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%'e analyze the doping effects on resonant tunneling of a defect-layer sheet on the barrier in
double-barrier quantum wells, using the effective-mass approximation and transfer-matrix ap-
proach. The potential for defects is taken to be a 5-function model potential. When the local-state
level for the defects matches one of the quasibound state levels in the quantum well (QW), a strong
coupling between them occurs. It splits and shifts the original resonant peaks in the transmission

probability. In the opposite case, no splitting of the peaks is observed but an extra resonant peak
corresponding to the defect state appears and the shifting of peaks occurs. The degree of coupling
also depends on the position of the defect layer relative to the barrier-well interface. The closer to
the interface the defect layer is, the stronger the coupling is. It shows that the localized state level

and the position of the defect layer may be additional growth-control parameters and can be used to
modify the energy structures of the QW.

I. INTRODUCTION

Resonant tunneling through quantum-well (QW) het-
erostructures has attracted considerable attention recent-
ly because of its possible application to ultrahigh-speed
electronic devices. ' Particle transmission through one
QW, which is enclosed by two tunneling barriers, can ex-
hibit sharp peaks when the incident-particle energies
coincide with the energies of the quasibound states of the
QW. The characteristics of quantum-well devices are
closely related to the energy structures of the QW, gen-
erating considerable motivation in the investigation of
the electronic states within the QW in recent years.

Recently, the effects of impurities, defects, and
structural disorder on the resonant tunneling have been
intensively studied ' because both the characteristics of
resonant tunneling diodes and the mechanism of the elec-
tron tunneling are strongly affected by the doping profile
of the structures. In complete structures the resonant
tunneling of electrons is coherent. " However, inelastic
scattering in the well may destroy phase coherence and
makes the electron lose its phase memory; it is said to
tunnel sequentially. ' The presence of scattering centers
leads to a broadening and decrease of the resonant
transmission peak, ' ' equivalently to a broadening of
the density of states in the well, and hence, also to a
reduction of the peak-to-valley ratio. For the QW made
by amorphous semiconductor materials both the experi-
mental and theoretical investigations for resonant tunnel-
ing have also been presented by many investigators. '

Very recently, Cheng et al. presented a study on the
effects of Si doping with different doping levels in A1As
barrier layers of AlAs/GaAs/A1As double-barrier reso-
nant tunneling diodes. ' They observed that the peak-
to-valley current ratios are not changed too much as the
Si doping density increases in AlAs barriers. The reso-
nant tunneling coherence is virtually unaffected by dop-
ing in the A1As barriers over some ranges of the Si dop-

ing densities. They observed a shift of the peak in the
resonant tunneling current and ascribed this shift to the
band-bending effect.

Only a few theoretical studies concerned with effects of
the localized states in barriers for the double-barrier
quantum-well (DBQW) system on resonant tunneling are
presented. More recently, Beltram and Capasso studied
the interaction phenomena between deep levels of defect
layers and minibands in semiconductor superlattices.
They presented calculations of the electronic states for a
conventional heterojunction superlattice interleaved with
a periodic array of deep centers located in the barrier lay-
ers. By appropriate choice of structural parameters
strong mixing between defects and superlattice states
takes place. Enhancement of the miniband widths by
several orders of magnitude and the creation of new
Bloch states within the band gap of the superlattices are
found.

The aim of this work is to calculate the transmission
probability of resonant tunneling through a barrier-well-
barrier structure based on a model which takes into ac-
count the existence of a localized state inside one barrier
and with the use of the effective-mass approximation and
transfer-matrix approach. We present calculations show-
ing that the localized state introduced in the barrier of
the DBQW structure can have intriguing effects on the
quasibound states for the QW. The strong coupling be-
tween the defects and the QW leads to rich phenomena
such as the splitting of peaks, the shifting of peaks, the
creation of a new peak, and the falling of the lower-
energy peak into the band gap, or the incorporation of
the higher-energy peak into the quasicontinuous states.
The coupling or mixing of the states sensitively depends
on the energy level of defects and on the location of the
defect-layer sheet in the barrier. In Sec. II we shall

briefly describe our model and the relevant formulas.
The calculated results and analysis are given in Sec. III.
Section IV presents some discussions.

41 2906 1990 The American Physical Society



41 EFFECTS OF THE LOCALIZED STATE INSIDE THE. . . 2907

II. MODEL AND FORMULAS

M(barrier I)=M(3~2)M(2~1),

where

(la)

The analysis of the problem of a quantum particle
through a DBQW containing a defect-layer sheet in the
barrier needs some simplifying assumptions to be tract-
able. Since the one-dimensional model contains the
essence of the problem, we shall consequently restrict our
discussion to the one-dimensional case here. We consider
monoenergetic electrons described in an effective-mass
approximation. We neglect all complications such as
band structure and charge pileup in QW, as well as
transfer between longitudinal and transverse momen-
tums, and only consider a defect-layer sheet located in
the front barrier.

A schematic representation of the potential profile for
a typical DBQW system is illustrated in Fig. 1. There ex-
ists a defect-layer sheet located at the position xb in the
barrier measured from the barrier-well interface. We
focus on the investigation of the interaction between the
localized state arising from the defect layer in the barrier
and the quasibound states in the QW. As indicated by
Beltram et al. , since the qualitative results of the calcu-
lations are not influenced by the details of the potential
chosen we shall use a 5 function as a model potential to
describe the defects.

We now consider an electron with energy E and
effective mass m ' incident from the left side
(x & —a b) on —a DBQW system, as shown in Fig. l.
We set the potential to the extreme left (x & —a b), to-
the extreme right (x & a +b), and within the well to zero.
The widths of barriers and the well are b and 2a, respec-
tively. We begin considering barrier I—a rectangular po-
tential barrier of height ~e~ Vo and width b It is w. ell
known that the characteristics of a barrier can be com-
pletely determined by its 2X2 transfer matrix. In the
case of no defect layer in barrier I we have

M(2~1)= U '( —a2(a +b))

XR (ik, m z /a2m t ) U( —ik, (a +b) ),
(lb)

M(barrier II }=M(5= ")M(4= 3), (2a)

where

M(4~3) = U '(a4a)R (ik3m 4 /a4m 3 ) U(ik3a),

M(5= 4)=U '(ik, (a+b))

XR(a4m f /ik5m4 )U(a4(a+b)) .

(2b)

And

1+y 1 —y
y 2 1 —y I+X

r

0
(3)

k, =2m, 'E/fi, j =1,3, 5

a =2m'( e~Vo —E)/k, j =2 and 4. (4)

Here the quantities with the index j refer to region j, seen
in Fig. 1.

We now consider the modified barrier I containing a
defect-layer sheet located at xb. We assume that the po-
tential for the defects has the form of a 5-type function:
Qt, 5(x —xt, ). Q& is the strength of the 5 function. For
negative Qb it represents an attractive interaction, in the
opposite case, a repulsive one. This kind of potential
reflects in the simplest way the fact that the defect state is
strongly localized. Every 5 potential in the barrier intro-
duces one local state whose energy level is controlled by
Q&. E& =

~e~ Vo m'Qt, /2—fi . Through standard alge-
braic operation, one can derive the transfer matrix cor-
responding to the defect as

M(3~2)=U '( ik—3a)R(a2m3 /ik3m2 )U( —aza) .

Similarly, for barrier II the transfer matrix has the fol-
lowing form:

M tp(x~, Qt, )=U '(a2( —a —xs))S(gt, /2a2)

X U(a2( —a —
x& ) }, (5)

where

and

y 1+y (6a)

FIG. 1. Potential energy diagram for a double-barrier quan-
tum well with a defect-layer sheet in the front barrier. The
widths of barriers and the well are 30 and 55 A, respectively.
The height of the barriers is ~e~ Vo =0.4 eV. There are three en-
ergy levels for the quasibound states within the quantum well.
The defect sheet is shown as a vertical line and is located at a
position x& measured from the barrier-well interface. The ener-

gy level for the defect state is shown as a dot.

g$
= —2m 2 Q$ /trt (6b}

Thus, the transfer matrix for the modified barrier I can
be written as

M'(barrier I)=M(3~2)M &(x&,Q& )M(2~1) .

At last, we can construct the total transfer matrix as the
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product of the transfer matrices corresponding to bar-
riers I and II

M"'(E,xb, Qb) =M(barrier II)M'(barrier I) .

Finally, the transmission amplitude of the system is relat-
ed to the (2,2) element of M'" as

t (E~xb&Qb ) = 1/M~~'

and the transmission probability is

UR k, m',
T(E,xb, Qb)= tt'=

k)m~
(10}

where vL and vz denote the velocity of the particle on the
left- and right-hand sides of the DBQW, respectively.
For a given x~ and 0&, we can calculate the transmission
probability spectrum numerically.

III. CALCULATED RESULTS AND ANALYSIS

To have a quantitative feeling of the effects of defects
in the barrier on resonant tunneling, it is necessary to
perform numerical calculations in a special case. It
should be pointed out that we are not able to make direct
comparison with experimental data, but our model is a
starting point to study the interaction phenomena be-
tween the localized state in the barrier and the quasi-
bound states in the QW. For convenience we shall
choose the set of parameters given by the paper of Gu
et al. 20 The effective masses are the same as mj' =0.2tno
for j =1,2, . . . , 5; mo is the mass of free electron.
Widths of the barriers and the well are 30 and 55 A, re-
spectively. The height of the barriers is ~e~ V0=0.4 eV.
The main results are summarized below.

There exist two adjustable parameters for our model:
the strength Qb of the 5 function and the location xb of
the defect-layer sheet in the barrier.

First, we examine the effect of the defect-layer dis-
placement x& from the interface on resonant tunneling.
Logarithm plots of the transmission probability as a func-
tion of incident electron energies with varying displace-
ments but holding the strength Qb are shown in Fig. 2.
Curves have been vertically offset for clarity. The dashed
curves refer to the case of no defects (Qb =0};here we
find the results of Gu et al. There are three peaks lo-
cated at energies 40, 154, and 326 meV, respectively,
which coincide, as expected, with the quasibound energy
levels calculated for the finitely deep rectangular well.
We set 0& = —4.5 eV A; it corresponds to a defect state
with E&=134 meV closer to the second peak E2, as
marked by an arrow in Fig. 2. Curves a, b, c, and d cor-
respond to different locations of the defect layer: xb =0,
b/4, b/2, and 3b/4, respectively. It is clearly seen that
due to E& being close to E2 the coupling between them is
strong. It leads to a split of the second peak around the
original peak position in the opposite direction. As the
defect layer displaces toward the interface, the peak split-
ting separation increases. It indicates that the coupling
becomes stronger. Even though the first and third peaks
are far away from EI„ they are still affected by this dop-

0.0
I I

0.2
ENERGY (IV)

04

FIG. 2. Logarithmic plots of transmission probabilities vs in-
cident electron energies for the system with increasing the
defect-layer displacement xb measured from the barrier-well in-
terface but holding the energy level of the defect state, Eb =134
meV, as shown by an arrow. The dashed curves correspond to
the case of no defect layer in the barrier. Curves a, b, c, and d
correspond to different values of xb. 0, b/4, bl2, and 3bl4, re-
spectively. Three original peaks are marked by 1, 2, and 3 in se-
quence from the lower to the higher energies. Curves have been
vertically offset for clarity.

ing. Peak 1 shifts toward lower energy, but peak 3 shifts
toward higher energy. As xb decreases, coupling
equivalently increases; the shift amount for peaks 1 and 3
may be so large that peak 1 falls into the gap below the
conduction-band edge of the well, but peak 3 lifts up and
over the height of the barrier and incorporates into the
quasicontinuous energy states or some "virtual" levels.
These kinds of virtual states caused by electron interfer-
ence effects have also been observed. 4' Therefore, the
number of peaks visible may be 2, 3, or 4, depending on
the degrees of the coupling.

Figures 3(a)—3(c) show plots of the energy position of
the peaks versus the displacement of the defect layer
from the interface with different energies of the defect
states: (a) Eb=E„' (b) Eb=E2, (c) Eb=E3 It corre. -

sponds to the so-called "at resonant coupling" case where
the energy level of the defect state is matched with one of
the quasibound states in the QW. In Fig. 3 all of the
dashed lines indicate the defect energy level being an in-
visible peak. For the visible peak E& the curves are plot-
ted by a solid line.

From the varying trend of these curves we can find
some general regularities as follows: (1) Only the peak
that closes EI, is split into dual resonant peaks located at
two sides of the original peak due to the coupling interac-
tion between the defect state and the quasibound state. It
is called the case of at resonant coupling; (2}for the peaks
far away from E~ they are also affected by this doping;
the higher-energy peak above E& shifts toward the higher
energy, but the lower-energy peak below E& shifts toward



EFFECTS OF THE LOCAI IZED STATE INSIDE THE. . .

0.4

0.2

0.4

02-
Eg

—Eg
f4I)

0.0
————- Eg
I oo~ —Eq

0
~ 0.2
U
K

0.0

E2
0.2

0.0

le&

E2
Ea

l~ I E

0.2— tc)
0.2

0.0
0

I

15

x (k)

30
0.0

0
t I I

15 30

Q (A)

FIG. 3. Energy position of transmission probability peaks as
a function of the defect-layer displacement from the interface,
with different energy levels Eb for the defect states. All the
dashed lines indicate the energy level for the defect states being
the invisible peak. For the visible peak the line is plotted by a
solid line. El, E2, and E3 are the positions in energy for origi-
nal peaks 1, 2, and 3, respectively. The value of Eb correspond-
ing to these figures is the following: (a) 40 meV (=E& ), (b) 134
meV, (c) 326 meV (=E3), (d) 240 meV, (e) 72 meV, and (f) 0.0
meV.
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case. The first is that the peak split does not appear. The
second is that an extra peak associated with EI, emerges
in the strong coupling region. When the defect layer is
centered in the barrier, the extra peak position slightly
deviates from the Eb. In Fig. 3(f), no extra peak can be
identified because the width of the coupled peak is very
broad like a "bump. "

We are now in a position to consider another variable:
the energy level of the defect state. Figure 4 shows loga-
rithmic plots of the transmission probability versus ener-

gy with different energy levels of the defect states but
holding xb =b/2. The dashed curves correspond to the
case of no defects. Curves b gcor—respond to Eb =347,
326 ( =E3), 282, 154 ( =E2), 98, 40 ( =E, ), and —73
meV, respectively. The energy levels of the defect states
are also marked by arrows in Fig. 4. Curves are vertical-
ly offset for clarify. Referring to these spectral struc-
tures, we find that the above-mentioned regularities
remain valid again.

To clarify this, we give plots of the peak position
versus the strength of the 5 function, as shown in Figs.
5(a)—5(c), corresponding to the case of the weak, inter-

lower energy; (3) as xb decreases, i.e., the defect layer
closes the interface, the coupling becomes stronger, the
splitting separation of peaks increases, and the shift
amount for the single peak relative to the original peak
position also increases. The peak-to-valley ratio in the
spectra is always changed due to the introduction of the
defect-layer sheet. The increase of the valley transmis-
sion probability for the doping sample is also due to the
coupling between the defect layer and the quasibound
state in the QW. The decrease of the peak-to-valley ratio
in the transmission probability spectrum indicates the
coherence of the resonant tunneling is worse; (4) as the
coupling increases continuously, peak 3 may lift over the
height of the barrier and incorporate into the quasicon-
tinuous energy states or virtual states. In contrast, peak
1 may fall below the conduction-band edge of the QW
and becomes a gap state. It indicates that a gap state
may be created due to introducing this defect layer; (5)
the number of the resonance peaks depends on the de-
grees of the coupling; i.e., on x& and on the energy level
of defect states, how to close the interface and how to
match with the quasibound states in the QW?

Figures 3(d)—3(f) show the case where the localized
state for the defects lies between the two original quasi-
bound levels of the QW: (d) E3 & Et, & Ez, (e)
E2 & El, &E„and (f) E, & Et, =0, it is called the case of
"off-resonant coupling. " In this case there are some re-
sults considerably difFerent from the at resonant coupling

0.0 0.2
ENERGY (eV)

FIG. 4. Logarithmic transmission probabilities as a function
of incident electron energies: without defects (dashed curves)
and with defects which have varying energies but located at a

0
fixed position, xb=b/2=15 A. The defect state energies Eb
have been marked by arrows. Curves b, d, and f correspond to
the at resonant coupling case: b, Eb =E3 =326 meV; d,
E~=E2=154 meV; f, EI, =E& =40 meV. However, curves a, c,
and e describe the case of the oF-resonant coupling: a, Eb =348
meV; c, 282 meV; e, 98 meV. Final curve g corresponds to the
case of the deep level of the defect state in the barrier:
Eb = —73 meV. Curves are vertically offset for clarity.
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mediate, and strong couplings, i.e., xb =3b/4, b/2, and
b/4, respectively. The dashed curves present the parabol-
ic relationship between the defect energy level and the
strength parameter

~ Qb ~. In the weak coupling, as shown
in Fig. 5(a), it is seen that all the peak positions are al-
most not changed even in the cross points A, 8, and C
defined by the condition: EI, =E3, E2, and E, , respec-
tively. No extra peak incorporates into the spectrum.
That is due to the defect state being strongly localized; its
wave function decays quickly with the distance. Howev-
er, for the intermediate coupling, as seen in Fig. 5(b}, at
the energy cross points which correspond to the "at reso-
nant coupling" case, the split of the peak occurs. In ad-
dition, in the region defined between A and C, the
creation of one extra peak can be observed. This extra
peak position in energy approaches to Eb generally, but
sometime it is very diScult to assign its source because of
the strong mixing effects. For the strong-coupling case,
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FIG. 5. Dependence of the transmission probability peak po-
sition in energy on the strength ~Q~ ~

of the 5 function. Dashed
curves describe the parabolic relation between EI, and Qb for
the defect state. The cross points A, B, and C are defined by the
condition: E&=E3, E&, and El, respectively. {a), {b), and {c)
correspond to the cases of the weak, intermediate, and strong
couplings; the location of the defect layer is 3b/4, b/2, and b/4,
respectively.

as shown in Fig. 5(c},the extra peak position may deviate
far from Eb, there is no way to tell its original back-
ground. Near the cross point C, the interaction always
forces the ground state to fall into the gap. On the other
hand, at the cross point A, the interaction lifts the
highest excited state up and incorporates it into the
quasicontinuous states. It is interesting to note that when
~Qb~ is very large, the defect state energy level is very
deep, like a strong attraction source in the barrier. It can
lead to the split of the highest-energy peak and make a
new quasibound state. This effect can be seen in both the
intermediate- and strong-coupling regions, as shown in
Figs. 5(b) and (c). The stronger the coupling is, the more
obvious this effect is.

When 0& is positive, corresponding to repulsive poten-
tial, only the scattering effect can be observed, the effect
is similar to that of scattering centers in the well on reso-
nant tunneling, as discussed by Gu et al. In that case
the effect of scattering is to lower the tunneling current
and to shift toward higher energy, and broaden the peak
of the resonance tunneling spectrum. Due to our sym-
metric structure, the results for doping in the rear barrier
are the same as those obtained by the above calculations.
For the case of both doping in the front and rear barriers,
the effect is basically additional but more complicated.

IV. DISCUSSION

In the report recently presented by Cheng et al. ,
'

they have observed the shift of the peak and valley volt-
ages in the A1As/GaAs/A1As double-barrier resonant
tunneling diodes with different doping levels in the AlAs
barrier layers. They interpreted this shift to be caused by
the band-bending effect. From our calculations above, we
prefer to suggest that this shift may be generated by the
strong coupling between the defect states in the barrier
and the quasibound states in the QW.

The main findings of the present-day study for the
DBQW system containing a defect layer in the barrier are
similar to those of Beltram et al. But they are con-
cerned with a new superstructure consisting of a superlat-
tice with the introduction of a periodic array of deep
centers located in the barriers. Therefore, some results
between our calculations and those of Beltram et al. are
different. For our model, the coupling between the de-
fects and the QW reaches maximum when the defect. lay-
er closes the interface, but in the system of Beltram et al.
the interaction between deep levels of the defects and
minibands in semiconductor superlattices is maximized
when the energy levels of the defects are matched to
those of the isolated wells and defect layers centered in
the barriers. In fact, in that case the overlapping effect of
wave functions between the defect and superlattice is
maximum.

It is also interesting to note that the effects of a local-
ized state formed inside the barrier on resonant tunneling
for the DBQW system are similar to the case of coupled
double-quantum-well structures where two adjacent
quantum wells are separated by an ultrathin barrier that
allows tunneling of electrons between the wells, as report-
ed by Nakagawa et al. recently. Dual resonant peaks
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are obtained in their current-voltage characteristics. The
peak separation is interpreted to be the coupling between
the two wells. The energy splitting decreases as the
thickness of the ultrathin barrier increases. These
features are in good agreement with our calculated re-
sults.

Our model structures discussed here may be produced
by the deposition of sheets of shallow impurities at high
surface concentration as shown by Hjalmarson. As de-
scribed by Beltram et al. , the actual realization of these
structure is not very demanding for modern growth tech-
niques such as state-of-the-art molecular-beam epitaxy.
More recently Schubert et al. have grown 5-doped n-i-
@-i superlattices consisting of single atomic planes of shal-
low dopants via the "impurity-growth mode. " Their ex-
periments show that by proper control of the growth
temperature the impurities were confined to single mono-
layers without degrading the crystallinity of the material.
By using this technique the creation of a defect-layer

sheet might be achieved.
In summary, we have presented the detailed studies of

the effects of a localized state in the barrier on the reso-
nant tunneling for the DBQW system. Our calculated re-
sults show that a surprising variety of coupling phenome-
na between the defect state and the quasibound states in
the QW can be observed. From our calculations we are
able to control the electronic energy structures for the
QW by the introduction of defects in the barriers. It may
provide new degrees of freedom for the optimal design of
the QW devices and open a new way to improve the
characteristics of the QW devices.
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