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The physics of hole transport in pseudomorphic Si& „Ge„/Si(001) is investigated by Monte Carlo
simulation. The Monte Carlo method developed in this work takes into account several aspects of
the strained p-type system which qualitatively distinguish it from an n-type system. (1) The
valence-band system is described with use of a three-band k p method which gives an accurate rep-
resentation of the strongly coupled heavy-hole, light-hole, and split-off-hole states. (2) The
valence-band deformation-potential theory is used to determine both the strain effects on the band
structure and the hole-phonon scattering rates in both strained and unstrained materials. (3) The
scattering rates are anisotropic, depending upon the direction of flight and are calculated on a mesh
which exploits the symmetry of the system. (4) The postscattering states are determined from a
probability distribution which depends not only on the scattering angle, but also upon the initial
direction of flight. The Monte Carlo method is used to make a detailed study of the effect of strain
and alloying on hole transport in lightly doped pseudomorphic Si& „Ge„(0~x&0.4) grown on
(001) Si, subjected to electric 6elds in the range of 1-20 kV/cm, at 300 K. The scattering mecha-
nisms considered are: alloy scattering, acoustic-phonon scattering, and both Si-Si and Ge-Ge
optical-phonon scattering. Each of these mechanisms can drive both intraband and interband
scattering within and between all of the top three valence bands. The combined effects of strain and

alloying are found to produce a monotonic increase in hole mobility and temperature, which at the
highest Ge content alloy studied, Sio 6Geo Qsi(001), are comparable to the hole mobility and tem-

perature in bulk Ge. A slightly greater carrier velocity is found for in-plane transport than for per-
pendicular transport.

I. INTRODUCTION

The effect of hydrostatic and uniaxial strain on the
electronic band structure of semiconductors has been an
area of active study for several decades. The information
yielded by these studies is valuable in developing a better
theoretical understanding of both the band structure as
well as deformation-potential scattering of electrons and
holes due to phonons. However, until comparatively re-
cently, there has been little interest in studying charge-
carrier transport in the presence of strain. This was be-
cause strain had to be introduced by some external ap-
paratus such as a high-pressure diamond-anvil cell. This
rendered the phenomena difficult to study, with the issue
remaining of little technological importance.

The development of lattice-mismatched heteroepitaxy
has resulted in an increase in the study of charge-carrier
transport in strained semiconductors. Theoretical and
experimental studies show that if a material with a bulk
lattice constant aL is grown as a film on a comparatively
thick substrate with a different lattice constant az, the
film will grow epitaxially, with an in-plane lattice con-
stant of az and an adjustment, via the Poisson effect, in
the perpendicular lattice constant. This pseudomorphic
growth continues up to a critical thickness determined by
a balance between strain and chemical energy. Beyond
this thickness the overlayer relaxes, producing disloca-
tions. The in-plane lattice constant of the film reverts to

its bulk value aL . For film thicknesses less than the criti-
cal thickness, a large strain can be produced in the film,
which can greatly change its band structure, both by
changing effective masses and lifting degeneracies. Since
the pseudomorphic layer is thermodynamically stable, it
is possible to fabricate semiconductor devices with
strained layer components. The strain-induced band-
structure changes may lead to increased charged carrier
mobility within the pseudomorphic layers. This, in turn,
becomes a useful way to increase the speed of semicon-
ductor device operation.

The heteroepitaxial system of Si, „Ge„ layers grown
on Si substrates is of great technological interest for fabri-
cating semiconductor devices. On the one hand,
Si, „Ge„(x)0) has a larger bulk lattice constant than
Si and thus forms an epitaxial strained layer when grown
on Si. This may lead to an increase of charge-carrier mo-
bility, over that of Si. On the other hand, the Sit „Ge„
material system offers an advantage over III-V compound
semiconductors of being processable with existing, high-
yield silicon processing methods. Although only com-
paratively recently studied as a strained heteroepitaxial
material, it may reasonably be expected that Si, „Ge /Si
heterostructure devices will form the backbone of very-
large-scale —integrated (VLSI) circuits in the relatively
near future. Optimum semiconductor device design is ul-
timately based upon a complete understanding and accu-
rate modeling of charge-carrier transport. In this con-
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text, hole (p-type) transport, which often limits the per-
formance of complementary logic circuits, is particularly
important to understand.

This paper presents the results of a Monte Carlo calcu-
lation of high-field hole transport in intrinsic Si&,Ge„
lattice matched to (001) Si at T =300 K. The valence-
band structure is calculated for the heavy-hole, light-
hole, and split-off —hole bands by solving for the eigenval-
ues of the Shockley k p matrix, in which spin-orbit cou-
pling has been included. The hole-scattering mechanisms
considered in this work are deformation-potential
acoustical-phonon scattering, deformation-potential
optical-phonon scattering, and random-alloy disorder
scattering. These mechanisms are responsible for both
intraband and interband transitions. Acoustic-phonon
and alloy scattering are treated as being elastic, while
optical-phonon emission and absorption are treated as
distinct inelastic scattering processes. The optical-
phonon spectrum is modeled as having a two-phonon
mode behavior, with the presence of Si-like and Ge-like
optical phonons. The strength of each is taken to be pro-
portional to the mole fraction of each respective alloy
constituent. Other scattering mechanisms are not con-
sidered in this work. Most notably, ionized impurity and
carrier-carrier scattering are omitted. The effect of strain
is introduced through the use of the valence-band
deformation-potential theory.

The outline of the remainder of this paper is as follows.
In Sec. II the theory behind our band structure and
scattering rate calculations is described, Some of the as-

pects which make the hole band structure and scattering
rates more complicated than in the case of electrons, are
discussed. In Sec. III the features of our Monte Carlo
implementation specifically pertaining to hole transport
are presented. These include strong coupling effects in
the band structure, interband scattering as well as intra-
band scattering, use of bidimensional postscattering state
probability distributions, and anisotropic scattering rates.
In Sec. IV the transport simulation results are given.
These include a discussion of the effect of choice of alloy
scattering potential, which, to date, is not well deter-
mined for the strained Si, Ge„system. Also presented
here are the calculated velocity-electric field and carrier
temperature-electric field characteristics and mean col-
lision times, as a function of ally composition, from 0 to
40 9o Ge. Concluding remarks are made in Sec. V.

II. BAND STRUCTURE AND SCATTERING
PROCESSES

The valence band structure used in this work is calcu-
lated using a three valence band k p method. The eigen-
states are composed from the six-dimensional basis ~x 1 ),
~yt), ~zf), ~xl), ~yl), ~z$), where x,y, z, denote the
three orbitals associated with the I 25 representation of
the top of the valence band and 1' and $ denote spin up
(+z) and spin down (

—z), respectively. A valence-band
Hamiltonian matrix in this basis which was reported by
Dresselhaus, Kip and Kittel' is

H'
HR. —

0—3X3

—3x3 x,y, z 10
I' x,y, z $,

Lk„+M(k +k, )

Nk„k

Nk, k„

Nk„k

Lk +M(kz+k„)
Nk k,

Nk, k„

Nkk, y.
Lk +M(k +k )

i 0
0 0

H
3 0 0

0 0

0 0 0 i y 1—
0 —1 i 0 zl

—1 0 i 0 x$'
i i 0—0 —yl

0 0 0 0 zJ,

where the zone-center spin-orbit splitting is

b0=3i ( ~(VVOXp), ~y ) .
4m c

(3)

The valence band structure is obtained by calculating

The effect of the conduction band and all higher bands is
contained in the terms L, M, and N.

The wave-vector-independent spin-orbit interaction
perturbation matrix is added to H&.p

to obtain the Hamil-
tonian matrix for the valence band of an unstrained ma-
terial. In the above basis, the spin-orbit perturbation ma-
trix is

0 i 0 0 0 1 x—1'

the eigenvalues of H&.p+H, , The valence-band struc-
ture of bulk Si, obtained in this way, is shown in Fig. (la).
Use of this Hamiltonian allows rapid and accurate evalu-
ation of the band structure in the vicinity of the valence-
band edge, where the strain effects are most prominent.
The procedure for determining the eigenvalues of this
Hamiltonian is suSciently simple that the hole energy
can be calculated quickly and precisely, during the Monte
Carlo operation. The hole eigenstates, which are used in
calculating the scattering matrix elements for the scatter-
ing rates, are determined by solving for the eigenvectors
of Hg p +Hs p

The effect of strain due to lattice mismatch is included
in the band-structure calculation with the use of the
valence-band deformation-potential theory. A strain per-
turbation Hamiltonian for diamond lattices in the
~x ), ~y ), ~z ) basis has been developed by Pikus and Bir.
In the presence of spin-orbit coupling, the strain pertur-
bation matrix, like the k-p matrix, H&. , becomes a 6X6
block diagonal matrix, and is shown below:
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—3x3 x,y, z l0
H" x,y, zJ, '

Pf 6

Ic,yr+m(e +e„„)H"=
Xy

n c.zx

H, =
—3X3

le„„+m(e +e )

n E'yz

Ie„+m (E„„+E )

(4)

v3
'

For systems of interest in the present work, the epitaxi-
al semiconductor layer is biaxially strained in the plane of
the substrate, by an amount @II, and uniaxially strained in
the perpendicular direction, by an amount c~. For a
thick substrate, the in-plane strain of the layer is deter-
mined from the bulk lattice constants of the substrate
material, az, and the layer material aL .

0.0 0.0 (b)
s'

P 0

UJ
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FIG. 1. Effect of strain and alloying on valence-band
structure. (a) Bulk Si. (b) Biaxially compressed Si,

cyy 0 0156, e =0.01 19. This is equal to the strain
present in Sio 6Geo 4 when grown epitaxially on Si(001). {c)Bulk
(unstrained) Sio 6Gea 4 (d) Pseud. omorphic Sio 6Geo 4/Si(001),
Kzz cyy

—0.0156, c,» =0.01 19. Material parameters used are
given in Table I.

The c;~ are elements of the strain tensor. The quantities l,
m, and n are valence-band deformation potentials and are
related to the more commonly used deformation poten-
tials a, b, and d by.

1+2m
3

b= l —m

3

Qg —1

Since the layer is subjected to no stress in the perpendicu-
lar direction, the perpendicular strain c~ is simply pro-
portional to cII.

.

II

E
o

where the constant 0. is known as Poisson's ratio and is
dependent upon the crystallographic orientation of the
substrate. For the case of growth on a (001) substrate,
o =c»/(2c, z), where c» and c[3 are elastic stiffness ten-
sor elements of the layer material. The effects of strain
on the band structure are shown in Fig. 1.

Scattering rates for transitions from band n to band n'

by mechanism m are calculated using Fermi's second
golden rule:

w. .„„.~~~= ', '„ f d'k IM
(2~)' &

X5(E„+b,E~ E„')—
dW .„„(k,k')

dQ' (&)

where d k'=dQ'k' dk'. The domain of integration of
the first integral is the entire Brillouin zone. The domain
of the second integral is the constant final energy surface.
M is the scattering matrix element, V, is the crystal
volume, and the density of final states is given by the 5
function. The integrand dW .„„.(k, k')/dQ' is referred
to as a differential scattering rate, in analogy with a
differential scattering cross section. The differential
scattering rate is proportional to the postscattering prob-
ability distribution (Sec. III). Because of the complex
warped nature of the valence-band constant energy sur-
faces, especially under strain, the above integration is car-
ried out numerically in this work.

Alloy scattering is modeled after the work of Harrison
and Hauser, treating the Si& Ge system as a random
alloy. The scattering potential is taken to be a spherically
symmetric square well of depth Uo and of spherical
volume —3~ro=ao/4. This represents the effect of band
structure fluctuations in the mixed alloy. The scattering
matrix element is given by

('k iHi k) =fi k, q
C

3 sin(qre ) —3(qro }cos(qrc }
X

(qr0}
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show that a' high energies, away from the scattering
thresholds, the order of magnitude of the scattering rate
is determined by the final band, more than the initial
band of the transition. Thus, for example, the scattering
rate from the split-off band to the heavy-hole band at 0.4
eV is on the same order of magnitude as the heavy-hole
intraband scattering rate. However, this does not mean
that the frequency of scatterings from the split-off band
to the heavy-hole band are as frequent as scatterings
within the heavy-hole band. There will be, of course,
more scatterings within the heavy-hole band simply be-
cause this band is much more heavily populated than the
split-off band. Figure 2(b) shows that given a particle in a
particular band, the probability of scattering to some
final band is, to an order of magnitude, determined by the
choice of final band, rather than the initial band. This is
because the scattering rate strongly depends upon the
density of final states. Other scattering mechanisms
display the same behavior. Near threshold, however, the
value of the scattering rate is strongly dependent upon
both the initial and final band. In this case, the final wave
vector is nearly zero because the top of each of the three
valence bands is at the Brillouin-zone center. The
scattering matrix element, which is dependent upon the
initial wave vector as well as the final wave vector, will
exert a strong inhuence upon the value of the scattering
rate, for different choices of initial band.

Acoustic-phonon scattering is determined using the
valence-band deformation-potential theory. ' Using
the equipartition theorem, the scattering matrix element

I

where kT is Boltzrnann's constant times temperature, p
is the mass density, V, is the crystal volume, col(q) is the
phonon frequency in mode l, at wave vector q, e&(q) is
the Pth component of the phonon polarization vector,
and D J J is the j ',j element of the a,p deformation-
potential operator. The above matrix element has a fac-
tor of &2 included to account for both emission and ab-
sorption, in one matrix element. The deformation-
potential operator between valence-band states j,j'
=x,y, z, is give by

r

D',$=(j'
f2 Q2

a am x x&
(12)

where V
&

is the rate of change of the lattice potential
with strain:

BV((1+a)x)
ae aP

(13)

The operators D & are given as 3 X 3 matrices in the x,y, z
basis:

for scattering by an acoustic phonon in branch l is given
by

&J I x lH, IJI~&
' 1/2

k~T 3 q=5q z ~ ~ g e&(q)D'$, (11)

1 0 0 m 0 0 m 0 0 x
D = 0 m 0, D = 0 l O,D„= 0 m 0 y,

0 0 m 0 0 m 0 0 I z
(14)

D—zy

0 —0n

2
0 0
n

p

0 0 n x
0

2

p 0 y ~

0 0n

2
0 — 0

n

20 0 0 z

0 0
o o' —y'

2

and Dzy Dyzp Dyz Dzy and Dzz Dzz The usual
approach to hole —acoustic-phonon scattering ' is formal-
ly equivalent to setting D y D

y
D 03X3 and replac-

ing l and m with an averaged effective acoustic-phonon
scattering deformation potential, :-„and replacing
co&(q)/q with an averaged sound speed. In the present
work we have not made this approximation and have re-
tained the full anisotropic form of the deformation-
potential operators D &. Figures 2(c) and 2(d) show the
acoustic-phonon scattering rates as a function of hole en-
ergy. Figure 2(c) shows the heavy-hole intraband scatter-
ing rate for Si and Ge and for evenly spaced increments
of Ge content in pseudornorphic Si, Ge„. The heavy-
hole acoustic-phonon scattering rate steadily decreases
for increasing Ge content in the pseudomorphic alloy and
in the case of Sio 6Geo 4, is comparable with that of bulk

&j '&'&'IHilj && & =&~ ~,pw, x+in+ irz

3A(no+ —,
' + —,

'
)1

ao p~, v,
V/ J

(15)

where ao is the lattice constant, no is the optical-phonon
mean occupation number, p is the mass density, coo is the
zone-center optical-phonon frequency, V, is the crystal

Ge. The data in Fig. 2(d) display the same dependence
on choice of final band as described above, in the case of
alloy scattering.

Nonpolar optical-phonon scattering is also treated as a
deformation-potential scattering mechanism. The
scattering matrix element is given by
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V„=
0 0 0 0 0 dp

0 0 dp, V = 0 0 0

0 dp 0 p

do0x
V, = dp 0 0 y,

0 0 0

where dp is the optical deformation potential. The
optical-phonon spectrum is modeled as having a two
mode behavior, in which Si—Si bonds give rise to Si-like

volume, and V/ 1 is the j',j element of the 1th mode opti-
cal deformation-potential operator. The operators V& are
determined by the symmetry of the lattice, and are given
as 3X3 matrices in the x,y, z basis:

optical phonons and Ge—Ge bonds give rise to Ge-like
optical phonons. The strength of each is taken to be pro-
portional to the mole fraction of each respective alloy
constituent.

Figure 3 shows the nonpolar optical-phonon scattering
rate as a function of hole energy. The monotonic de-
crease in scattering rate with increase in Ge content in
Fig. 3(a), is due to both a corresponding decrease in final
density of states and a decrease in Si-Si optical-phonon
population. Figure 3(b) gives the Si-Si nonpolar optical-
phonon emission scattering rates for heavy holes in Si.
The thresholds in these data correspond to the energy of
0.063 eV of the optical phonon for scattering to the
heavy- and light-hole bands and to 0.107 eV, which is the
sum of the spin-orbit splitting and the optical-phonon en-

ergy, for scattering to the

split-off

ban. As with the elas-
tic processes described above, the order of magnitude of
the scattering rates is seen to depend primarily on the
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FIG. 3. Scattering rates for nonpolar optical-phonon scattering. (a) Si-Si optical-phonon emission scattering, heavy hole to heavy
hole, [100] direction, in Sio IGeo I (10%); Sio,Geo 2 (20%); Sio,Geo, (30%); Sio 6Geo 4 (40%). Monotonic decrease in scattering rate
with increase in Ge content is due to both a corresponding decrease in final density of states and a decrease in Si-Si optical phonon
population. (b) Si-Si optical-phonon emission scattering, intraband and interband, [100]direction, in Si: notation as in Fig. 2(b). (c)
Si-Si and Ge-Ge optical-phonon emission scattering, heavy hole to heavy hole, [100] direction, in Si, Ge, and Sio 6Ge04 (40%). (d)
Si-Si and Ge-Ge optical-phonon absorption scattering, heavy hole to heavy hole, [100]direction, in Si, Ge, and Sio 4Geo 4 (40%).
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choice of the final band, specifically, increasing with the
density of final states. Figures 3(c) and 3(d) show the
[100] heavy-hole intraband nonpolar optical-phonon
scattering rates for emission and absorption, respectively.
The energy of the Ge-Ge phonon is taken to be 37 rneV
and that of the Si-Si phonon to be 63 rneV. The result of
this is that the emission threshold is significantly lower
for Ge-Ge phonon emission than for Si-Si emission, as
seen in Fig. 3(c). Thus, the higher carrier mobility ex-
pected in a pseudomorphic material due to a reduced
heavy-hole effective mass, compared to Si, will be tern-

pered to some degree by the possibility of scattering by
optical-phonon emission at lower energies than is the case
in Si.

III. MONTE CARLO PROCEDURE

The Monte Carlo algorithm used in this work is an
adaptation to anisotropic systems of the standard semi-
classical charge-carrier transport algorithm such as was
described and used by Fawcett, et a/. ' In the standard
algorithm, as usually applied to electron transport, the
band structure and scattering rates, involved in the simu-
lation, are generally available in analytic form. This is in
large part due to a dominantly s-like. character of the cell
periodic part of the electron Bloch function, near the
conduction-band edge, in materials such as GaAs. In
such cases this allows the use of simple spherical energy
surfaces. This results in the ability to calculate the
scattering rates as dependent upon the relative scattering
angle, not both the initial and final trajectories separately.
Furthermore, the portion of the conduction band, which
is of primary interest in most cases, is comparatively well
separated in energy from the other electronic bands of
the material. This allows one to model the effects of oth-
er bands in particularly simple ways, such as the use of
the band nonparabolicity factor a =1/Es[(1 —m ' I
mo) ]. The scattering rates usually have simple, analyti-
cal forms for materials with band structures described in
this simple way. However, in the case of interest in the
present work, the above approximations and techniques
are no longer viable as means to describe the system.
Owing to the anisotropy of the valence-band states (dom-
inantly p-like), which is accentuated in the presence of
strain, and the small energy separation between the
heavy-hole, light-hole and split-off hole bands, completely
numerical methods must be employed in determining
both the band structure and the scattering rates. The
band structure, itself, is calculated from the valence-band
secular equation. The scattering rates depend upon the
initial trajectories and are obtained by numerically in-

tegrating the differential scattering rates over the final
constant energy surface. The difFerential scattering rates,
themselves, depend upon both the initial and final trajec-
tories, separately.

The transport simulation procedure is a sequence of
particle free flights under an accelerating electric field fol-
lowed by a scattering event, repeated until a stable va1ue
of drift velocity is obtained. In the present work, the
duration of the free flight of the hole is determined in the
usual way with the aid of a self-scattering mechanism. "

However, the determination and resolution of the scatter-
ing event requires a detailed treatment. Three distinct
scattering processes are used in the present work to mod-
el transport in unstrained Si and unstrained Ge, while six
types of scattering process are required in the case of
strained Si-Ge alloys. The three processes in unstrained
Si and Ge are acoustic-phonon scattering, nonpolar
optical-phonon emission, and nonpolar optical-phonon
absorption. In the strained alloys, a distinction must be
made between Ge-type optical phonons and Si-type opti-
cal phonons, since the zone-center energy of the former
is on the order of 37 meV and that of the latter, is on the
order of 63 meV. The two types of phonons will be asso-
ciated with distinctly different emission thresholds and
resultant changes in hole energy during scattering. Also,
the large energy difference will lead to a sizable difference
in the mean occupation numbers of the two types of pho-
nons. Thus, the two types of phonons cannot be merged
into a single type with "average" properties. The alloy
optical-phonon scatterings, therefore, result in four dis-
tinct types of scattering events: absorption and emission
of each of the Si-type and the Ge-type phonon. The
remaining two processes in alloy transport are acoustic-
phonon scattering and random-alloy disorder scattering.
Other phonon modes which may arise due to any special
ordering effects in the material are not taken into ac-
count. It is expected that using the above modes is a
reasonable approximation.

Transport in, and coupling between all three of the top
valence bands (heavy hole, light hole, and split-oF hole)
have been accounted for in the present work. The split-
off band in Si (zone-center spin-orbit splitting is equal to
0.044 eV) infiuence transport both by strongly coupling
with the heavy- and light-hole bands and thus affecting
the band structure and by carrying a certain amount of
the current at high fields. These effects remain, although
in a reduced degree, as the Ge content is increased in Si-
Ge alloys. The inclusion of the split-off band, along with
the heavy- and light-hole bands, leads to the considera-
tion of three intraband and six interband modes of
scattering for each type of scattering process, such as
acoustic-phonon scattering. The resulting number of dis-
tinct types of scattering event (specified by the initial
band, the final band, and the type of process), accounted
for in the present work, totals 27 for unstrained Si and
unstrained Ge and 54 for strained Si-Ge alloys. In an
effort to reduce the complexity of the system, so that the
effects of strain will be most clearly evident, ionized and
neutral impurity scattering, as well as carrier-carrier
scattering, have been omitted from this work. This cor-
responds to transport in an essentially pure material.

The scattering rate for each mechanism (e.g., heavy
hole to light hole via acoustic-phonon scattering), is cal-
culated on a mesh in reciprocal lattice space, which is
designed to efficiently account for both the anisotropy
and the symmetry of the system. On a particular mesh
site, a calculated rate corresponds to the rate of scatter-
ing by the specified mechanism of a particle whose initial
wave vector terminates on the mesh site s position in re-
ciprocal space. In materials with cubic 0& symmetry,
such as unstrained Si and unstrained Ge, the scattering
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rates need only be calculated within an irreducible sector
of the Brillouin zone such as that bounded by the high-
symmetry b„X, and A axes, which correspond to —,', of
the full Brillouin zone. The scattering rate for a particle
whose wave vector lies outside the irreducible sector may
be obtained by transforming the particle's wave vector
into the irreducible sector via one of the symmetry opera-
tions of the cubic Oz symmetry group, and then deter-
mining the rate from those calculated at specific wave
vectors within this sector. Within each sector, specific
radial axes or rays, which originate at the center of the
Brillouin zone, are chosen. In the cubic system, for ex-
ample, such rays might be the 5 ([001])axis, the X ([101])
axis, and the A ([111])axis. Along each ray, mesh points
are chosen to correspond to equal steps in particle ener-

gy. These mesh points may therefore be viewed as deter-
mining concentric constant energy surfaces. The set of
rays constitutes an angular mesh in reciprocal space,
while the set of mesh points at each energy increment
along each ray constitutes a radial mesh. The two
meshes are used together to divide the reciprocal space
into prism shaped elements, bounded on the corners by
mesh points at which are calculated the scattering rates.
At this point it is to be noted that the alternative of tak-
ing mesh points at equal intervals of wave-vector magni-
tude, rather than energy, was examined and found to be
less suitable because of a characteristically large variation
in a given scattering rate between different axes, for the
same wave-vector magnitude. Use of the present mesh,
in equal energy increments, allows a much more sparse
angular mesh than would be required were equal wave-
vector magnitude increments used in the radial direction.

The scattering rate associated with a particle after a
simulated free Aight is determined during Monte Carlo
operation, by interpolation within the prism which con-
tains the particle's wave vector. The interpolation is a
weighted sum of the scattering rates on the six bounding
mesh points. Each weighting factor is a product of two
terms. The first term effects a linear interpolation in en-

ergy between the two triangular faces of the prism. The
second term is formed by locating the position of the par-
ticle wave vector in the interior of the triangular prism
face and dividing the prism face into three subtriangles
1',2', 3'. The three triangles are formed by drawing lines
from the point at which the wave vector intersects the
prism face to each of the three corners of the prism face.
The weighting of a mesh point of the corner of the prism
(e.g., corner 1) is then taken as the ratio of the area of the
subtriangle opposite to this corner (e.g. , subtriangle 1') to
the total area of the prism face. This area ratio, multi-
plied by the factor of linear interpolation in energy, is
used as a weighting factor for each of the six scattering
rates on the bounding mesh points. The weighted
scattering rates are then added to obtain the resulting
scattering rate value for the given wave vector.

Strained materials, such as Si, ,Ge„/Si(001), exhibit
tetragonal D4I„not cubic 0& point-group symmetry. The
reciprocal-lattice space irreducible sector of this system
may be taken as —,', of the Brillouin zone which is bound-
ed by rays in the directions [001], [101],[111],[110],and
[100]. In the present work this sector was further subdi-

dW .„„(k,k')
dQ' max

dW .„„.(k, k')
dQ' (17)

where the maximum is over all final wave vectors k'
which lie on the constant final energy surface. The expli-
cit dependence of the probability distribution on the
scattering azimuth P, must be retained since, generally,
there is significant variation in d W .„„(k,k') /d 0' for
constant 8, . The scattering angles 8, and tI}, are chosen

by the standard von Neumann method, ' using two ran-
dom numbers to pick cos8, and P, and a third to accept
or reject the chosen (cos8„$, ) pair. After the scattering
angles are chosen, the final trajectory is determined by
operating on the final wave vector by the inverse of the
symmetry operation which carried the initial wave vector
into the irreducible sector of the Brillouin zone.

IV. RESULTS

The material parameters used in this work are given in
Table I. ' Material parameters for the alloy are not
well documented in the literature over the wide range of
composition used in this work. In the absence of such
data, alloy material parameters are obtained by linear in-
terpolation of the Si and Ge values. The elemental values
are weighted by the mole fractions of the respective alloy
constituents.

The effect of strain on the in-plane hole band structure
of a Si, „Ge„ layer is shown in Fig. 4(a). Shown are the
band structures of Si and Sio 6Ge04/Si(001) (in-plane bi-
axial strain is equal to 1.56%). The effects of strain in
splitting the heavy-hole —light-hole zone-center degenera-
cy as well as increasing the split-off band separation are
evident. The efFective mass at the top of the valence band
is also lowered by the strain. Shown in Fig. 4(b) is the
separation between the heavy-hole band edge, the light-
hole band edge, and the split-off —hole band edge as a
function of Ge content. The thresholds for inelastic non-
polar optical-phanon scattering follow the band edges at

vided into three sections, bounded by [001], [101], and
[111](Sec. I), [111],[101],and [100] (Sec. II), and [100],
[110],and [111](Sec. III). These in turn were combined
with the radial mesh in energy to subdivide the reciprocal
space into prisms, as before.

Once all of the relevant scattering rates have been
determined for a given particle, the acting scattering
mechanism is chosen in the standard way with the aid of
the self-scattering mechanism, as outlined in Ref. 10.
This determines the change in particle energy and possi-
bly band, as a result of scattering. The second stage of
resolving a scattering event involves determining the
orientation of the particle trajectory (i.e., wave vector)
after scattering. For a given process (initial band, final

band, scattering mechanism) and initial wave vector, the
final particle trajectory is obtained with the aid of a
postscattering state probability distribution P (cos8„$,),
which is proportional to the differential scattering rate
dW .„„(k,k')/dQ':

P (cos8„$,)
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a constant offset of the phonon energy with increasing Ge
content. Therefore, an effect of strain and alloying is to
suppress heavy-hole interband scattering by Si-Si
optical-phonon emission as well as acoustic-phonon
scattering, by pushing the respective interband transition
thresholds to higher energies. Figure 4(c) shows the total
density of states of the three valence bands in the strained
alloy as well as in Si and Ge. These data were obtained
by integration over the constant energy surface, as was
done for calculating the scattering rates. The density of
states decreases monotonically with increasing Ge con-
tent in the pseudomorphic alloy. The nonparabolicity is
particularly evident in high Ge content alloys near the
top of the valence band. At energies below 0.05 eV,
Sio6Geo4 has a lower density of states than Ge and
remains close to the Ge density of states up to 0.1 eV.
Both the increase in interband transition thresholds and
the decrease in density of states with alloying and strain
lead to a reduction in scattering rates and a correspond-
ing increase in carrier mobility.

The hole-scattering rates are anisotropic, depending, at
a given energy, upon the direction of Aight. An example
of this is shown in Fig. 5(a), in which the heavy-hole
intraband acoustic-phonon scattering rate in
Sio sGeo 2/Si(001) is shown as a function of energy for five

different directions of flight: [100], [001], [111], [101],
and [110]. It is to be noted that these are distinct direc-
tions in reciprocal space due to the tetragonal D4I, sym-
metry of the strained layer. Comparing the different
scattering mechanisms, optical-phonon scattering is
found to be dominant above 0.1 eV, well above its thresh-
old. An example of this is shown in Fig. 5(b), where the
heavy-hole intraband scattering rates in Sio sGeo 2/Si(001)
are shown for [100] flight. Below 0.1 eV, optical-phonon
scattering rates are comparable to acoustic-phonon
scattering rates. The data of alloy scattering were calcu-

lated, assuming UO=0. 2 eV, which is the value used in

the transport calculations of this work. Figure 5(c) shows
the heavy-hole intraband and interband [100] scattering
rates, summed over all types of scattering mechanisms, in
Sio sGeo z/Si(001). The intraband scattering is much
larger than the others because of the larger density of
final states in the heavy-hole band. Figure 5(d) shows the
total heavy-hole [100] scattering rates for Si, Ge,
10-40%%uo Ge pseudomorphic alloy content. Si has the
highest scattering rate, with the rate decreasing mono-
tonically with Ge content. The scattering rates in
Sio6Geo&/Si(001) are less than the bulk Ge rates. The
knee in the Si data at 0.063 eV is due to the threshold of
Si-Si optical-phonon emission, which becomes the dom-
inant scattering mechanism above this energy in Si. This
feature is less present in the alloy data because of the
presence of Ge-Ge optical phonons at a lower threshold
(0.037 eV) and the reduction in population and thereby
scattering strength of Si-Si optical phonons. The data
shown in Fig. 5 correspond to scattering from states in
the heavy-hole band only. The scattering rates from the
light and split-off bands have similar features to the data
plotted, with the largest rate being interband scattering
to the heavy-hole band. These data have not been shown
because they are quite similar to the plotted data and,
furthermore, these transitions are less frequent due to the
lower hole populations in these bands, thereby having less
effect on the transport characteristics.

The postscattering state probability distributions,
which are calculated over a mesh in both the initial and
final wave vector, undergo a change of symmetry in the
presence of strain. In Fig. 6 the postscattering state
probability distributions of the acoustic-phonon scatter-
ing for a hole with incident energy of 10 meV, traveling
in the [100] (in-plane) direction, are shown on the right,
for Si, Siz sGez 2/Si(001), and Sio 6Gez 4/Si(001). The

TABLE I. Material parameters. Alloy parameters are obtained by linear interpolation:
Si Ge

P 1 —x x
( 1 &)Psi+&PGe

Material parameter

Valence-band structure

Symbol

L
M
N

Units

(eV A')
(eV A 2)

(eVA')

Si value

—25.51
—15.17
—38.10

Ref.

12
12
12

Ge value

—143.32
—22.90

—161.22

Ref.

12
12
12

Spin-orbit splitting
Deformation potential

5o
a
b

d
do

(eV)
(eV)
(eV)
(eV)
(eV)

0.044
2.1

—1.5
—3.4
29.3

13
15
15
15
6

0.282
2.0

—2.2
—4.4
40.0

14
15
15
15
6

Lattice constant
Elastic stiffness

ao

&12

(A)
(10" dyncm )

(10" dyncm )
(10" dyncm )

5.4309
16.56
6.39
7.95

16
18
18
18

5.6461
12.853
4.826
6.816

17
19
19
19

Mass density
Optical-phonon energy

P
%coo

(gmcm ')
(eV)

2.328
0.063

20
20

5.3243
0.037

20
20
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FIG. 4. Transition thresholds and densities of states. (a)
Comparison of band structures of bulk Si (solid lines) and
Sio 6Geo tiSi(001) (dashed lines). (b) Light-hole and split-
off—hole bandedge shift with Ge content in Si& „Ge„. The
boundaries of the shaded areas correspond to the absorption
and emission thresholds for Si-Si optical-phonon scattering. (c)
Total density of states, D(E), for Si; Si09Geo &

(10%); Sio 8Geo 2

(20%); Sio &Geo 3 (30%); Sio 6Ge04 (40%); Ge (dotted line).

plots show the scattering rate dependence on the cosine
of the scattering angle 8, and azimuthal angle P, . On the
left of these plots are shown the corresponding densities
of states for the heavy-hole band at 10 meV. In case of
Si, the postscattering state probability distribution has
twelve maxima which correspond to the twelve maxima
of the density of states in the [110] directions. As the
strain is increased, the maxima of density of states shifts
from the [110]directions to the [111]directions. Furth-
ermore, the postscattering state distribution becomes
twofold symmetric in azimuth, for the initial trajectory in
the [100] (in-plane) direction, whereas in unstrained Si, it
is fourfold symmetric. This also corresponds to a reduc-
tion in symmetry, under biaxial strain, about the direc-

n (E)=ae " D (E), (18)

where n is the population distribution at energy F.. a is
an energy independent prefactor, depending upon the
quasi-Fermi energy and the effective carrier temperature.
D(E) is the total density of states at energy E. When
n (E), calculated this way, is fitted to the simulated popu-
lation distribution, as shown in Fig. 10, the effective car-
rier temperature may be determined. The results of such
a fitting are shown in Fig. 11. It is found that the
effective carrier temperature increases with Ge alloy con-
tent and with electric field. For low fields, around 1

kV/cm, the effective carrier temperature in
Sio 6Geo 4/Si(001) is slightly higher than in bulk Ge. At
higher electric fields, however, the alloy effective carrier
temperatures remain between that of Si and that of Ge.
These data are given for a lattice temperature of 300 K
(see Fig. 11).

tion of flight (x axis, [100]) of the density of states. The
further structure in the polar angle dependence of the
postscattering state distribution arises from the strain-
induced effect on the scattering matrix element, which
will be quantitatively different for each type of scattering
mechanism.

The velocity-field relations from the Monte Carlo cal-
culations are shown in Figs. 7(a) and 8(a) for parallel (in-
plane) and perpendicular transport, respectively. For
comparison with measured velocities in Ge and Si, data
from the literature, ' are also shown. The correspond-
ing chordal mobilities are shown in Figs. 7(b) and 8(b).
These data are given relative to the chordal mobility of
Si. The strained alloys show a monotonic increase of car-
rier velocity with Ge content. In the case of
Sio6Geo4iSi(001), the velocity is comparable to that of
bulk Ge. A slightly higher velocity is found for in-plane,
parallel transport than for perpendicular transport. It
should be noted here that the alloy scattering potential
strength, Uo, is now the only unknown parameter in our
formalism. For the work presented so far, we have used
an estimated value of Uo=0. 2 eV. Although the alloy
scattering is not the dominant scattering mode, it does
have a quantitative effect on transport. In Fig. 9, the
effect is shown of the alloy scattering potential Uo on the
velocity-field curves of Sio 8Geo 2. Clearly the value of Uo
in the strained Si& „Ge system needs to be measured ex-
perimentally in order to quantitatively give the change in
carrier velocity with pseudomorphic alloying.

The hole population distributions are shown in Fig. 10
for in-plane transport. In Fig. 10(a), the hole population
in Si is seen to broaden with increase in electric field.
The carrier population becomes more dispersed with in-
creased Ge content in the alloy, as shown in Figs. 10(b)
and 10(c). The population dispersion is related to the
effective carrier temperature, Th, which can be calculated
given the population distribution and density of states
[Fig. 4(c)]. Assuming a nondegenerate material, the Fer-
mi distribution function may be approximated by a
Maxwellian distribution function. When this is multi-
plied by the density of states, the result is the population
distribution for the given effective carrier temperature:
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An analysis of the relative numbers of each type of
scattering event occurring during the Monte Carlo opera-
tion shows that for all alloy compositions (O~x ~0.4)
the most frequent type of scattering is heavy-hole intra-
band. These data are shown in Figs. 12(a) and 12(b), with
E =5 and 30 kV/cm, respectively. The carrier motion is
in-plane [100]. The quantity plotted in these figures is the
mean collision time, which is the total time of Aight di-
vided by the number of scatterings, of a given type,
occurring in that period of titne. The importance of in-
clusion of the split-off band in the analysis for high Si
content materials is evident from these figures. These
show that in pure Si and in Sic 9Geo I/Si(001), scatterings
between the heavy-hole and split-o6' —hole bands are more

frequent than intraband scat terings in the light-hole
band. The situation reverses for higher Ge content alloys
due to the associated increase in spin-orbit splitting.
Generally, scatterings involving the split-o6'band become
less frequent with increasing Ge content, as seen by the
upward slopes of the H-S L-S, and S-S curves in Figs.
12(a) and 12(b). These data show why the valence-band
transport cannot be modeled as transport in two decou-
pled bands (heavy and light holes). The heavy-
hole —light-hole interband scattering is more frequent
than the light-hole intraband scattering. This is because
once a particle is in the light-hole band, the scattering
rate to the heavy-hole band is much greater, due to the
greater density of final states, than the scattering rate to
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the light hole band. In the case of Si and in

Sio 9Geo, /Si(001), this statement may be extended to in-

clude the split-off band as well.
The most frequently occurring scattering mechanism is

optical-phonon scattering, either Si-Si, for materials up to
30% Ge or Ge-Ge for Sic'Geo 4/Si(001). This is revealed

by calculating the mean collision time per scattering
mechanism, as shown in Figs. 12(c) and 12(d). The
optical-phonon scattering curves include both emission
and absorption, as do the acoustic-phonon scattering
curves. The scattering frequency of Si-Si optical phonons

becomes comparable with that of Ge-Ge optical phonons
in the vicinity of 30% Ge. The fact that this equivalency
occurs below 50'FoGe is due to the Ge-Ge phonons hav-
ing a lower energy (0.037 eV, compared to 0.067 eV for
the Si-Si phonons) and therefore a higher phonon popula-
tion than the Si-Si optical phonons. This increases the
Ge-Ge optical-phonon scattering rate.

The results presented above are subject to four main
assumptions or approximations. First of all, the material
parameters used for the alloy are obtained by linear inter-
polation between the Si and Ge values. Sufficient experi-
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tions, P(c s8,o$, ), at 0.01 eV. Densities ofstates are on the left in each part and the postscattering state distributions are on the right.
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mental data im the literature have not been found to sup-
port the use of any other values. Secondly, a relatively
simple picture is used for the alloy phonon spectra. The
actual phonon spectra may be quite complicated and ad-
ditional features may have to be accounted for. For ex-
ample, there may be phonon localization due to the large
difference between Si and Ge optical-phonon frequencies.
Similarly, there may be mixed phonon modes. Some of
these effects may depend upon the microcrystalline de-
tails of the grown structure. Clearly, if present, such
effects must be accounted for and included in a formalism
for hole transport. We believe that the dominant trans-
port changes occur due to the electronic band-structure
change, while phonon band-structure modifications will
have secondary effects on the carrier transport. Thirdly,
in modeling alloy scattering, we have assumed no alloy
clustering. The presence of clustering may make alloy
scattering relatively more important. Also, we have as-
sumed a value of alloy scattering potential of 0.2 eV. We
have shown that the choice of the value of this parameter
can be expected to have an observable effect on the car-
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rier mobility. To our knowledge, however, this parame-
ter has not been experimentally determined for the pseu-
domorphic system, to date. This data is required to im-
prove our assumption of Uo=0. 2 eV. Finally, we have
neglected impurity and carrier-carrier scattering in our
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V. CONCLUSION

An analysis of high-field hole transport properties
due to lattice and alloy disorder scattering in

Si, „Ge„/Si(001) has been made by Monte Carlo simula-

tion. Several aspects which make hole transport complex
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(10%);Sip SGep & (20%); Sip 7Gep 3 (30%);
Sip 6Gep 4 (40%); Ge (dotted line).
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FIG. 11. Effective hole temperature at a lattice temperature
T =300 K, for in-plane transport. Si, Sip 9Gep I (10%);
Sip 8Gep 2 (20%); Sip 7Gep 3 (30%); Sip 6Gep4 (40%); Ge (dotted
line).

FIG. 12. Mean collision times. (a) Interband and intraband
mean collision times for E =5 kV/cm, in-plane transport: H-H
denotes heavy-hole intraband, H-L denotes heavy-hole —light-
hole interband, H-S denotes heavy-hole —split-off —hole inter-
band, L-L denotes light-hole intraband, L-S denotes light-
hole —split-off —hole interband, S-S denotes split-off —hole intra-
band, total denotes sum of the six types. (b) Same as (a) for
E =20 kV/cm. (c) Mean collision times by scattering process,
E =5 kV/cm, in-plane transport: Alloy denotes random-alloy
scattering; Up=0. 2 eV. AC denotes acoustic-phonon scatter-
ing. Ge NPO denotes Ge-Ge nonpolar optical-phonon emission
and absorption. Si NPO=Si-Si nonpolar optical-phonon emis-
sion and absorption. Total denotes sum of the four types. (d)
Same as (c) for E =20 kV/cm.
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to model, have been taken into account. Included are the
effects of interband coupling, anisotropic, nonparabolic
energy surfaces, and the full operator form of the lattice
scattering mechanisms.

A regular, monotonic increase in hole mobility and
effective temperature is found with increasing Ge alloy
content from 0 to 40% Ge. The hole transport proper-
ties in Sio 6Geo z/Si(001) are found to be closely similar to
the hole transport properties in bulk Ge. The increase in
hole mobility is due primarily to two strain related
eff'ects: (1) lifting of the zone-center heavy-hole —light-
hole degeneracy and increased separation of the split-
off—hole band, and (2) a reduction in the density of states,
or equivalently, the effective mass of the carriers.

The results presented, however, are subject to a few
qualifications. Nevertheless, we believe that these as-
sumptions are justified, given the present state of
knowledge about this material system. The aim of

this paper is to present the realistic effects of strain on
hole transport in the technologically important
Si, „Ge„/Si(001) material system. The analysis was car-
ried out, retaining the most important features of both
the valence bandstructure and hole scattering mecha-
nisms. Further refinements to this model await accurate
experimental determination of several of the properties of
the pseudomorphic Si, „Ge,/Si(001) system, most not-
ably, characterization of alloy scattering.
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