz„C „'(r,z„z„)C,.(r,z„z„) [exp(iq rmz/M+iq, z, )
—exp( iq r—m, /M+iq, zz )],

(2.13)

where u& for a Frohlich interaction is given by

ug =[27re RcoLo(E' —eo )V ']' Q

C=e ficoLo(e„' —eo '),
(2.14) and q„ is given by

(3.2)

and M =m, +mj, is the total mass of the exciton.
For convenience we introduce the notation V "(Q)

=ugvu (Q).
Just as in a bulk case, ' '" if the exciton self-energy is

evaluated to the lowest order in perturbation theory, we
obtain for the half-width of the lowest ( ls) exciton state

A qi /2M=ficoLo+Eis Ei„

U „z is given in two dimensions by

Ui„~(q. ) = fd" +i, (r)+~(r)

X[exp(iq rm„/M)

(3.3)

I „(T)=N„(T)(e fico /4')(e e ')

X fd'QQQ 'IU, , (Q}l'

X 5( fico„Ei(q ) + 'i—ii„co)o, (2.15)

where NLo( T) = [exp(ficoLo/ks T ) 1] ' is the Bose
function of thermal phonons.

The objective of the present work is to evaluate Eq.
(2.15) taking into account all energetically available states
within first subband in an infinite-potential approxima-
tion for the quantum well. Before evaluating Eq. (2.15)
for a quantum well of finite width, we consider the L ~0
limit, i.e., the strictly two-dimensional case.

III. LINEWIDTH OF THE EXCITON
IN TWO DIMENSIONS

The 2D limit of Eq. (2.15) is obtained by integrating
over all values of the z component of the wave vector Q
and then taking L~O. Then integrating over the 2D
wave vector q we obtain

—exp( iq rm, /—M }], (3.4)

where 4&(r) is an eigenfunction of the 2D Coulomb equa-
tion.

We redefine E& by choosing the zero of energy at the
bottom of the conduction band so that for the discrete
part of the spectrum —E& is the exciton binding energy.
The 2D Coulomb equation is then

eV'„— 4i(r) =Ei,@i,(r) .
2p 6'pP

(3.5)

It is well known that the Coulomb problem has higher
symmetry than that of a general spherical potential and
allows separation in parabolic coordinates. ' In the
bulk case" we found that the use of the parabolic coordi-
nates greatly simplifies the calculations involving the con-
tinuum part of the spectrum. Here we employ 2D para-
bolic coordinates g, i}defined by

x =sgng Igloo})'~ y =(lgl —i})/2

0&i) & ~, r =(ljl+i))/2 . (3.6)

3'i. =(™/2fi)& qi.
'

IU&, , ~(qi. )l',

where

(3.1) By choosing the y axis along q, we separate the f and i)
integrations in Eq. (3.4).

We can consider solutions of the Schrodinger equation
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(3.5) first in the region g) 0, and then extend them by the
continuity of 4(r) and V'„4(r) to the region (&0. The
separation of variables 4(g, ri) =f, (g)f2(7)) in a
positive-g region gives

+oo=Nooexp[ (lgl+'/1)po/2] .

B. Scattering states (0&0)

(3.22)

kf i'+f i /2+(a i+ Ã /4)f i
=o

gf2 +f2 /2+ ( a 2+ r/Q /4) f2
=0,

(3.7)

(3.8)

For positive energies the spectrum is continuous and
we normalize the eigenfunctions on the 5 function. We
define a positive energy number k by

where E =$2k2/2p (3.23)

Q=2pE/fi

and the separation constants are related through

(3.9) The continuity of the wave functions and their normal-
izability on the 5 function restrict solutions for Q & 0 to
the following:

01+&2=e p/A eo . (3.10)

A. Bound states ( 0 & 0)

General solutions for f, and f2 are given by the linear
combinations of confluent hypergeometric functions.
We now consider the bound- and scattering-state solu-
tions separately.

Gkp(P, ri) =Nk//exp[ i ( l
(—

l
+ r/)k /2]

XF(ip//2ak+ 4, ,', i l—walk)

XF(iP2/2ak+ —,', ,', ir/k—), (3.24)

Gkp( 4 ri) =Nkpexp[ —i( I gl + ri)k /2]

X(sgn()lg'rik l' F(iP, /2ak+ ,', ,', i —lg—lk)

The requirement that 4(g, ri) & ~ at infinity restricts
solutions to finite polynomials, and defining

XF(iP2/2ak+ ,', ,', i r—ik—), (3.25)

(3 1 1 )
where p& and p2 are real numbers related through

we obtain in terms of Jacobi polynomials

C'„„(g,ri) =N„„exp[—
( lgl+ri)p„/2]

XF( n„—,' lglp, )F(—n2, ,'—, rip„—),

n =0, 1,2, . . . ; n& =0, 1, . . . , n, n, +n2=n,

4'„„(g,r/) =N„'„exp[ —( lgl+ri)p„/2](sgng)

X ( I glrip.') '"F(—n ), —,', I pip. )

XF( —n2, —',, rip„),

(3.12)

(3.13)

(3.14)

p, +p~= 1, —~ &p, & 00

and the solutions are normalized as

( Gki/I Gk//~ '5(k k )'fi(p p

(3.26)

(3.27)

The functions 4„„and Gk& are to be used in Eqs. (3.1)
1

and (3.4) to calculate matrix elements of the form

U; =(4oolexp(iQ r)l4(g, g) ), (3.28)

where 4(g, g) is either 4'„'„' or Gk/3 and Q; are defined for
1

the electron and the hole as

n =1,2, . . . ; n] =0, 1, . . . , n —1,
where

(3.15)

p„=po/(2n+1),

1/to=~=& &o/2e p .

(3.16)

(3.17)

@"(()=+@"(—g) .

They are normalized as

(3.18)

Here N„„and N„'„are normalization constants which
1 1

are calculated below.
These solutions have definite parity in g:

Qk =qmk/M, Q, = —qm, /M .

Choosing the y axis along Q we rewrite Eq. (3.30) as

U;=(+oolexp[iQ;( gl
—ri)/2]lg, g) &,

(3.29)

(3.30)

and thus v; =0 for the odd functions 4' and G'. Hence
only the functions even in g are needed for the evaluation
of y&, in Eq. (3.1).

The normalization factor in Eq. (3.12) is easily ob-
tained by integrating products of hypergeometric func-
tions:

=a —
&~

—&/'&2 —«&+ & &&(2n + 1)
—3/'2

nn1

(3.19) X [(2n, —1)!!(2nz —1)!!/(n,!nz!)]'~ (3.31)

The energy eigenvalues are given by

E„=—R /(n + —,') (3.20)

where R is the effective Rydberg of the bulk material,

The normalization factor in Eq. (3.24) is obtained in a
same way as we have done in the 3D case" by integrating
Eq. (3.27) over small intervals b,k, hP and then using
asymptotic expressions for hypergeometric functions. In
this way an exact value of N is obtained:

R =pe /2A ep .

The ground-state wave function is given by

(3.21) Nk//=(1/4m )a '~ exp(n/4ak )

X
l I (i P, /2ak + ,' )I (i P /2ak +—,

'—)l, (3.32)
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where I is the gamma function.
Separating in Eq. (3.1) contributions of the final states

belonging to the discrete and continuum parts of the
spectrum, we write

y2D y2D +y2D (3.33}

We substitute (3.12) and (3.31) in Eq. (3.4) to obtain, for
the contribution of the bound final states, the following
expression:

y i, d;„=(n /2)(M/p )AcoLo(eo/e„—1)

for various choices of m&/mo. The following values of
the parameters for GaAs were used here and are used in
the next section: m, =0.0665mo, Acuzo =36.8 meV,
E'p= 12.35, e = 10.48. We see that the total y1, is con-
siderably less sensitive to variations in mz than are the
separate (ls, ls) and ( ls, c) contributions. In the next sec-
tion, dealing with the finite-width quantum well, we in-
vestigate the dependence of the linewidth on the well
width L. The L ~0 results given in Table I indicate that
for smaller values of the heavy-hole mass the transitions
to the continuum give the dominant contribution to y 1, .

Xg g h(n, n, ).
n =On =0

1

(3.34)

The lengthy expression for b, (n, n, ) is given in the Ap-
pendix. The summation over n in Eq. (3.34) has an upper
limit of ~ if RcoL& & B„where B1 is a binding energy of
the exciton's ground state. Because this is the case for
GaAs, we have used that upper limit in Eq. (3.34).

Next we substitute (3.24) and (3.32} into Eq. (3.4) and
obtain after some lengthy integrations, including integra-
tion over P, the following expression for the contribution
of the scattering final states:

yi, „„,=4mRcoLo(M/p)' (eo/e„—1)
Zp

X f dx x [1+exp( —~/x ) ]
0

X(Fee+FI,h 2F,i, ) .— (3.35)

TABLE I. Contributions of bound and continuum exciton
states to the 2D limit of the linewidth parameter y&, for several
values of the heavy-hole mass mz. y „1, is a contribution of the
intraband (1s, ls) transition, y „,b is a contribution of the excit-
ed bound states others than 1s, yl, „„,is a contribution of all
scattering states, and y„ is a total value.

mi, /mp

0.15
0.2
0.3
0.5

2D
y ls, ls

1.33
2.45
4.50
7.85

2D
y ls, eb

0.87
0.90
0.85
0.66

2D
y1s, cont

8.51
5.24
3.50
2.41

y2D

10.71
8.59
8.85

10.92

The functions F„,Fzz, and F,z are given in the Appen-
dix. The upper limit of the integration is derived from
the energy-conservation equation and is given by
xo =0 5(p/mo)e. o[(coLoR Bi )/R—o], where Ra =13605.8
meU is the usual Rydberg constant, B, is the binding en-

ergy of the 1s state, and mo is the vacuum electron mass.
The evaluation of F,i, in the integrand involves numerical
integration as explained in the Appendix, and the overall
integration in Eq. (3.35}is also performed numerically.

We have fitted calculations of the dispersion of the
heavy-hole valence band for finite quantum wells grown
along the [100] direction and obtained mass values in the
range mi, /ma=0. 15—0. 18 for varying well widths. For
the 2D case we show in Table I the results of the contri-
butions to the linewidth parameter y„ from the intra-
band transitions ( ls, ls ), transitions to all higher-lying
excited bound states ( Is, eb) and continuum states (ls, c )

as

IV. EXCITON LINEWIDTH IN A QUANTUM WELL

For a quantum well of finite width L we approximate y

71s Y ls, ls + V ls, cont ' (4.1)

From the results for the two-dimensional case in the pre-
vious section and the results for the bulk case, " we be-
lieve that the contributions from the transitions to the
higher-lying bound states are small, and thus Eq. (4.1)
provides a good approximation for y1, . In addition, only
the first quantum-well subband for the confined electron
and hole will be taken into account. This will restrict the
applicability of our calculations to L &200 A. To evalu-
ate y„1„we employ a variational wave function' '

which correctly reproduces the 2D and 3D limits. To
evaluate y„„„twe use a separable variational wave func-
tion for the ground state', we also use the two-dimensional
scattering states of the previous section, but with the pa-
rameter a in Eq. (3.24} chosen to be the same as for the
ground-state variational wave function so that these
scattering states are orthogonal to the variational ground
state.

A. Contribution of the ground state

We choose a variational wave function of the form

@i,(r,z„z/, )=& f(z, )f(zJ, )

Xexp[ (a/2)—[r +(z, —z&) ]'

(4.2)

where we use envelope functions appropriate for an
infinite-well potential

f(z)=cos(nz/L), ized (L/2 . (4.3)

Parameter a is to be determined variationally by minim-
izing the energy expectation value, and N is a norrnali-
zation constant which depends on a and L.

We substitute Eq. (4.2) in Eqs. (2.13) and (2.15), and
after some calculation we obtain y„„in the form of the
following integral:

y„„=(8CM/iii )a X

X xx2+q2 1J x —J x 2 44
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where C is defined by Eq. (3.2) and q, is given by Eq. (3.3)
with A, = 1. The functions I,(x),I& (x) are defined by

I;(x)=I dy F(x+y)F(y)(y +u ) (4.5)

where

(g2+ 2)li2

Q; is given in (3.31), and

F(x)=I dz f(z)f '(z)exp(izx ) .

(4.6)

(4.7)

B. Contribution of the scattering states

Equation (4.5) can be evaluated in terms of elementary
functions, and then we are left with only one integration
in Eq. (4.4) to be performed numerically. The expression
for X also has been evaluated in terms of elementary
functions.

Eq. (2.13),

4„(r,z„zz ) =N J'(z, )f(zi, )exp( —ar /2), (4.8)

where f (z) is given by Eq. (4.3).
The scattering states are approximated by the quasi-

two-dimensional form

%,(r, z,z)=(2~/L )f(z, )f(z„)G(r), (4.9)

where r is the in-plane 2D vector, and G(r) in parabolic
coordinates is given by Eq. (3.24) with an L-dependent

parameter a representing the exciton radius in a quantum
well:

a(L)=2/a(L) . (4.10)

Here a is the same variational parameter as in Eq. (4.8).
Then %', is orthogonal to 4'&, .

(4.11)

To make the evaluation of y &, „„,feasible we use a se-
parable variational wave function for the ground state in

The resulting expression for y „„„,then can be written
in a form similar to that for the 2D case in Eq. (3.3):

where

Zp

4I)euro(M/p) (eo/~ 1)(~/uo) dx gr(x)x[1+exp( m/x)]—'(F„+FII, 2F I, ), —
0

(4.12)

gL(x)=(4ma /L ) xI(L/2a)[ ,x+0.5(x, +u ) ']

+[1—exp( Lx, /a)][——0.5x& +x& '(x&+u )
' —0.5x&(x&+u ) ]J,

x/ =(M/p, )' (xo —x )'

and u =2m.a/L.

(4.13)

(4.14)

The upper limit in the integral in Eq. (4.12) is given by

xp =0.5(p/mo ) eo[(coLofi B) )/Ru], (4.15)

where now B, is the binding energy for the variational
ground state of Eq. (4.8), R o

= 13 605.8 meV,
ao=fieule p, and a is a(L) given in Eq. (4.10) above.
The functions F„,FI,&, and F,i, are of the same form as
those given in the Appendix, but with the parameter a re-
placed by a (L) from Eq. (4.10).

The results for y(L) given by Eq. (4.1) are shown in
Fig. 1 as a function of the well width L for three different
values of the heavy-hole effective mass mI, . The value

mi, /mo=0. 15 represents the best choice of a single
0

heavy-hale mass for L =100—150 A which was obtained
by fitting the valence-band dispersion for small in-plane
wave vector as mentioned at the end 6f Sec. III. Re-
sults for mI, /mo=0. 2 and 0.3 are also shown in order
to provide a measure of the possible uncertainty in the
linewidth arising from the nonparabolicity of the valence
band at larger wave vectors.

In this section the phonons were assumed to be bulk
GaAs LO modes unaffected by the compositional varia-
tions of the quantum-well system. In the next section we
shall see how phonon confinement affects I (T). As dis-
cussed in the next section, there exist several simple rnod-

els to describe these confinement effects. We find that the
results for I vary by a factor of 2 depending on the
choice of model. The results for the exciton lifetimes
which were obtained from what we believe to be the best
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FIG. 1. Results obtained here from Eq. (4.1) for the LO-
induced linewidth coefficient y for excitons in a quantum well as
a function of well width L for several choices of the heavy-hole
mass mz =mq/mp. These results are obtained using a three-
dimensional description of LO phonons of the bulk GaAs.
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choice of model for the multiple-quantum-we11 phonons
are fairly close to the ones obtained in this section based
on a bulk LO-phonon description. Therefore, we will

compare the present results with the available experimen-
tal data.

The experimental results reported to date for y in
GaAs/Al„Ga& As systems are between 5.5 and 12 meV
for well widths in the range 60—200 A. Perhaps the most
detailed results were given by Chen et al. , who decon-
volved the homogeneous and inhomogeneous linewidths,
fitted the temperature dependence of the homogeneous
linewidth to a form like that in Eq. (1.1) with the linear
term omitted, and studied the linewidth as a function of
well width. They obtain a value for y that decreases
from 10.9 to 7.8 meV for well widths increasing from 60
to 200 A. The overall magnitude of the damping ob-
tained here and shown in Fig. 1 and its variation with the
well widths in the range 60-200 A is generally in good
accord with those reported experimentally.

As we mentioned in the Introduction, a more complete
calculation would take into account the "polariton effect"
in the evaluation of the linewidth. This feature results
from the fact that the resonance between the exciton and
light should be taken into account in the initial state. '

The proper modes of the system then are polaritons.
Because the phonon couples only to the exciton com-
ponent of the polariton, this results in a reduced value for
the linewidth. In an earlier publication" we have investi-
gated this effect for the bulk case and found a reduction
factor of about 0.8 for GaAs. In the quantum-well case
the calculation would be more complicated, and we have
not carried it out. We would like to point out that in an
earlier paper' we used a reduction factor of 0.5 for the
"polariton effect." Based on our results for the bulk, "we
now believe that this was an overestimate of the reduc-
tion and that the uncertainties in the present results for
the quantum-well case, due to the neglect of the polariton
effect, are comparable to those due to uncertainties in the
band-structure parameters.

W + ~sin(mnz/L), m =1,3, 5, . . .

IV ~ cos(ma.z!L ), m =2,4, 6, . . . .
(5.1)

W + ~ isn(mnz /L), m =2,4, 6. . .

W icos(mmz/L), m =1,3,5. . . .
(5.2}

This representation is usually employed to analyze
Raman-scattering data and also to calculate electron
scattering rates in quantum wells.

The in-plane component q of the phonon wave vector
that enters in Eq. (2.15), in general, can be comparable to
n /L. In fact, with the parameters we used for the GaAs
quantum well, qL varies from 0 to approximately 8 in Eq.
(2.15). Thus, neither (5.1) nor (5.2) is applicable in our
case. There exist a number of the microscopic model cal-
culations (see, e.g. , Ref. 38) for the confined modes. Here
we employ the relatively simple model of Huang and
Zhu. They have given numerical solutions for their mi-
croscopic model and have also given convenient analyti-
cal approximations for their numerical solutions. Their
model gives modes having both electric potential and po-
larization with nodes at the interfaces.

The electric potential can be written inside the layer as

As discussed in Ref. 30, this description of the bulklike
modes is acceptable only if the in-plane component of the
polarization is much larger than its z component; this
condition can be written in terms of the phonon wave
vector as q »n /L, where q is the component of the wave
vector parallel to the interface. The opposite limit,
q «m/L, is realized in at least some Raman-scattering
experiments. ' ' For these cases it has been argued that
the boundary condition that causes the electric potential
to have nodes at the interfaces should be neglected in
favor of the approximate boundary condition on the
atomic displacements, in which case the electric field has
nodes at the interfaces. ' The vibrational amplitudes of
the slab modes are then given by

V(r, z) ~ 4 (z)exp(iq r), (5.3)

V. EFFECTS OF PHONON CONFINEMENT
ON THE EXCITON LINEWIDTH

The results presented in Fig. 1 were derived assuming
that the confined exciton interacts with 3D bulk LO pho-
nons. As mentioned in the preceding section, more de-
tailed calculations should include the effects of the inter-
face on the vibrational modes. In quantum wells and su-
perlattices the optical modes are usually classified as
confined bulklike slab modes and interface modes.
There is a number of reviews on this subject, e.g., by
Klein and by Cardona. '

The electron-phonon interaction in a dielectric slab
model and its modifications for heterostructures and
superlattices were discussed in Refs. 32-34 using elec-
trical boundary conditions without regard to the atomic
displacements at the interface. In this case, the electric
potential for the bulklike slab modes has nodes at the in-
terface, and their vibrational amplitudes are given by

where r and q are 2D vectors. When the electron and
hole are each restricted to the first confined level of their
corresponding potential wells as in Eq. (4.3), the only
solutions to the model of Huang and Zhu that couple to
the carriers have a symmetric 4 (z). The analytical ap-
proximations for these modes are

(z}=c s( ommz/L ) —( —1), m =2,4, 6. . . . (5.4)

These functions are also exact solutions of the dielectric
model which incorporates the boundary conditions on 4
and on JV. 39 However, the solutions given by Eq. (5.4)
are not an orthogonal set, and only the first few of them
are approximately orthogonal for qL/n. &1. These first
few modes, however, contribute most to the interaction
of the exciton with the bulklike confined phonons in the
evaluation of I (T), and thus we use Eq. (5.4) as the best
available analytical approximation for the confined pho-
non modes.

When the optical displacement is determined from
Eqs. (5.3} and (5.4) by w ~ —V'V(r, z) and properly nor-
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malized, we obtain for the electron-confined optical-
phonon interaction the following matrix element:

u' +(q}=[4ire V 'fico„o(E e'p '}]
X [cos(irmz/L ) —( —1) ]

X[3q +(irmz/L )) (5.5}

where q is an electron's in-plane momentum transfer
given by the phonon's in-plane momentum. For compar-
ison, if we use the solutions given by Eq. (5.2}we obtain

u" (q)=[4ire V 'AcoLo(e„' —e ')]'

Xcos(irmz/L )fq +(irmz/L) ] (5.6)

In a quantum-well model with infinite barriers for car-
riers [Eq. (4.3)] only the m =2 mode of Eq. (5.2) couples
to the electron and hole. That causes the results for I
derived from Eq. (5.6) to be considerably smaller than
those derived from the Huang and Zhu model [Eq. (5.5)].

Thus far we have discussed only the bulklike modes.
The dielectric continuum model also predicts interface
modes. In a microscopic model, if a dispersion of
the bulk optical phonons is taken into account, these
modes are partially mixed with the slab modes. In this
work we treat bulk optical phonons as dispersionless and
thus neglect the mode mixing. The interface modes have
been studied experimentally by Raman scattering,
and it was found that the dielectric model gives a reason-
ably good approximation for them. To simplify the cal-
culations, we shall use the interface modes obtained for a
single quantum well rather than those for the superlat-
tice. The corresponding electron-phonon interaction
matrix element with the in-plane momentum transfer q is
given by" "

and each of these contributions is further written as

b +r„,=r„,+r„,+r,„, (5.17}

where the first term on the right represents the contribu-
tion of the bulklike confined modes, and the last two
terms represent contributions of the interface modes. Be-
cause the calculations are a straightforward generaliza-
tion of those of Sec. IV, we omit the details here.

The results for I ( T) obtained from the exciton-phonon
interaction from Eqs. (5.5) (with m (8 terms taken into
account) and (5.7) are shown in Fig. 3 as a function of L
for T=200 K. For comparison we also give results for
I (T) calculated using 3D phonons and a separable ap-
proximation for the exciton states. We also show in Fig.

LO2

where index i refers to the two different materials.
These interface modes are shown in Fig. 2 for the

GaAs/A1As system for dispersionless bulk optical pho-
nons. We also neglect the bulk dispersion in calculations
of the exciton linewidth I ( T) also.

The exciton intrasubband contribution I &, &, is calcu-
lated with the separable variational wave functions of Eq.
(4.8). The calculations are similar to those of Sec. IV ex-
cept that now for the bulklike modes we sum over m in-
stead of integrating over q. The contribution of the inter-
face modes involves two different modes with different
dispersions and, as a result, I ( T) cannot be written with
a single-phonon occupation function as in Eq. (1.1). Thus
in the presentation of the results for the I. dependence of
I'( T},we must choose a particular temperature.

As in Sec. IV we approximate

(5.16)

tc ( q ) = ( 2ire 2f 2
)

1 /2( gco g q )
—1 /2( 1 +.e

—qL )
—1 /2

X (
—q(L/2 —z)+ —q(L/2+z) } (5.7)

where p labels phonon modes. If bulk optical phonons
are assumed to be dispersionless, there are only two
different symmetric interface modes which we shall label
p + e

42-

TO2

(Q2cp2 T2 )($2cp2 T2 )fs —y i 1 i 2

()1 (co+ —c0 )(e( —e2)

,(1—e

@2=A„2(1+e q ),
(trice+) =(E)+@2)

(5.8)

(5.9)

(5.10)

38-

X [JP+[P (e(+e2)(e,L)Tz —~2L2T) )]' ], 30

P =
—,'[e((T2+L))+@2(T(+L2)],

T; =Pi(coTo);,

L =(ri(coLo)

L. /T =e . /e

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

4 6 qL
FICx. 2. Ace+ and A~ are the energies of the interface pho-

nons in a GaAS/A1As quantum-well structure as obtained from
Eq. (5.11). The bulk optical modes are assumed to be disper-
sionless, and we use the following values for the material param-
eters: for GaAs, F01=12.35, e00, =10.48, A~«=36. 8 meV,

To=34.0 meV; for AlAs. t.'02=10.0, e002=8. 16, ficoLo 47 7
meV, AcoTo=44. 0 meV.
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APPENDIX

E

I-
I

Quantity A(n, n) in Eq. (3.34) is given by

b(n, n&)=~u(n, n&)~ (2aq„)

where

(2M/g2)1/2[ [fr +R (n + 1
)
—2]1/2

R =pe /2eofi

8 0 =a)Lofti 4R

~u(n, n&)~ =16c(n,n, )

(A2)

(A3)

(A4)

I

50
I

100 150
L (A)

I

200

FIG. 3. Results obtained for the optical-phonon-induced
linewidth I (T) for excitons in a quantum well as a function of
well width L at temperature T=200 K taking phonon
confinement into account. Both the bulklike confined phonon
modes and the interface phonon modes are included. The solid
curve is obtained using the model of Huang and Zhu (Ref. 37)
for the bulklike slab modes, and the dashed curve is obtained
using Eq. (5.2) for the bulklike modes. The effective mass of the
heavy hole, mq, equals 0. 15mo here. The dashed-dotted curve
was obtained using a three-dimensional description of the Lo
phonons and taking a separable approximation for the exciton
wave function in the evaluation of both intraband (1s, ls) and in-

terband (1s,cont) contributions.

VI. SUMMARY

We have presented a detailed treatment of the LO-
phonon-induced exciton linewidth in a semiconductor
quantum well. For electrons and heavy holes confined in
their lowest quantum-well subbands, the complete sum-
mations over all intermediate exciton states have been in-
cluded. The effects of the optical-phonon confinement
also were studied in the present work. Results for the ex-
citon linewidths were found to be in general agreement
with experiment.

3 the results for I ( T) which were obtained using Eq. (5.2)
for the bulklike modes. As discussed in the preceding
section, we believe that this last model underestimates the
exciton linewidth.

We find that taking phonon confinement into account
using a relatively simple model based on the microscopic
model of Huang and Zhu, which incorporates boundary
conditions on both the electric potential and optical dis-
placernent, gives I (T) which is fairly close to that ob-
tained using a 3D-phonon description. We find that the
exciton lifetime resulting from this model has a weaker
dependence on the well width L than those based on the
other models studied here. The similarity of the results
for this model and those based on the 3D-phonon
description tends to justify our comparison of the latter
with the available experimental data in Sec. IV.

X [r2r&~" &~R&+r2r2~" &~R2
1 212 2

—2&(&2(r(r2)" 'R )Rq

Xcos[(n, nz }—(a, —az) —(5, —52}]j,
(A5)

where n2 =n —n, ,

c(0,0}=1,
c(n, n) =c (n, 0)

=(2n+1) (1+—')X X(1+1/2n) .

(A6)

(A7)

For n ~1 and n, (n,
c(n, n, ) = (2n + 1) 3(2n, + 1) '(2n2+ 1)

X ( 1+—,
'

) X X ( I+ 1/2n
&

)( 1+—,
'

)

X X(1+1/2nz),

(1+1/2n ) +Q; a

(I+1/n) (1 +1 2/n) +Q;a

t,2= [(I+1/n ) ( 1+ I /2n ) +Q; a ]

tana; =Q;a(n + —,
'

)

X [(1+1/n)(1+ 1/2n ) +Q; a ]

R, = [(n + 1)r,cosP; ncos(—a;+P; ) ]

+(n, n2) [r—sinp —sin(a+p)]

tanP; =Q;a(1+1/2n )(1+1/n )

(n, n)2[r;s—i n;p—sin(a, +p,. )]
tan5, =

(n + 1 )r cosP ncos(a—,. +P,. )

(A8)

(A9)

(A10)

(Al 1)

(A12)

(A13)

(A14)

(A15)

Q,. is defined in Eq. (3.29); index i here labels electron
(i =1) and hole (i =2).

At large n, h(n, n, ) is O(n ), and this provides
reasonably fast convergence in Eq. (3.34).

Next, we write the following expressions for the func-
tions F„,FI,I, , and F,z that appear in Eq. (3.35):
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F„(x)=(r,g, ) '(m, /mz ) y(2$f +x +4),
FIp, (x)=(r~g~) (mI, /m, }y(2$~+x +4),
y2 —~2 —~2

(A16)

(A17)

(A18}
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r; =1+(S,. +x)

g; =1+(S;—x }

S) —yme /mg

S2 = —ym~ /m, ,

Fet, =(2/m )exp(~/2x )S,S2(r, r2g, gz )

X [S,S2J( —2(S, +S2)J2 —4J3]

X cos(5& —d /2x )exp( —52/x ),
d =1n(r &g2/r2g &

),
tang; =x+Q, ,

&(=4i++0i -42' —
42

&2=4i++Pi +be++02 ~

Defining u =coshd,

F, (x)= 2F, (i/2x+ —,', i/2—x+ —,', l, (1—u)/2},

Fp(x) = 2F, (i/2x+ —,', i/2—x+ —,', 2, (1—u )/2),

F3(x)= 2F, (i/2x+ —,', i /2—x+ —'„3,(1—u )/2},

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26}

(A27)

(A29)

(A30)

where 2F, is a hypergeometric function. The functions
J),J2,J3 that appear in Eq. (A23) are

J& =a[cosh(~/2x)] 'F, (x),
J2= —(~/8)[cosh(m/2x )]

X(1+x )(u —1)' F~(x),

J3 = —(m. /8)[cosh(~/2x )] '(1+x )

(A31)

(A32)

X[xuF~(x) —(1+9x )(u —1)(16x) 'F3(x)] .

(A33)

J) =4I),
J2 = —4( u —1)' Iz,
J3 = —4u [I2 —3(u —1)' I3],

where

(A34)

(A35)

(A36)

I&(x)=f dz e 'cos(z/x)(1+2u+e ')
0

I2(x)= f dz e 'cos(z/x)(1+2u+e ')
0

I3(x)=f dz e 'cos(z/x)(1+2u+e ')
0

(A37)

(A38)

(A39)

These equations are used to evaluate J, , J2, and J3 by
series expansion in powers of 1 —u for x & 1. For
1~x x0 we evaluate these functions via their integral
representations:
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