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A theory of heterojunction band offsets is developed within the density-functional framework in

the local-density approximation. The linear-mu5n-tin-orbital method is used in conjunction with a
superlattice geometry for solving Schrodinger's equation of the heterojunction. The potential is
constructed within the atomic-sphere approximation. Within this context the long-range electro-
statics reduce to that of point charges, and the average electrostatic potential of the latter can be
used as a local reference level. It is shown that, starting from an arbitrary alignment of the bulk po-
tentials, the correct potential alignment is obtained by minimizing the total energy with respect to a
single parameter: the interface dipole. This minimization is equivalent to screening the initially in-

duced dipole by the macroscopic dielectric constant of the interface region of the heterojunction,
which can be identified approximately with the harmonic average of the dielectric constants of the
two semiconductors. The conditions under which this is valid are discussed. The calculations are
performed within a so-called frozen shape -approximation, allowing the potentials to vary only by
constant shifts. Almost perfect agreement between calculations using a diferent shift per atomic
layer and calculations using a single shift per semiconductor provide a numerical demonstration
that the self-consistent dipole is independent of the details of the dipole profile. They also show that
the macroscopic dielectric constant of the heterojunction in the vicinity of the interface can be ob-
tained with reasonable accuracy from the single-parameter variational calculation itself. The calcu-
lations also show that linear response is valid over a wide range. The theory is applied to an exten-
sive set of lattice-matched semiconductor (110) interfaces and shown to be in excellent agreement
with experimental results and previous more-involved calculations where available. The conse-
quences of the present theory for interface-orientation dependence and metal-semiconductor inter-
faces are briefly discussed.

I. INTRODUCTION

When two solids are joined in a heterojunction or bi-
crystal, the electronic structure is perturbed locally near
the interface, but a few layers away from the interface it
reduces to that of the indivi'dual solids. One of the funda-
mental problems for such a system is how the two band
structures line up in energy with respect to each other.
For metal-metal contacts this problem is trivial because it
follows from the alignment of the Fermi levels. When at
least one of the solids is a semiconductor or insulator,
however, this is not so, because the alignment of the
chemical potentials only applies to the truly asymptotic
situation. Closer to the interface, a region may exist
where the local electronic structure is bulklike but with a
different alignment. In fact, as will be shown, this occurs
within a few atomic layers. It is this intermediate range
alignment we will be concerned with in this paper and
which is conventionally called the band discontinuity or
band offset. In semiconductors or insulators, the macro-
scopic alignment of the chemical potential is accom-
plished by ionizing impurity levels and thus establishing
depletion layers and associated band bending. As this

phenomenon occurs over a length scale of several
100—1000 A, depending on the doping concentrations, in
contrast to the band discontinuity, which is established
within a few atomic layers, it is essentially independent of
the latter and will not be further considered in this paper.

The band discontinuities are of great technologi-
cal importance both for metal-semiconductor and
semiconductor-semiconductor contacts. The Schottky
barrier in the former case and the conduction-band and
valence-band offsets in the latter are key parameters in
determining the electrical and optical properties of het-
erostructures and superlattices, which form the basis of
many new electronic devices. In the following we will
focus on semiconductor heterojunctions, though several
aspects of the theory apply to metal-semiconductor con-
tacts as well. Because of its importance, this topic has
been the subject of numerous theoretical' ' and experi-
mental studies in recent years. Still, considerable
confusion and controversies about the problem persist.
The general framework adopted in the present theory of
band offsets is the density-functional method. A general
analysis of some of the most controversial aspects of the
theory as well as calculations for a wide range of systems
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is presented.
One of the most confusing points about band offsets is

the question of whether a meaningful absolute reference
level exists. Very much related is the question of how to
decompose the band offset into an intrinsic bulk contribu-
tion and an interface dipole correction. Several authors
have emphasized the role of electronic screening of the
interface dipoles, ' but it has not always been stated
explicitly "what is to be screened" and "which dielectric
constant" is applicable. In our opinion, much of the con-
fusion is semantic in origin and due to unclear definitions
of the terms charge transfer, dipole, etc. Another, but
also related, controversial point is whether band offsets
depend on the interface orientation. Finally, the use of
the local-density-functional Kohn-Sham eigenvalues for
band offsets has been questioned. '

Although it has already been pointed out by several au-
thors, we here stress again that any separation of the
band offset into a bulk contribution and a dipole correc-
tion is in principle arbitrary and hence has no special
physical meaning. This is due to the nonuniqueness of
the average electrostatic potential in an infinite periodic
solid. Choosing a reference level for the individual
solids is thus a question of convenience related to the
computational procedure employed. The choice made in
the present paper is the average electrostatic potential of
the point charges related to the atomic-sphere approxi-
mation (ASA), well known in the linear-muffin-tin-orbital
(LMTO) method, which is used for the present calcula-
tions. Once this point-charge potential is fixed on an ab-
solute scale by choosing its average to be zero, the ASA
potential is completely determined. We will refer to this
choice as the ASA reference level. The dipole potential
(henceforth called simply the dipole) of the heterojunction
in this context is defined as the difference between the
two asymptotic values of the average point-charge poten-
tial at both sides of the heterojunction:

D = lim V(z) — lim V(z) .

Throughout this paper, we use Hartree atomic units
(e =A'=m =1). V will be used to indicate the point-
charge potential and U for the full potential. For clarity,
we emphasize that the reference level is not needed in an
absolute sense but only as a local characteristic of the
periodic potential in the two asymptotic regions where
the potential becomes bulklike. The bulk potentials
aligned with respect to this reference level may be related
to an interface-dependent reference charge density based
on the bulk charge densities (see Sec. II B). This is a use-
ful concept for discussing the origin of band offsets, but
not essential in the computational procedure.

The most important result proved in this paper is that
the dipole is the only relevant degree of freedom for the
band offset. This means that instead of performing a ful-
ly self-consistent calculation, one need only carry out a
single-parameter variational calculation to determine the
band offset. The argument used to prove this result is
based on linear-response theory, although it can be gen-
eralized beyond linear response. It shows that the initial-
ly induced dipole is screened by the macroscopic dielectric

constant of the heterojunction, i.e., the dielectric constant
of a sufficiently wide region in the vicinity of the interface
(larger than the screening length so that outside this re
gion the charge density is unperturbed). By initially in-
duced dipole we mean the output dipole of the first itera-
tion, i.e., the dipole resulting from Poisson s equation cal-
culated from the charge density obtained from solving
Schrodinger s equation with the reference potential as in-
put. This assumes that the initial alignment is within the
linear-response range of the correct alignment. Eventual-
ly one may get within the linear-response range by suc-
cessive iterations. Utilizing this requires either that the
dielectric constant of the heterojunction is known, or that
the variational calculation describes the dielectric screen-
ing correctly. As will be shown by the numerical calcula-
tions, linear response is valid over a wide range and thus
the first condition is easily satisfied. In particular, it is
very well satisfied using the ASA reference level. Second,
our calculated dielectric constants are shown to be in
very good agreement with appropriate averages of the ex-
perimental values of the dielectric constants of the setni-
conductors involved in the heterojunction. The
discrepancies can be largely ascribed to the use of the
local-density approximation (LDA) for exchange and
correlation. This shows that the single-parameter calcu-
lation not only is a valid procedure when the dielectric
response is known, but is in fact also sufficient, in prac-
tice, to calculate the macroscopic dielectric response. It
is pointed out that the dielectric response is essentially
the curvature or second derivative of the total energy.
The approximate independence of short-range versus
long-range screening allows one to obtain the correct
long-range behavior even without self-consistency of the
short-range behavior.

In practice, we use a so-called frozen-shape approxima-
tion, in which the potential wells within the Wigner-Seitz
spheres, characteristic of the ASA-LMTO method, have
the same radial dependence as in the respective self-
consistently calculated bulk solids. They are allowed to
vary only by a constant shift. The single-parameter cal-
culation mentioned above corresponds to the use of a sin-
gle constant shift for all atoms on one side of the inter-
face. We have also performed calculations including
self-consistency not only of the dipole but also of the di-
pole profile, i.e., the layer by layer variation of the aver-
age point-charge potential. The results for the dipole or
band offset of these calculations are in almost perfect
agreement with the single-parameter calculation. This
provides further strong numerical evidence that a single-
parameter calculation describes the macroscopic dielec-
tric response adequately. We will refer to the former
(single-parameter) model as the self-consistent-dipole
(SCD) model and to the latter (layer shift) as the self-
consistent-dipole-profile (SCDP) model.

Our calculations are shown to be in excellent agree-
ment with fully self-consistent LMTO-ASA calculations
by Christensen' and will also be compared with other
calculations and experimental values.

The simplifications brought about by this restricted
treatment of self-consistency not only lead to a vast sav-
ing in computing time, but, more importantly, to an im-
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provement of our understanding of the origin of band
offsets and the electrostatics at semiconductor interfaces.
The present theory emphasizes the long-range aspect of
the potential as the most important degree of freedom for
the total energy and the band offsets of the bicrystal.
Nevertheless, it considers the band offset, in principle, as
an interface property rather than a bulk property since
the dipole contribution is, in principle, interface depen-
dent. In practice, this dependence turns out to be small
in many cases. This is due to the combination of the
screening by a large dielectric constant and the fact that
the initial charge transfer and related dipoles themselves
are similar for many cases due to their similarity in bond-
ing configuration. While this paper focuses on the (110)
interface, we note that similar calculations that we have
carried out for the (001) interface of common-anion sys-
tems show that the interface-orientation dependence is
very small indeed. Larger effects, however, are obtained
for non-coinmon-anion systems, and, in particular, for
nonisovalent systems. " ' For the latter systems, the di-
poles depend crucially on the atomic composition at the
interface resulting from interdiffusion. Particular compo-
sitions with an average bonding configuration similar to
the (110) interface will consequently lead to dipoles which
are very close to those of the (110) interfaces4 s'4 45 46 and
thus to an apparent interface-orientation independence.
It was recently shown that the band offset of CaF2/Si de-
pends strongly on the interface structure. This is con-
sistent with our theory because of the much smaller
dielectric screening in such an ionic system. Also, it has
recently been shown that band-offset modification is pos-
sible by inserting thin interlayers at the interface.

We therefore conclude that the interface-orientation
independence found in a few favorable cases cannot be
taken as a valid justification for postulating a "meaning-
ful" absolute reference level in semiconductors. Exam-
ples of "absolute" reference levels which have been pro-
posed in the literature are the vacuum level of the atom
superposition model' or the cation-centered Wigner-
Seitz cell model, ' and the charge-neutrality point.

It is important to stress that the present single-
parameter SCD approach is based on a first-principles
theory. This distinguishes the present calculations from
earlier semiempirical self-consistent tight-binding calcula-
tions, ' ' which treat the electrostatics in a similar way
but introduce uncertainties due to semiempirical parame-
trization of the Hamiltonian describing the interactions
at the interface. Furthermore, the latter calculations
suffer from an arbitrariness in the reference level which
is absent from the present work. This work thus estab-
lishes a link between the semiempirical self-consistent
tight-binding approach, ' ' and fully self-consistent
density-functional calculations. '"

In a separate paper, the preset SCD theory is taken as
the basis for an even simpler semiempirical model, the
interface bond polarity (IBP)-mode-l. The essential addi-
tional feature introduced there is a simple procedure for
estimating the initially induced dipole from the polarity
of the individual bonds. It allows one to study various in-
terface orientations and configurations very easily and
shows that important surface composition effects occur in

the case of nonisovalent heterojunctions. Reference 21
contains a preliminary account of the present work and
the IBP model.

The paper is organized as follows. Section II describes
the theory in a general context. The subsections discuss
A, justification of the use of density-functional theory for
the band-offset problem; B, reference potential and
charge density; C, the restricted freedom variational ap-
proach to density-functional theory, ' D, relation to
linear-response theory; E, independence of the self-
consistent dipole from the dipole profile; and F, relation
between dielectric constants and total energy. Section III
fills in the details of the calculation method used in the
present work. Section IV presents our results. Section
IV A illustrates the single-parameter approach by means
of detailed calculated results for a specific example and
thus provides numerical evidence for the validity of the
theory. It also discusses the calculated dielectric
response. Section IVB presents calculated valence-band
offsets for a large number of lattice-matched semiconduc-
tor (110) interfaces and discusses the results in compar-
ison with other calculations and experiment. Section V
summarizes the conclusions of this work.

II. THEORY

A. Introductory considerations

The general framework of the computational pro-
cedure followed in this work is density-functional theory
(DFT) in the local-density approximation (LDA). ' ' As
is well known, the one-electron eigenvalues or energy
bands of the Kohn-Sham ' equation do not represent
quasiparticle excitation energies. Nevertheless, the
highest occupied Kohn-Sham eigenvalue is exactly equal
to the corresponding quasiparticle excitation energy for
the exact exchange-correlation potential. No corre-
sponding statement can be made for the first unoccupied
state, because of the possibility of an exchange-
correlation discontinuity, ' which has been pro-
posed ' to be the origin of the so-called gap problem in
semiconductors. Other authors have proposed that the
LDA could be the principal cause for the band-gap un-
derestimates. Therefore we take the usual approach of
calculating only the valence-band offsets. The
conduction-band offsets can be obtained by adding the
experimental values of the energy gaps. In fact, in the
LDA, even the top of the valence band is not guaranteed
to be exact. ' Still, the self-energy correction calculat-
ed by means of the so-called GW approach ' has been
shown to be considerably smaller for valence bands than
for conduction bands. Furthermore, one expects the
corrections to be comparable for the lattice-matched
semiconductor pairs considered here and hence to largely
cancel out in the band offset. Finally, because the top of
the valence band and the dipole are both ground-state
properties, it would be inconsistent to treat one beyond
LDA without also correcting the other. This justifies our
use of the LDA eigenvalues rather than quasiparticle en-
ergies for calculating valence-band offsets.



2816 W. R. L. LAMBRECHT, B. SEGALL, AND O. K. ANDERSEN 41

B. Reference level

3'R gR

», ~a IR —Rl
(2a)

As mentioned in the Introduction, the band offset can
be calculated without introducing an absolute electrostat-
ic reference potential. The only quantities needed are (i)
the difference of the average potential at the far right and
left of the interface, Eq. (I), and (ii) the energies of the
band edges relative to this average potential in each solid.
The first part follows, in principle, from a self-consistent
calculation of the heterojunction or bicrystal. The
second follows from a calculation of the band structure
for the individual solids. The details in the procedure for
evaluating the "average" are, in principle, irrelevant. In
this work we use the average point-charge potential of
the ASA model. Pseudopotential calculations commonly
use the volume average of the full electrostatic potential
or the pseudopotential. ' ' Any characteristic energy of
the local potential can be used to fix its position with
respect to the common, but not explicitly determined,
reference level of the whole system. In other words, one
only needs a local reference level in the two asymptotic
regions.

The particular choice for the local reference level made
in the present work is tied to our computational method:
the LMTO method in the ASA approximation. In this
model the potential is spherically averaged within
Wigner-Seitz spheres centered about atomic and high-
symmetry interstitial sites (in the case of the zinc blende
or diamond lattice, the tetrahedral interstitial sites). By
construction the only long-range Coulomb effects are
those due to the point charges associated with each
sphere. The potential from the point charges can be con-
sidered as an envelope function for the actual potential,
which is obtained by locally replacing the point charge by
the actual spherical charge density within each sphere.
The volume averaged p-oint charge -potentia/ is chosen as
the reference level in the present work. We will refer to
this choice as the ASA reference level. The use of this
reference level in an absolute sense was proposed previ-
ously for absolute deformation potentials and band
offsets. A table of band offsets using the ASA reference
level has been given in Ref. 15 and, as also shown below,
already gives the correct band offsets to within a few
tenths of an eV. It forms an essential element in the
dielectric midgap energy model.

In order to calculate the cell average of the point-
charge potential, one may first average parallel to a given
plane (in the present application parallel to the interface)
and then average over a period perpendicular to the
plane. The planar-average potential has a zig-zag shape
consisting of straight line segments which change slope at
every lattice plane by an amount 4m. cr, ~here o is the
planar-averaged surface charge density of that plane. If
several point-charge planes coincide with the same
geometrical plane, their potential is simply superposed
because of the superposition principle.

Alternatively, one may first calculate the volume aver-
age over the Wigner-Seitz spheres,

and finally average over the various spheres with a weight
factor proportional to their volume:

X &RVR
R

QQ„
R

(2b)

where Q&=4nstt/3 is the sphere volume. In Eq. (2a),
the first term gives the on-site contribution and the
second term is the well-known Madelung sum, with qR
the total charge per sphere, i.e., electron plus nuclear
charge (units are electronic charges}. If all atoms are in
equivalent (i.e., symmetry-related} positions, the volume
average will automatically be zero when the usual
Madelung procedure is used. In general, when the aver-
age does not vanish a constant can be added in order to
make V=O.

Note that the above-defined reference level is a bulk
property. It is essential in the above that the potential is
chosen to be periodic as well as the charge density. This
automatically guarantees that there are no macroscopic
electric fields and fixes the potential to within a constant.
The cell average is then well defined and can be chosen
equal to zero. In the present work, these considerations
apply to the point-charge contribution to the potential as
well as the full ASA potential.

It is useful and instructive to describe the heterojunc-
tion in terms of its changes from a reference model
based on the bulk charge density, or, as in the present
ASA context, a point-charge distribution. The latter
must be chosen such that the reference potential, i.e., the
bulk potentials with a chosen lineup, fo11ow from it
through Poisson's equation. One can then describe the
charge density and potential of the heterojunction by
means of their changes from the reference model with the
changes themselves related by Poisson's equation. In
general, the reference charge density does not consist
solely of the bulk charge densities of the two solids, be-
cause "cutting" the solids in an arbitrary way and "glu-
ing" the two half-solids together with frozen charge den-
sities may lead to a macroscopic electric field as well as a
dipole shift at the interface. In order to avoid this, one
must add a compensating surface charge density for the
two half-solids. The latter can easily be chosen such that
the electric field emerging in the vacuum region as a re-
sult of breaking the periodicity of the solid at the surface
is compensated. This requirement fixes the total charge
of the surface compensating charge density. Further-
more, the distribution of this charge determines the sur-
face dipole, i.e., average interna1 potential with respect to
the vacuum potential. The latter fixes the initial lineup of
the reference model. In particular, the surface dipole can
be chosen to vanish, whereby the initial lineup corre-
sponds to the bulk reference lineup discussed above.
Note that no self-consistent calculation of the surface is
necessary as one only seeks a charge density and potential
which satisfy Poisson's equation but not necessarily
Schrodinger s equation. For the point-charge densities
and potentials of the ASA, one may take the compensat-
ing surface charge density of the reference model to be a
planar-averaged point-charge distribution in the vacuum
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positioned such that the surface point-charge dipole is
zero and the initial lineup corresponds to zero dipole.
Unlike the reference potential, which can be chosen in-
dependently of the surface, the corresponding charge
density is surface dependent. The reference-model con-
cept as described above was used in a calculation of the
Schottky barrier for NiSi2/Si. ' The "cut-and-glue"
model is particularly appropriate if the boundary is
chosen in a physically meaningful way, i.e., along regions
of low electron density. The boundaries of the ASA
spheres appear to satisfy this requirement very well as
may be seen in the contour plots of the charge density in
Ref. 61.

0RVR

IR—R'I (9)

Minimizing the total energy is now equivalent to self-
consistency of the ASA potentials:

nR(r')
vR"'(r)=—f, d r'

R Ir —r'I
ZR

exchange-correlation energy per electron. Finally, the
intersphere contribution is given by the point-charge en-
ergy excluding the self-interaction, usually called the
Madelung energy:

C. Restricted variational freedom approach

The DFT equations can be considered as a variational
approach for the total energy in terms of the effective
Kohn-Sham potential as a basic variable. In the present
work, severe restrictions are imposed on the effective
one-electron potential. In the first place, we restrict the
discussion to ASA potentials. This approximation as-
sumes that space can be filled with Wigner-Seitz spheres.
This is not strictly true and therefore we start from the
approximate ASA total-energy functional.

1. ASH functional

The ASA functional is defined by the following pro-
cedure.

(i) Solve the Kohn-Sham Schrodinger equation,

(10)

Here, the exchange-correlation potential p,„,[n]
=B[na„,[n]]/Bn.

Note that the ASA total-energy functional is different
from the true Kohn-Sham functional (both considered as
a functional of the potential} because in the former the
charge density has been spherically averaged. Alterna-
tively, one might have kept a nonspheridized charge den-
sity even in conjunction with a spherical ASA potential.
In that case, the ASA self-consistent potential only ap-
proximately minimizes the true total-energy functional.
In the present formulation, on the other hand, the ap-
proximate ASA functional is minimized exactly.

[—
—,
' V +v;„(r)]f„(r)= st f„(r), (3) 2. Frozen-shape approximation

for v;„the input potential restricted to the ASA form:

u;„(r}=g uR(r) .
R

(4)

(iii) Evaluate the total energy functional as a function
of this trial density:

E,o, =T+ U+ U

Here the kinetic energy T of the model-independent elec-
tron system is given by

OCC

T= g sk —g f u'R(r)nR(r)d r .
k R 'R

The intrasphere electrostatic and exchange-correlation
contributions are given by

n„(r) ZRU=g f d rnR(r) ,'f d r'—
~R ~R Ir r'

I

+c .[nR(r)]

with ZR the nuclear charge at site R, and c„,the

(ii) Construct a spherically averaged trial electron den-
sity from the occupied eigenfunctions:

OCC

nR(r}= f y Iy, (r)l'dr
4m

Additional restrictions can be imposed on the trial po-
tential. In the present work, the radial dependence of the
potential wells inside each Wigner-Seitz sphere will be
taken to be the same as in the self-consistently calculated
bulk solids except for a constant shift per sphere. This
constitutes the so-called frozen-shape approximation, pre-
viously used by Kollar and Andersen in a study of the
heat of formation of alloys. This line of work is an exten-
sion of the frozen potential approach (without constant
shifts ), which itself is a generalization of the so-
called force theorem, originally derived for infinitesimal
displacements.

It is possible to replace the ASA total-energy function-
al, Eqs. (3)—(9), by a new approximate functional which is
exactly minimized by the self-consistency of the restricted
parameter space for the trial potential. This leads to
closed simplified expressions for energy differences such
as the heat of formation, mentioned above. A similar ap-
proach has recently been used by us to calculate the ener-
gy of formation of superlattices. It is a perfectly valid
procedure, however, to search for the minimum only
within a restricted parameter space and still to evaluate
the complete functional with the approximate solution
for the minimum. In fact, in the present paper there is no
need to write the approximate functionals explicitly be-
cause the total energy is not the primary property of in-
terest. Nevertheless, it is important to realize that the
SCD or SCDP calculations used here to determine the di-
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pole correspond to a variational calculation of the total
energy.

3. SCDP model

In the SCDP model we not only restrict the degrees of
freedom to a constant shift per atomic sphere but, in ad-
dition, average over all sphere types lying in the same
geometrical lattice plane. In the following we refer to the
region encompassing all the spheres whose centers lie in
the same geometrical plane as a layer. The justification
for this additional approximation is that we wish to focus
on the planar average of the potential parallel to the in-
terface: the so-called dipole profile. The lateral degrees
of freedom in the potential are thus intentionally filtered
out in addition to the radial degrees of freedom already
removed by the frozen-shape approximation. One may
perform this filtering also on the charge density, or, rath-
er on the point-charge distribution. The reason for this is
that the lateral variables in Poisson s equation are in-
dependent of the perpendicular degree of freedom. These
approximations simplify the electrostatics considerably as
it becomes purely one dimensional and discrete. The
planar-averaged point-charge potential is a piecewise
linear function as already discussed in Sec. II B. In addi-
tion, we here only need its value at lattice planes and thus
the charge density as well as the potential reduce to
discrete shifts per atomic layer. Note that we have first
spherically averaged (corresponding to the ASA), then
volume averaged over each sphere (corresponding to the
frozen-shape approximation), and finally laterally aver-
aged over the sphere types within the same layer. The
present procedure not only is a constant shift approach
but also a purely electrostatic approach; i.e., the small
exchange-correlation contribution to the potential is rig-
idly kept frozen. Slightly different procedures could be
taken for the contraction of the full output potential to a
frozen-shape potential, namely by performing the aver-
ages in a different order. For example, one might first
consider the full point-charge potential, which is not con-
stant over the spheres, and only in the final step make the
frozen-shape approximation of averaging over the
spheres. These different alternatives should have minor
effects on the results.

An example of a dipole profile is shown in Fig. 1. This
figure illustrates the method by means of a calculation for
the ZnSe/A1As(110) interface. The atomic layers parallel
to the (110) interface are neutral in the bulk solids be-
cause the 2D unit cell per layer contains effectively one
primitive 3D unit cell, i.e., both the cation and the anion,
and the two types of empty spheres centered at the
tetrahedral intersitial sites. The average point-charge po-
tential per layer in the bulk is thus zero on all the layers
and in the starting potential for the heterojunction the
latter are simply lined up for both semiconductors, i.e.,
D „=0.There is no need in this case to introduce a
surface compensating charge. After solving the
Schrodinger equation for the heterojunction, the layer-
averaged point charges q„' shown by the shaded histo-
gram in Fig. 1 are obtained, where n indicates the layer
number. Solving the 1D Poisson equation, now reduced
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FIG. 1. Initially induced layer charge (shaded) and associat-
ed electrostatic potential at the center of each layer (bold line)
for ZnSe/A1As (110) starting from the ASA lineup. Each layer
contains a cation, an anion, and two empty spheres, and is neu-

tral in the bulk.

to a finite-difference equation, because of the planar 5-
function nature of the charge density, produces the out-
put layer-averaged point-charge potentials V„',shown in
Fig. 1 as the bold line. The output dipole D,'„,is the
difference between the asymptotic values of this layer po-
tential on either side of the interface. Clearly, the start-
ing layer potential which vanishes on all the layers is not
self-consistent in this case because the output potential
shifts are large on each layer. In the present case, the
changes in charge and potential from the reference model
as discussed in Sec. II B equal the charges and potentials
themselves. The layer point-charge potential V„must
now be adjusted to self-consistency. The self-consistent
results will be discussed in Sec. IV.

4. SCD model

In the SCD model the potential is restricted even fur-
ther: a single shift of the potential per semiconductor
half-space is kept as the only degree of freedom. Clearly,
by definition the dipole and thus the band offset only de-
pend on this shift, once the charge density has been deter-
mined self-consistently. That one may actually restrict
the variational search to this single-parameter space is
not so evident a priori but will be discussed below. Clear-
ly, a single-step dipole profile as input does not result in a
single-step output profile, but the output dipole, defined
as in Eq. (1), is well defined. It is given by

4nD,„,= gq„z„,
n

where Q is the 2D unit cell area, and z„arethe positions
of the layers.

In this single-parameter model, self-consistency is most
easily obtained by means of a graphical procedure illus-
trated in Fig. 2 for the example of ZnSe/A1As(110). One
simply performs a few calculations of D,„,as a function



4] SELF-CONg ISTENT DIPOLE THEORY . .ORY. . . OF BAND OFFSETS 2819

4. 0
(

3.0

2. 0

1.0
0
CL 0.0

l- -1 ~ 0
I

-2. 0 .

the full r-de enpendent potential u (r). In g g
g SCF defines the

Now, one adds a 11

working point. "

turbation b V
a sma perturbatio

'
n, called the bare er-

are euseahno
per-

is the "small
tation to stress that th'

1 t to ofth S ge chrodin er e
is i ustrated dia rammg y g.

c rodinger's e uati
-1 a es according to Fermi-

oid t}i id d Ice e ectron density,

-3.0 ~n,'„d=q'avb„,. (13)

-4. 0

-5. 0
0 ' 2 0. 4 0. 6 0. 8

INPUT DIPOLE (eV)
1.0

p ical procedure for find'FIG. 2. Gra hi g

used as input and the output d
ipo e profile with a

~

p po

tdi ol o o d t hn s to the ASA lineu .

CC'

s to the interse
Th poe circles indicate c

n in erpolation. Note th

1.2

(14)

The full char e-ge-density change b, n '(r
be contracted to a s h

n r) can, if necessary

in the
a sp erically averaged b, n ' (r

tot 1 h hp eR„z„othe desired level
ion. he quantit is

ceptibility. It iis a second-rank ten

'
yy is called the bare su-sus-

di o hn e approximation level it
r, a matrix, or a scala g

corresponds to a co
of y (r, r') with b, u

convolution integral

ubare r). The induced
t"n'nd duce potential,

AV „d=uAn'md ~

of D and looks for the in

DQ/t D A
e intersection with the lin

n important result, demons
h h D (Drve, „,Din is quite lin

uentl
e se -consistent solution D

~ ~

vant region. The self-

O o Po ge value D' in

DI
oUi =DscF +D'(D ' D)—in SCF

from which it follows that

(12)

D. linear-response theory

Ollt 1n
D' —D'

in
1 —D'

In principle, one should take the op

point is chosen as 1

u in practice it does not matter which
g.as ong as one is withi

c ion, we relate thi
ard linear-respons thnse eory.

is approach to stan-

by means of tt e Poisson equation and
h -o 1 toion potential which is i

4 h ~

-P

as
enera it is a tensorlik

e ully r-de en
b ot tdt h

~ ~

e o t e desired level o
d d ot t' 1'

t'
pn ia is nowadded tot

w equi ibrium situat'
t'ntl ""'"'dcene perturbation given b

hV screened ~Vbare+ screened '

In other words,

AVV „,„,d=(1 —uy ) 'hV
bare

=e 'AV
bare '

The last equation
'

q
'

n is a definition of the
'

h 1ea s to the relation

W ~b,„, screened

Schrodinger

(15)

(16)

In standard 1'ar inear-response theorar ~ se eory, one starts from a
equi ibrium and asks

en a small perturba
'

p
x, t is means that one

1f-o t t o1 t' V hu ion scF has been found. In this sub-

dd'h 1 1 ppo i io atm y d

V h h 1 p - g pume-averaged oint-
e sp erical-averaged pot 1 R, rentia uR(r), or

Ind lnd

Poisson

FIG. 3. Schc ematic diagram of
Schrodinger's and Po'
exchan e

oisson's equation.
exc ange and correlation co t 'bn ri utions

0
ind=X h, ~screened

a single iteration of
The latter may include

as well.



2820 W. R. L. LAMBRECHT, B.SEGALL, AND O. K. ANDERSEN 41

V;nd —b Vscreened AVbare

0=Q g EVscreened

bare &

from which one finds

(19)

(20)

(21)

(22)

Finally, one has

e '=1+up . (23)

Because the perturbations are within the linear-
response range, one has

AV;„d
Qg ~Vscreened

LaLV' d 5Vo

b,Vb„, 5V;„
(24)

where a functional derivative notation is used for general-
ity, and the subscripts, out and in, refer to input of
Schrodinger's equation and output of Poisson's equation,
i.e., one iteration cycle. In the single-parameter model, it
reduces to the slope D', discussed in the preceding sub-
section. In the case of discrete parameters, such as the
sphere or layer potential shifts, it reduces to the Jacobian
matrix 8 V "'/8 V'", where i,j indicate the discrete indices
such as sphere site R or layer number n.

We have now established the connection of the self-
consistent calculations to standard linear-response
theory, and, in particular we have identified the slope of
the D,„,(D;„)curve in the single-parameter model as

D'=4~y =1—e . (25)

In the following subsection we discuss which dielectric
constant is relevant in this context.

Note that the calculation at the end of Sec. II C corre-
sponds to determining the working point, which in the
present case is not known a priori. In fact, one is interest-
ed in the system without external perturbation, and the
above connection with linear-response theory is only used
to establish the physical meaning of the output-input re-
lation of each iteration.

E. Independence of the dipole pro6le

The preceding subsections [see Eqs. (12) and (25)] lead
to the conclusion that within the SCD model the self-
consistent value for the point-charge potential dipole is
obtained from

1 1
out in

scF Din + (26)

As this dipole refers to the asymptotic values of the po-
tential [Eq. (1)], it is clearly the macroscopic dielectric
constant of the heterojunction region (to be specified

a=1 —ug 0

This is the well-known random-phase approximation
(RPA) result. Often one also introduces the self-
consistently induced potential and the screened suscepti-
bility by

more clearly below} which is relevant. Furthermore, we
take the atomic positions to be frozen within the Born-
Oppenheimer approximation so that no ionic displace-
ments contribute to the screening. Also, the perturbation
is static. Thus the relevant frequency range is just above
the reststrahlen frequency, i.e., low with respect to elec-
tronic energies, but high with respect to ionic motion fre-
quencies.

Now, we will argue that Eq. (26) is valid, at least ap-
proximately, beyond the SCD model. At the same time,
we wil1 attempt to specify the macroscopic dielectric con-
stant of the heterojunction more precisely. Specifically,
we want to show that the dipole part of a perturbation
will be screened by the macroscopic dielectric constant
independently of the detailed shape of the dipole profile
(within certain restrictions, to be discussed below}.

For simplicity, we first consider a perturbation to a
perfect crystal rather than a heterojunction. The pertur-
bation is assumed to contain a step part D plus arbitrary
modulations in the vicinity of the interface. In other
words, it is completely arbitrary in the interface region
but approaches a constant value on the far left of the in-
terface and another constant value on the far right. This
problem has been discussed by Resta and Kunc. These
authors have shown that the resulting screened dipole is,
in general, not given by D/e but includes local-field
corrections. One can easily understand the origin of
these terms in direct space. A point charge q placed at a
general nonsymmetrical position in the solid will induce
not only a monopole but also a dipole and higher-order
screening charge-density components. For example, it
might draw more charge from the side of the closest atom
or bond. However, the leading term is a monopole, i.e., a
net charge reducing the effective point charge seen at
large distance to q/e. Next, consider a dipole built up of
two point charges at a distance d. At large distance, each
charge is reduced by a factor e and thus the leading term
contains the dipole D je. In addition, however, the di-
pole components in the microscopically induced charge
density in general lead to a net dipole potential, the so-
called local-field contribution. It is also clear, however,
that if the dipole is placed in a mirror plane of the crystal
perpendicular to itself, the total local-field contribution
will vanish by symmetry. Within the ASA model used
here, this is always the case because only point charges
centered on tetrahedral sites are considered. In the
present case we are dealing with a layer of dipoles rather
than a single dipole. This only simplifies the discussion
because the electrostatics becomes effectively one dimen-
sional. The same result holds: if the dipole layer is
placed in a symmetry plane, the dipole potential step will
be screened by the macroscopic dielectric constant. Also,
it is clear that modulations of the dipole step will only
affect higher-order terms and not the dipole itself, provid-
ed they do not break the symmetry required to make the
net microscopic-or local-field contribution vanish.

For the heterojunction, a corresponding exact result
cannot be proven because the symmetry is broken from
the start. The distinction between microscopic or local-
field effects in the screening and macroscopic screening is
only well defined with respect to a crystalline solid. Also,
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D„,=4m 0'(d„/e„+dB/eB ) . (27)

Thus the effective dielectric constant of the heterojunc-
tion is given by

(dA +dB )/6 (dA /EA +dB/EB ) (28)

For equal (or nearly equal) distances d„=dB this reduces
to the harmonic average

e '=-,'(e„'+eB'). (29)

The same result can also be obtained by realizing that
each part of the heterojunction can be represented by an
effective capacitance. We thus have a series connection
of capacitances and as the surface area is the same for all
of them, one immediately obtains Eqs. (28) and (29). The
above considerations for the simplest dipole profile corre-
sponding to two sheets of charge can easily be genera1-
ized to more general dipole profiles. Clearly, the result is
independent of the details of the profile as long as the
change in charge density from the reference charge densi-
ty producing the dipole is essentially antisymrnetric about
the interface. From the initial dipole profile shown in
Fig. 1 and from similar results for the other heterojunc-
tions we have calculated, we found that this is indeed the
case. As a result, we expect the effective macroscopic
dielectric constant of the heterojunction to be given ap-
proximately by the harmonic average of the dielectric
constants of the semiconductors involved.

it is obvious that the "macroscopic" dielectric constant of
the interface region depends to some extent on how the
region is chosen, in other words how much it extends in
each material. Furthermore, the local electronic struc-
ture near a heterojunction, and consequently the dielec-
tric properties, are in principle modified. However, it
turns out that the changes (e.g. , in the local densities of
states) are generally small. Thus, one expects the screen-
ing properties to be some kind of average of those for the
two semiconductors. Also, all the perturbations we con-
sider have about an equal extent in each semiconductor.
The same is true for the screening lengths. Consequently,
one may expect that Eq. (26) still holds approximately in-
dependently of the details of the dipole profile, as long as
the above-mentioned conditions are fulfilled. The dielec-
tric constant should be an average dielectric constant of
the two materials representative of the interface region,
chosen large enough to encompass all the screening
charge and having about equal extent in each of the semi-
conductors. In practice, our calculations show that this
region extends only over a few atomic layers. This is al-
ready large enough to produce "macroscopic" screening.

If we consider the semiconductors to be classical
dielectrics with macroscopic dielectric constants e~ and

ez, the screening of a dipole field can easily be carried out
by means of the image-potential method. Assuming the
dipole is produced by two oppositely charged sheets (with
surface charge density cr ) a distance d apart and placed at
a distance d„from the interface into semiconductor 3
and dz into semiconductor B, one finds that the dipole
D,„,=4mo d is reduced to

F. Dielectric constants and total energy

In practice, a self-consistent DFT calculation, with or
without restrictions on the degrees of freedom, implies a
calculation of the dielectric response. It is thus impor-
tant to check how well the restricted degree of freedom
method describes the dielectric response. In the strictest
sense, we cannot really check this for the heterojunctions
because it is, in principle, not uniquely defined as dis-
cussed above. However, we have recently used essentially
the same approach to calculate the macroscopic dielec-
tric response function of pure semiconductors and ob-
tained very good agreement with other calculations.
However, we also found that the LDA itself leads to an
overestimate of the macroscopic dielectric constant by
-10—30% depending on the semiconductor. In a recent
paper, Hybertsen and Louie have reached similar con-
clusions about the LDA errors on the macroscopic
dielectric constant, although they took a completely
different approach.

To obtain some understanding for the validity of the
single-parameter approximation for the calculation of the
dielectric constant, it is instructive to return to the total-
energy expression. In the notation developed in Sec.
II D, it is easily shown that

=y (Vo„,—V;„),
in

and from Eqs. (24) and (18)
2

tot p p p
,

= —X(1—~X)=—Xe.
5V;„5V,'„

(30)

(31)

This means that the curvature of the total energy in the
abstract parameter space of the various degrees of free-
dom is proportional to the corresponding dielectric
response function. A schematic and hypothetical con-
tour plot of the total energy in a two-parameter space is
given in Fig. 4. One may think of the parameter V, as
the dipole and Vz the local potential distribution near the
interface to be added to a single-step dipole profile in or-
der to obtain the actual dipole profile. The long-range or
macroscopic dielectric function is much larger than the
short-range response function, ' and thus the total energy
varies most rapidly for the long-range degree of freedom.
This makes the contour elongated along the V2 axis.
Also, the off-diagonal elements of the dielectric matrix in
this parameter space are small. Physically, this means
that long-range screening is essentially independent of
short-range screening, which is a plausible assumption.
As a result, the contour shape in Fig. 4 lies essentially
perpendicular to the coordinate axes. In this situation,
even if one is not at the minimum for V2, the minimum
as a function of V, should give a value of V, close to that
of the true rninimurn.

The numerical results, to be presented in Sec. IV, give
support to the tentative and qualitative picture of the
total-energy function sketched above. Indeed, the
single-parameter (SCD) calculations will be shown to be
in good agreement with the multiparameter (SCDP) cal-
culations and with fully self-consistent ASA calcula-
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v=v )+v2

FIG. 4. Schematic qualitative contour plot of the total ener-

gy as a function of the long-range ( V& ) and short-range ( V& ) po-
tential degrees of freedom. Schematics of V& and V2 are shown
in the inset. The minimum is indicated by the cross. The
elongated shape indicates the smaller curvature (i.e., dielectric
constant) of the total energy as a function of the short-range
components compared to the long-range components. The
orientation of the principal axis being nearly parallel to the axes
indicates the near independence of the long-range and short-
range components.

tions' which involve even a much larger number of de-
grees of freedom. The macroscopic dielectric constants
themselves obtained by means of the SCD calculation will
be shown to be in fair agreement with the harmonic aver-
age of the experimental dielectric constants of the two
semiconductors, at least, to within the uncertainties of
the LDA.

III. COMPUTATIONAL METHOD

The basic elements of the computational procedure
have already been described in the preceding section.
They are local-density-functional theory, a restricted
variational approach for the self-consistency, and the
LMTO-ASA method for solving Schrodinger's equation.
Here, we provide some further details on the computa-
tional procedure.

In order to solve Schrodinger's equation for the hetero-
junction, we make use of a supercell model. This intro-
duces an artificial periodicity into the system and the su-
percells must be chosen sufficiently large to assure con-
vergence to the true asymptotic values. Alternatively,
one might use a recently proposed tight-binding LMTO
Green's-function technique. The latter deals with truly
semi-infinite systems and is very useful for detailed inves-
tigations of the nature of electronic states near an inter-
face, especially if they are very extended. For the present
purpose, only average features of the electronic structure
are relevant and the supercell approach was preferred for
its simplicity.

The supercells used for the (110) interface consist of
seven layers of each material, where each layer contains
both a cation and an anion and two types of empty

spheres at the tetrahedral interstitial sites. This supercell
is referred to as 7+7 and contains 56 spheres, e.g.,
(GaAsEE')7(A1AsEE')7, where E,E' indicate the empty
spheres. This size was found to be adequate, as indicated
by the fact that at self-consistency, the charge distribu-
tion took on the appropriate bulk values in the central
layers of each half of the supercell. In some cases, addi-
tional calculations for a (9+9)-cell (72 spheres) were car-
ried out and in each case the results were in excellent
agreement with those for the smaller supercells.

In this work, we have only considered nearly lattice-
matched semiconductor heterojunctions. A common lat-
tice constant was chosen for each group of nearly lattice-
matched semiconductors, in effect making them perfectly
matching. Strain effects, due to nonperfect matching, are
neglected, but could easily be incorporated, if necessary.

The supercells are used to determine the dipole and,
because this is an average quantity, the calculations were
performed strictly within ASA, i.e., without the com-
bined correction term. The tight-binding representa-
tion is used to calculate the structure constants because
this is a faster procedure for the large supercells than the
Ewald procedure required for the unscreened structure
constants. The calculations are performed by subsequent
transformation to the nearly orthogonal representation
and including third-order corrections to the eigenvalues
by means of perturbation theory. The bulk potential and
potential parameters which give the starting point for the
supercell calculations were determined using the standard
primitive unit cell of the sphalerite structure and a self-
consistent calculation also without the combined correc-
tion. Single-panel calculations were used in all cases.
The shallow core d states of Ge, Ga, Sn, and In were
treated as frozen core states, while for Cu, Zn, Hg, and
Cd, the d states were included as band states in the
valence-band panel. A single special k point ' in the ir-
reducible part of the Brillouin zone (BZ) was found to be
adequate in view of the large supercells (small BZ) in-
volved and considering the approximate and average na-
ture of the quantities we are calculating. This was
confirmed in some specific cases by increasing the num-
ber of k points to four in the surface BZ.

As the position of the valence-band maximum with
respect to the ASA reference turns out to be particularly
sensitive to various details in the calculation, the com-
bined correction term was included for this purpose.
Also, it was found for CuBr that using the potential of a
two-panel self-consistent calculation, with the very deep
Br 4s band in a separate panel, shifts the top of the
valence band down by 0.05 eV. One may expect some
compensation in the dipole if the latter were also calcu-
lated with two panels; however, this point was not fully
investigated. Finally, in order to determine the position
of the valence-band edge with respect to the ASA refer-
ence, we have placed the linearization energy c,„lnear the
top of the valence band for all angular momenta in order
to minimize errors due to the linearization. The effects of
the above refinements were not included in the results re-
ported in the earlier version of our work. '

The calculations are scalar relativistic, i.e., they con-
tain all relativistic effects except spin-orbit coupling. The
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latter splits the top of the valence band and a correction
for this splitting can easily be added a posteriori .Experi-
mental spin-orbit splittings were used where available
and calculated separately for the other cases
(CuBr, SiC,AIN, AIP).

For later comparisons of the results it is important to
point out here that our calculations differ from
Christensen's LMTO calculations for semiconductor
heterojunctions' in several respects. Christensen used
two-panel calculations and included the combined correc-
tion term in all cases including the supercell calculations.
Also, for the purpose of calculating the position of the
valence bands with respect to the ASA potentials,
Christensen used a slightly different procedure for treat-
ing the d bands than ours. For II-VI compounds and for
Ga and In compounds, he performed two calculations:
one with F,d at the center of gavity of the lower d band
and one with c,,d up in the conduction band. He then
took the average of both results. This procedure is not
too sensitive to the exact position of the upper c d as long
as no d band occurs at the energy of interest. It is thus
expected to give good agreement with our procedure.
Nevertheless, the simpler procedure adopted by us seems
preferable and more natural within the context of linear
methods.

As a result of these differences in the procedural de-
tails, the ASA reference level band offsets presented here
show significant differences (of the order of 0.2 eV) with
the ones previously published in Refs. 15 and 8. As a fur-
ther possible reason for this discrepancy, we mention the
fact that an accurate determination of the position of the
bands with respect to the ASA reference requires ex-
tremely well-converged calculations. The small differen-
ces in initial lineup, however, are compensated by corre-
sponding changes in the dipole of the heterojunction.
The band offsets only involve small relative energy
differences and these are much less sensitive than the
large energies of the valence band with respect to the
ASA reference. As a result, we wi11 see in Sec. IV that
the final band offsets are in very good agreement with
Christensen s calculations. The additional approxima-
tions for the supercells in our work (no combined correc-
tion and single panel) largely cancel in the differences giv-
ing the band offsets.

As discussed extensively in Sec. II, the self-consistency
treatment is dramatically simplified in the present work.
This, in fact, is the central theme of this paper. In addi-
tion to the added insights gained from the simplifications,
they also lead to a vast reduction in the required comput-
ing time. In the SCD model, only a few band-structure
calculations for the supercell are needed using the graphi-
cal procedure to determine self-consistency. Even for the
multiparameter SCDP model, the computing time sav-
ings with respect to standard ASA calculations are sub-
stantial. This is mainly due to the small number of de-
grees of freedom. Very efficient schemes, such as
Broyden's Jacobian update technique, can be used to
iterate the limited set of parameters to self-consistency in
a few iterations. Typically, only 5—8 iterations are neces-
sary to achieve convergence to within 1 mRy. Also, be-
cause of the approximate nature of the calculation (frozen

potential and layer averaging) a smaller number of k
points is required. The net result is a reduction in com-
puting time by a factor of 10 or larger.

IV. RESULTS

A. Illustration of the theory by numerical results

20

15

10
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FIG. 5. Correlation between theoretical (1 —D', with D' be-
ing the slope of the output dipole vs the input dipole curve) and
experimental macroscopic dielectric constant (harmonic aver-
age of the dielectric constants of the two semiconductors). The
experimental values are taken from Ref. 3.

In this section, we illustrate some aspects of the theory
presented in Sec. II by means of numerical results. First
we discuss the SCD model. The result of a typical SCD
calculation has already been shown in Fig. 2. This figure
shows that the output-input curve for the dipole is linear
over a very wide range. Entirely similar behavior was
found in all cases considered in this paper. This justifies
our use of the linear-response theory described in Sec.
II D. In order to test that the SCD method also provides
the dielectric constant itself, we compare the calculated
macroscopic dielectric constant [i.e., 1 D' wit—h D' being
the slope of the line D,„,(D;„)]with the appropriate ex-
perimental dielectric constant of the heterojunctions.
For the latter, we choose the harmonic average of the in-
dividual semiconductor's dielectric constants, for reasons
explained in Sec. IIE. The result is shown in Fig. 5.
Clearly, a very good correlation is obtained. However,
the calculations generally overestimate the dielectric con-
stant. As has been shown elsewhere, this can be ascribed
essentially to the LDA approximation for exchange and
correlation which is known to lead to an underestimate
of the band gap. Although it is by no means obvious that
this should also lead to an overestimate of the dielectric
constant, because the matrix elements might play an im-
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portant compensating role, we found that adjusting the
potential parameters so as to correct the band gap im-
proved the dielectric constants considerably. This indi-
cates that the primary reason for the discrepancy is
indeed the LDA. Note that because the self-consistent
dipoles are of the order of a few tenths of an eV, an
overestimate of the dielectric constant by —10% causes
errors in the dipole or band offset only of the order of a
few hundredths of an eV.

Next, we consider results of the SCDP model. Figure
6 shows the self-consistently calculated dipole profile for
the same example as used previously. This figure should
be compared to the non-self-consistent output of the first
iteration, which was shown in Fig. 1. The most striking
differences are the changes in magnitudes. This is due to
the dielectric screening of the initially induced dipole.
The self-consistent dipole, obtained from the SCDP cal-
culation, is 0.43 eV, in perfect agreement with the result
of the SCD calculation. Again, this is not a fortuitously
favorable example but the universal behavior. As already
pointed out above, the LDA itself introduces errors of
the order of lo%%uo in the dielectric constant and thus of
the order of 0.01-0.05 eV in the dipole. The deviation be-
tween the SCDP and SCD results for the dipole is at most
0.02 eV. This gives very strong support to our statement
that the macroscopic screening within the LDA is de-
scribed adequately by the single-parameter variational
approach.

The results of the SCD and SCDP calculations are
compared in more detail in Fig. 7. The latter compares
the self-consistent dipole profile (i.e., the result from the
SCDP calculation) with the output dipole profile of a sin-
gle iteration, in which a single-step dipole profile with the
same dipole is used as input. Although the dipole profiles
differ, they give exactly the same asymptotic values. This
shows explicitly that the output dipole is independent of

the profile of the input dipole.
Although the band offset only depends on the dipole

and not on the dipole profile, it is instructive to consider
the dipole profile in some detail. Figure 7 shows that the
dipole profile is smoother in the SCDP calculation than
in the SCD calculation. This is expected because in the
SCDP calculation more degrees of freedom are available
to smooth out the dipole profile. Comparing the self-
consistent dipole profile with the initially induced dipole
profile of Fig. 1, one may notice not only a change in the
numerical values but also a qualitative change in the
shape. The initial charge density decreases monotonical-
ly away from the interface on both sides whereas the
self-consistent profiles are oscillatory in character.

The monotonic character of the initial dipole profile
can be understood from the fact that the charge transfer
results from states near the top of the valence band. Be-
cause of the band discontinuity, states within the band
continuum in one semiconductor lie within the gap of the
other. The latter behaves as a barrier. When the two
halves of the bicrystal are allowed to interact, some states
in the gap become possible eigenstates of the heterojunc-
tion system. In other words, barrier penetration or
charge transfer becomes possible. From this simple
barrier-tunneling picture one clearly expects a monotonic
and, in particular, an exponentially decaying charge
transfer.

The self-consistent charge density is slightly oscillatory
in character, overshooting on the first layer and compen-
sating on the next layer. The third layer away from the
interface is already neutral for all practical purposes,
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electrostatic potential at the center of each layer (bold line) for
ZnSe/A1As (110). The latter is used as the constant shift of the
otherwise frozen input potential, and is determined self-
consistently.

FIG. 7. Output-dipole profile obtained from a single-step in-

put profile with the self-consistent value of the dipole (solid
line), i.e., result of the SCD calculation, compared to the self-
consistent dipole profile (dashed line), i.e., result of the SCDP
calculation. In the first calculation only the dipole itself is made
self-consistent, in the second the potential on each layer is made
self-consistent.
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showing that the induced charge density giving rise to the
dipole is very localized near the interface and demon-
strating the rapid cell-size convergence of the calculation.
Larger oscillations are obtained in the SCD output than
in the SCDP calculation. Similar oscillations have been
obtained in tight-binding calculations by Harrison and
Klepeis, but seem to be absent or at least suppressed in
the charge-density profiles obtained in pseudopotential
calculations. ' ' The latter are even more localized near
the interface than in the present calculations. All of this
is consistent with the notion that the more degrees of
freedom that are taken into account for the charge densi-

ty, the smoother and the more localized near the inter-
face it becomes. The important message of this paper,
however, is that this aspect of the calculation is irrelevant
for the band offset, because all these differing calculations
have the same dipole moment and thus asymptotic values
of the potential. This also suggests the possibility that
the oscillations (of small amplitude) in the dipole profile
model obtained here may be an artifact of the limited
number of degrees of freedom employed. It is also clear
that whereas the dipole is screened by the macroscopic
dielectric constant, a linear-response calculation of the
full dipole profile would require a space-dependent dielec-
tric function.

B. Results for band ofT'sets

The results for the dipole correction and band offsets
for a large number of (110) interfaces are summarized in
Table I. The first column of this table gives the zeroth-
order ASA reference-level lineup for the scalar-
relativistic maximum of the valence bands calculated as
discussed in Sec. III. The second column gives the spin-
orbit correction and the third column gives the dipole
correction calculated by means of the SCD approach.
The values obtained by means of the SCDP approach are
only included in parentheses for those cases in which a
different result is obtained. The sum of these three con-
tributions yields the valence-band offset within the SCD
approach given in the fourth column. The values are
compared with results of fully self-consistent LMTO cal-
culations in column 5 and with other calculations and
experiment in columns 6 and 7, respectively. The inter-
face orientation for the experiment is indicated where
different from (110). As already discussed in the Intro-
duction, it makes sense to compare to the experimental
data even if the latter do not correspond to the same in-
terface orientation as the calculation, because the
interface-orientation dependence is usually small.

From this table, it is evident that the dipole correction
to the ASA lineup is generally a small but non-negligible
correction (up to 0.7 eV). The overall uncertainty esti-
mate of our calculation is of the order of 0.05—0.1 eV.
This is mostly due to the LDA error in both the ASA
values for the valence-band maximum and the LDA error
in the dielectric constant and thus the dipole. Because
the induced dipole is sensitive to the states at the top of
the valence band, a compensating effect in the induced er-
rors is expected. As pointed out earlier, the agreement

between SCD and SCDP is very good, the largest
discrepancy being 0.02 eV.

The agreement of the SCD and SCDP band offsets with
the fully self-consistent LMTO calculations is also quite
good, i.e., generally better than 0.1 eV. In a few cases the
discrepancy is slightly larger (CuBr/A1As, CuBr/ZnSe,
ZnTe/GaSb). The largest discrepancy is 0.26 eU and
occurs for CdTe/HgTe. As already pointed out in Sec.
III there are several differences in the details of the calcu-
lation, and the extremely good agreement for the other
cases is perhaps more remarkable than the few minor ex-
ceptions. It is also noteworthy that the final band offsets
are in much better agreement than the initial ASA line-
ups, given in Ref. 8 and in the first column of our Table I.
This indicates again that there is an important compensa-
tion between the magnitude of the dipole and the initial
valence-band offset.

For CdTe/HgTe Christensen' reports insufficient con-
vergence with cell size as a result of extended interface
states. We checked our (7+7)-cell calculation with one
for a (9+9)-cell and found agreement to within 0.001 eV
for the dipoles. In fact, we obtain interface localized
states similar to those found by Christensen. However,
we have not pursued the study of their localization in as
much detail as he did since our genera1 theory implies
that a single state, such as an interface localized state,
would not have a significant effect on the dipole. The ex-
perimental situation is as follows. The value based on
photoemission (0.35 eV) (Ref. 36) is close to our value,
whereas the value based on modeling of the optical prop-
erties of quantum wells (0.04-0.12 eV) (Ref. 37) is much
lower.

A recent calculation of Hui et al. gives additional
support for a high valence-band offset in CdTe/HgTe.
They show that the magneto-optical experiment of Ber-
roir et a/. which previously was interpreted in terms of
a small valence-band offset (0.04 eV) can also, and, in

fact, to better accuracy, be interpreted with a high
valence-band offset of 0.35 eV.

Next, we compare our results to the pseudopotential
calculations. Good agreement is found in some cases, but
there are also significant discrepancies. These can be ex-
plained in terms of the different treatment of the shallow
core d states. ' The largest discrepancies occur for
cases involving II-VI compounds (typically -0.6 eV), but
those for Ga and In compounds are also not negligible
(-0.1 —0.3 eV). Although pseudopotential calculations
do not neglect the shallow core d states entirely, their
effect is only included indirectly through the construction
of the nonlocal pseudopotential. In the case of II-VI
compounds, the highest core d states lie —8 eV below the
valence-band maximum, i.e., within the valence band. It
is therefore important to indude these orbitals explicitly
into the Hamiltonian. The hybridization with these d
states tends to push up the valence-band maximum and
thus explains the signs of the deviations between the
LMTO and pseudopotential calculations. Since the Ga
or In d states lie —16 eV below the valence-band max-
imurn, we found that these states can be treated ade-
quately as frozen-core states. One might question why
our LMTO calculations with a frozen core would give
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TABLE I. Valence-band offsets and their contributions for (110) semiconductor heterojunctions: (i) Reference lineup (ASA); (ii)
spin-orbit correction (S.O.); (iii) dipole calculated from a (7+7) superlattice by means of the SCD procedure {SCDP results in
parentheses where different) (D); (iv) self-consistent-dipole result obtained as a sum of the first three columns (SCD); (v) fully self-
consistent LMTO result from Ref. 18 for a (7+7) superlattice (LMTO); (vi) pseudopotential results for a (3+3) superlattice from Ref.
15 (PP); (vii) experimental results for {110)interfaces, except as indicated (Expt. ). All energies in eV. The heterojunctions are
grouped according to lattice constant. The common lattice constant used for each group is, respectively, 5.45, 5.65, 6.13, 6.48, 5.80,
and 4.36 A.

System

GaP/Si
AlP/Si
AlP/GaP

ASA'

0.44
0.79
0.35

S.O.

—0.01
0.00
0.01

D

—0.12
0.14(0.15)

0.20

SCD

0.31
0.93
0.56

LMTO

0.27
0.91
0.59

PP

0.61
1.03
0.36

Expt.

0.80

GaAs/Ge
AlAs/Ge
A1As/GaAs
ZnSe/Ge
ZnSe/GaAs
ZnSe/AlAs
CuBr/Ge'
CuBr/GaAs
CuBr/AlAs
CuBr/ZnSe

0.50
0.84
0.31
1.95
1.46
1.15
1.80
1.27
0.96

—0.19

—0.02
0.01
0.02

—0.05
—0.04
—0.06

0.04
0.06
0.04
0.10

—0.03
0.23(0.24)

0.20
—0.37(—0.38)

—0.30
—0.43

—0.68(—0.70)
—0.59(—0.60)
—0.64(—0.66)

—0.35

0.45
1.08
0.53
1.53
1.12
0.66
1.16
0.74
0.36

—0.44

0.46
1.03
0.53
1.58
1.07
0.60
1.10
0.82
0.50

—0.32

0.63
1.05
0.37'
2.17
1.59

0.56'
0.95

0.42, '8 055" 8

1.29-1.52'
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FIG. 8. Correlation between experimental and theoretical results for valence-band offsets (in eV). The spread on some of the ex-
perimental values is due either to different author's results as indicated in Table I or different conditions or samples from the same
author's work. For details, the reader is referred to the original papers.
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TABLE I. (Continued).

System ASA' S.O. D SCD LMTO pp Expt.

InAs/GaSb
In As/A1Sb
A1Sb/GaSb
Zn Te/InAs
Zn Te/GaSb
Zn Te/A1Sb

0.54
0.36
0.18
0.62
1.17
0.98

0.13
0.10
0.03

—0.20
—0.07
—0.10

—0.23
—0.39
0.19
0.13

—0.14(—0.15)
—0.28

0.44
0.07
0.40
0.55
0.96
0.60

0.46

0.45

0.83

0.38

0.38

051'8 057 I'

0 45"'

0 34'

CdTe/Sn
Hg Te/Sn
InSb/Sn
CdTe/Hg Te
CdTe/InSb
Hg Te/InSb

1.66
1.28
0.48
0.38
1.18
0.79

—0.02
—0.02

0.01
0.00

—0.03
—0.03

—0.36(—0.37)
—0.60( —0.62)
—0.10(—0.11)

0.10
—0.23( —0.24)
—0.40(—0.41)

1.28
0.66
0.39
0.48
0.92
0.36

0.22
0.93
0.45

0.28

0.95-1.1~

0.28, 0.40'
0.35,"0.04-4.12"'

0.79"

InP/Ino. sGao. sAs

A1N/SiC*

0.04

1.86

0.06

0.00

0, 12

—0.39(—0.40)

0.22

1.47

0.25," ~ 0.35"'I

' Including the combined correction.
Reference 22.

' Reference 23.
Reference 24.

'Similar pseudopotential calculations also for (110) 3+3 by other authors gave the results: 0.45 eV (Ref. 16) and 0.51 eV (Ref. 17).
LAPW calculations for (001) 3+3 from Ref. 20 gave 0.5+0.05 eV and for 1+ 1 from Ref. 19 gave 0.42 eV.
'Reference 25.
~ Experimental result for (001) interface.
"Reference 26.
' Reference 27.
' A two-panel calculation is used for the CuBr reference lineup but not for the dipole calculation.
"Reference 28.
' Reference 29.

Reference 30.
"Reference 31.' Reference 32.

Reference 33.
Reference 34.

' Reference 35.
' Reference 36.
' Experimental result for (111)interface.
"Reference 37.' Reference 38.
"Virtual crystal average of InP/GaAs and InP/InAs both at lattice constant of InP (a =5.80 A).
"References 39 and 79.
"Reference 40.
'Both in the sphalerite structure (note that AlN normally occurs in the closely related but hexagonal wurtzite structure and SiC ex-
hibits various polytypes).

anything different from the pseudopotential calculation
as they also incorporate the interaction with the lower-
lying d's only through their effect on the effective poten-
tial. In contrast to the pseudopotential calculations,
however, the higher d partial waves incorporated in the
description of the valence-band maximum are exactly or-
thogonal to the core states. Although the pseudopoten-
tials are designed to achieve this orthogonality, the de-
gree to which that is accomplished depends on the choice
of the pseudopotential cutoff radius and the convergence
of the plane-wave basis set. Exact orthogonalization is
not guaranteed. Incomplete orthogonality to the lower d

states would lower the top of the valence band and thus
explain the difference between our frozen-core LMTO
calculations and the pseudopotentia1 calculations.

Our treatment of the Ga and In d states differs from
Christensen's' which involved a two-panel calculation,
and thus allowed for relaxation of the core d states. The
present calculations seem to indicate that relaxing the
core states is not essential for Ga or In. In fact, a simple
perturbation theoretical argument shows that shifting
these core states can only produce a very small effect on
the valence-band maximum. Although in the actual cal-
culation the effect of the core d states, both in our work
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and in the two-panel calculation, is taken into account
via the effective potential, we here discuss the efFect in
terms of a direct hybridization model to the core states.
If the hybridization matrix element between the core
state and the top of the valence band with energies c.d and

e„,respectively, is called H,d, the shift of the valence-
band top is in second-order perturbation theory given by

U

A shift of the core level (due to relaxation) by 5ed will

lead to a change in the shift of the valence-band max-
imum given by

5(b,e, ) 5ed
(33)

EGU Eq Kd

Estimating 5e,d=0.5-1.0 eV for Ga 3d or In 4d, the
change in the hybridization shift of the top of the valence
band due to relaxing the core states is seen to be at most
-0.06 hc„where Ac,

„

itself is -0.2 eV. This shows that
the core relaxation is not very important for the present
problem. Nevertheless, it has been found previously to
affect total-energy properties such as the equilibrium lat-
tice constant or the bulk modulus significantly. Note
that the simple hybridization model used here is con-
sistent with the fact that the discrepancy between LMTO
and pseudopotential results is about twice as large for the
II-VI compounds as for the III-V compounds because the
d level lies twice as deep for the III-V compounds.

For the case of A1As/GaAs a comparison can be made
with several pseudopotential calculations' '7 and also
with linear-augmented-plane-wave' ' (LAPW) calcula-
tions. The latter included both the effect of the shallow
core d states and the nonspherical contributions to the
potential. With the exception of Van de Walle and
Martin's calculation, ' which gives 0.37 eV, all the
methods essentially agree on a band offset of 0.5+0.05
eV. Part of the uncertainty in this value is simply due to
the different methods for extracting the band offset from
the supercell potential involving different characteristics
of the potential to relate the supercell calculation to the
bulk calculations of the band structure. In the case of the
LAPW calculations the core levels were used, while in
the case of the pseudopotential calculations a suitable
average of the pseudopotential, or of the electrostatic po-
tential, is used. As noted above, we use the average
point-charge potential defined within the ASA. Christen-
sen uses the ASA potential wells of the bulklike layers of
the supercell in a separate "frozen" calculation of the
bulk band structure. Any reference level can, in princi-
ple, be used, but not all necessarily converge equally rap-
idly with increasing cell size. In the present calculation,
the adequacy of this convergence was explicitly dernon-
strated.

Finally, we compare our results to the experimental
values. An overview is provided in Fig. 8. The overall
agreement is quite good, i.e., to within 0.15 eV. Two ex-
ceptions should be noted: GaP/Si and ZnTe/GaSb. In
both cases, the various calculations are in better mutual
agreement than any one of them with the experimental
value. For GaP jSi, the pseudopotential calculation is in

better agreement with experiment than are the LMTO or
SCDP calculations. However, this must be considered
questionable as the pseudopotential result suffers from
the d-band problem discussed above. This suggests that
experimental artifacts or complications in the samples,
such as nonideal interfaces, atomic intermixing, etc. , may
be responsible for these discrepancies with the calcula-
tions. Further measurements for these interfaces are
desirable.

V. CONCLUDING REMARKS

The main thesis proposed in this paper is that band
offsets can be obtained from a single-parameter variation-
al calculation of the total energy within the framework of
density-functional theory in the local-density approxima-
tion. We emphasize that no meaningful absolute refer-
ence level exists for the lineup of the potentials of
different solids. Nevertheless, starting from any chosen
lineup the correct self-consistent lineup is obtained within
linear response by dielectrically screening the initially in-

duced interface dipole. The screening involves the mac-
roscopic dielectric constant of the heterojunction inter-
face region. The initially induced dipole is obtained by
performing a single iteration cycle: i.e., calculating the
band structure for the heterojunction and subsequently
the dipole from the resulting charge density once, start-
ing from the bulk potentials with the given lineup. It was
shown that a fully self-consistent calculation is essentially
equivalent to dividing this dipole by the macroscopic
dielectric constant of the heterojunction interface region.
The latter was shown to be approximately given by the
harmonic average of the dielectric constants of the two
semiconductors. In addition, it was shown that the
single-parameter calculation readily provides this macro-
scopic dielectric constant via the slope of the input-
output curve of the dipoles to within the accuracy of the
LDA, i.e., -10%. This is related to the nature of the
dielectric response which is much larger for long-range
than for short-range components of the perturbation and

to the smallness of the off-diagonal (between long-range
and short-range) components of the dielectric matrix in

real space. The extensive set of calculations provides
convincing numerical proof of the above statements for
practical purposes. Detailed comparisons of the results
at different levels of approximation were used to illustrate
the various aspects of this work. The practical usefulness
of the theory for the band-offset problem is demonstrated

by the satisfactory agreement with available experimental
data and other more involved calculations in the litera-
ture.

The present theory provides valuable new insights into
the origin of band offsets. For example, it explains how
the band offset can at the same time be an interface-
dependent quantity in a fundamental and principle sense
and still be fairly independent to interface orientation.
The reason is simply that any interface-related change in
the initially induced dipole (which in many cases is al-
ready small because of similar bonding configurations)
will be screened by the large macroscopic dielectric con-
stant of the semiconductors. The insensitivity of the
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band offsets to interface structure or orientation should,
therefore, not be taken as a justification for postulating
the existence of a meaningful absolute reference level.
The interface orientation dependence will be discussed in
a future paper but preliminary results indicate it to be
small for all iso valent systems and, in particular,
common-anion systems. Important interface composi-
tion and structure dependence, however, have been
shown to exist for nonisovalent systems. ' ' '

Although the present numerical calculations focused
on semiconductor heterojunctions, one might attempt to
apply the same theory to metal-semiconductor and
metal-metal contacts. The validity of linear response
seems to be more questionable in these cases and practi-
cal difficulties arise in estimating the large dielectric
screening in a system with a metallic nature. If one at-
tempts to use the SCD model, it may be necessary to use
an iterative procedure whereby one gradually would ap-
proach the linear-response region through successive ap-
proximations. Also, a word of caution is required here
concerning the use of the LDA. Whereas for semicon-
ductor heterojunctions, the errors due to the LDA tend
to cancel out because they are comparable on both sides,
the different natures of metals and semiconductors may
lead to a reinforcement of the LDA errors ' for interfaces
between these materials. For metal-metal contacts the
application of the present theory is rather trivial. Be-
cause both dielectric constants are infinite no long-range
dipole can exist in the system. This simply means that lo-
cal charge neutrality must be assured by aligning the Fer-
mi level. Any attempt to calculate the infinite macro-
scopic dielectric constant in this case will result in strong
nonlinear behavior.

Even for semiconductor heterojunctions, we have indi-
cated that the macroscopic dielectric constants have
LDA errors of —10% or even larger for the more ionic
semiconductors. This leads to uncertainties of the dipole
of the order of 0.01—0.05 eV. However, one should note
that the originally induced dipole is related to the initial
band offset, which depends on the energy band position
with respect to the average electrostatic point-charge po-
tential and is thus also sensitive to LDA errors. As the
initially induced dipole clearly is sensitive to the states at
the top of the valence band, i.e., to the initial lineup, one
expects a compensating effect: the higher the initial band
offset, the higher the compensating dipole. This means
that, in our opinion, one should not include quasiparticle
self-energy corrections to the band edges without at the
same time recalculating the dipole with exchange correla-

tion treated beyond LDA. In fact, in exact density-
functional theory the valence-band maximum quasiparti-
cle should equal the corresponding Kohn-Sham eigenval-
ue. For lack of an exact exchange-correlation potential,
it seems preferable, for the time being, to be at least con-
sistent in the approximations for the valence-band max-
imum and the dipole, which are both ground-state prop-
erties.

The proof of the main thesis of the present paper is
largely based on a careful analysis of the nature of self-
consistent calculations in terms of linear-response theory
and on the idea of restricted variational freedom calcula-
tions within the density-functional theory. These ideas
are applicable in a much wider context and, e.g. , are also
extremely useful for evaluating total-energy properties,
such as energy of formation of alloys, interfaces, and su-
perlattices. These themes are planned to be explored in
future work.

Note added in proof. We have reinvestigated the par-
ticularly sensitive case of the CdTe/HgTe valence-band
offset with improved accuracy, using a larger number of
k points and treating the dipole and the ASA reference-
level band offset completely on equal footing. The result
was 0.36 eV, in excellent agreement with the photoemis-
sion experiment. Details will be published elsewhere.
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