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In the case of disordered nonlinear media, it is shown that in four-wave mixing a phenomena
analogous to phase conjugation may occur. In contrast to the case of transparent media in which
two counterpropagating pump waves (with frequency w,) are required, phase conjugation may
occur in the presence of a single pump wave injected into the disordered nonlinear material. We
find that in the angular distribution of radiation of frequency w; (o, =2w, —,, where o, is the fre-
quency of probe wave) there is a narrow peak in the backscattered direction associated with the
probe wave. The intensity of this peak may be some orders of magnitude larger than the diffuse

background at the frequency w;.

I. INTRODUCTION

Recently, the optics of disordered media has attracted
considerable attention. A problem of particular interest
has been the study of coherent-wave phenomena originat-
ing in multiple scattering. The importance of such effects
was realized in the theory of Anderson localization of
electrons in disordered conductors.! Well-known exam-
ples of such effects in linear optics are backscattering
enhancement of light scattered by a disordered medi-
um,”? as well as reproducible random variations of light
intensity with scattering angle (referred to as a “‘speckle
pattern”*). Lately the importance of coherent phenome-
na in nonlinear optics of disordered media has been dis-
cussed for the case of three-wave mixing.’ There it was
shown that interference originating in multiple scattering
results in the appearance of new peaks in the angular dis-
tribution of light produced by three-wave mixing. How-
ever, these peaks were shown to be created by photons
generated in the surface region, in a layer with depth of
the order of the elastic mean free path /. On the con-
trary, the diffuse background in the angular distribution
is proportional to the whole volume of the sample.
Therefore, in samples with thickness L >>1, the peaks are
relatively small and could be observed only in the time
domain, at a short time delay.5

A completely different situation will be shown here to
take place in four-wave mixing in disordered media. In
addition to weak peculiarities in an angular distribution
of generated light which are due to the mixing process in
the surface region (similar to that for three-wave mix-
ing®), new intense peaks are predicted to occur which
originate in the mixing processes in the bulk. We will
show that this occurs for the process analogous to the
phase-conjugation (PC) process; that is, the generation of
light with frequency o, =2w, ~w;, where w, and w; are
the frequencies of pump and probe waves, respectively.

The problem of PC in disordered media was discussed
recently by Hanamura.® However, in this work PC is
supposed to occur in a model of free-boson excitations
linearly coupled with external light and scattered by stat-
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ic imperfections. Thus it is not clear where the optical
nonlinearity essential to the production of the PC wave
enters the analysis of Hanamura.® In our opinion, what
is explored in Ref. 6 is disorder-induced correlations in
the linear scattering of several waves. Note also that the
pump waves [0, =3(w; +w,)] are supposed to be unscat-
tered in Ref. 6, which does not seem natural in the case
considered when both waves w; and w; undergo strong
scattering.

Below we consider the most natural case, where the
mean free paths of all the waves involved (with close fre-
quencies w; ~®, ~w,) are equal. In the case of the disor-
dered medium explored here, it is not necessary to con-
sider the standard PC geometry with two counterpro-
pagating pump waves. The reason is that the geometry’s
“memory” of the direction of the incident wave vector
decays through the distance of the order of / <<L from
the surface. Therefore, the simplest and most natural
geometry of a PC experiment in disordered media is that
with a single pump wave. In contrast to the case of trans-
parent media, the presence of a single incident pump
wave is sufficient for the PC process because in the bulk
of the sample the scattered pump field contains com-
ponents with all directions of the wave vector. A similar
geometry was used in the experiment’ for the simple lim-
iting case of weak scattering / >>L. Here we develop the
theory for a much more interesting and complicated case
of multiple scattering, / <<L.

For this case, we find that in the angular distribution of
radiation at frequency w, the nonlinear interaction pro-
duces a narrow peak in the backscattering direction asso-
ciated with the probe wave of frequency w,;. The intensi-
ty of this peak may be some orders of magnitude larger
than the diffuse background at the frequency o, in con-
trast to the well-known case of linear backscattering
where only at most a factor of 2 is realized. For the case
of the nondegenerate PC process (w;7w,) one can, in
principle, distinguish the relatively small nonlinear back-
scattering peak (w,) from the presence of the intense
diffuse backgrounds produced by linear scattering of the
pump (w,) and probe (w;) waves.
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FIG. 1. Experimental geometry.

II. FORMULATION OF THE PROBLEM

The experimental geometry is shown in Fig. 1. A
disordered nonlinear medium occupies the half-space
z>0. The probe wave of frequency w; and the intense
pump wave of frequency w, are incident from the outside
with incident angles 6; and 6,, respectively (below, for
simplicity, we suppose 8, =0).

The quantity of interest is the angular dependence of
the differential cross section of nonlinear scattering
do(6,)/dQ (8, denotes scattering angle) averaged over
realizations of disorder:

da(6,) (S(w;)n)
aQ S,

(1)

where S(w, )-n is an energy flux at the frequency w; in the
direction n, and S(w;) is the energy flux of the probe
wave. Below we neglect the vectorial nature of the elec-
tromagnetic field and consider scalar monochromatic
fields with complex amplitudes E ,(r) (a=1i,s,p).

Such a simplification is valid to an accuracy of some
numerical prefactors for the case under consideration,
namely the case of coincident polarizations of probe and
signal waves. The generation of the signal wave is de-
scribed by the following equation:

2

2
[0

V24 —€,(r)
c

ws
E (r)=n— EXDE}r), )
[

7 being the nonlinear susceptibility and the fields E,, E;
being created by external sources I,,1;:

2

24 “a - . .
Vit —€,(r) |E (r)=1,(r) with a=p,i . (3)
c

The source functions vanish within the disordered medi-
um, of course. The disorder is described by a small ran-
dom part Se(r) of the dielectric function €,(r):

€,(r)=¢€,+8e(r) . 4)

Below we suppose 8e(r) to be a Gaussian 6-correlated
random field, with a zero average and a correlation func-
tion given by

4
D (se(r)be(r')) =T 8(r—r') . (5)
ct !
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The parameter / will be shown to be equal to the elastic
mean free path.

III. THE ANGULAR DISTRIBUTION
OF THE SIGNAL-WAVE INTENSITY

The signal field E; is expressed in terms of the retarded
¢ and advanced §* Green functions of Egs. (2) and (3)
and may be written in the following symbolic form:

2
ws
Exzﬂzz—gs[(g,,fp)z(gfli*)] . 6)

Here the Green functions §,(r,r’) depend on a particular
realization of the random field 6e(r). They are represent-
ed by dark solid lines in Fig. 2(a), which illustrates ex-
pression (6); a circle corresponds to the nonlinear vertex,
and the points at the ends of the lines correspond to the
sources I,. According to Eq. (1), one should average the
quantity S ~EXE, over disorder. This quantity is quad-
ratic in the signal field and therefore involves eight Green
functions &,9*. This averaging is carried out in a con-
ventional way>® and may be represented by typical dia-
grams [Figs. 2(b)-2(e)]. Solid lines in the diagrams corre-
spond to averaged Green functions. In the bulk region
they are given by an expression:

exp[(ik,—1/2])|r—r'|
G, (r,r")=(G (r,1"))= xpl | ]

, 7
py 7
where k,=(w,/c)\/ €, (a=i,p,s). Dashed lines in Fig. 2
correspond to the correlation function (5). Each of the
sets consisting of the three dashed lines represents the
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FIG. 2. Diagrams contributing to the intensity of generated
light: (a) unaveraged amplitude of the signal wave, symbols +
and — label @ and 9%, respectively; (b) averaged intensity of
backscattered peak; (c) averaged diffuse background intensity;
(d) interference of pump and probe waves; (e) an example of a
surface contribution to the backscattered peak intensity.
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infinite series of ladder or maximally crossed diagrams
(referred to as diffusion propagators and Cooper
particle-particle diffusion propagators), which describe
the diffuse propagation of light in a disordered medium.
Figures 2(b)-2(e) describe the PC process of interest, to
the lowest order in the parameter A /I (A is a wavelength).
The external lines connected with the sources give the
averaged value of incident electric fields within the sam-
ple:

(Gl ), =(E, (1)) =1, E® ™ """ (8)
where t, is a transmission amplitude for the light wave
incident on the sample from the outside. In calculating
the flux of the signal light radiated from a unit area, it is
convenient to prescribe the factor

tS

Fo=—
ST /A P

. z
ikgr o7 | 9)

to external lines corresponding to the signal waves. In
Eq. (9) 4 is the surface area and k, is a wave vector of
the signal field within the media, k; being related via the
refraction law to the wave vector nw, /c in the direction
of the outgoing signal wave.

The diffusion propagators and Cooper particle-particle
diffusion propagators are given by

127D

C(r,r')= B

D(r,r'), (10)

where the diffusion propagator D(r,r’) obeys the equa-
tion

(i Ao+ DVHD(r,r')=—8(r—r1') (11)

and an effective boundary condition>® at z=0:
Dir,r')—hl>-D(r,1')=0 . (12)
oz

In Egs. (10)-(12), D is the diffusion coefficient for pho-
tons in a disordered medium, 4 is a dimensionless phe-
nomenological constant® dependent on the reflectivity of
the surface, and Aw=w,—w, is the difference between
frequencies corresponding to Green functions § and $*
in a ladder series.

The calculation of Fig. 2(b) is straightforward and re-
sults in the following expression for the differential cross
section:

do _ B

=B (13)
dQ  [1+hQ|ReQ
Here
6,—6
Q =1(g%co0s®0, —iL ;2)\7?, q=2%sin L= } (14)
where
Ly,=I(lo;,—wl7)"1? (15)

is assumed to obey the inequality L,,>>I, 7 being the
time of the mean free path. The factor B in Eq. (13) is
given by
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2
(h +cos6;)?,

_ 81 @
—E[Tp(h + 1) PT, T,(8ny )? 71

(16)

where T,=|t,|% and 8ny, =7|E\”|>n, ! is a nonlinear
correction to the pump-wave refractive index n,,.

It is seen from Egs. (13)-(16) that the dimensionless
cross section do(0,)/dQ exhibits a sharp peak at the
scattering angle 0, =0, (backscattering), the peak width
being
__ A A

27L , ,cos0; 27l
At (0; —w,)7—0, the width decreases, the peak intensity
increases, and the integral peak intensity o, remains
constant. The intensity integrated over the solid angle
has the form

A6 (17

O peak ~ (811 )2‘2;:—1 . (18)
Results (13)-(18) are valid for a semi-infinite sample in
the absence of absorption. At a finite sample thickness L
(L >>1) or at a finite mean free path /;; (/;, >>) limited
by absorption, one should replace L,, in Egs. (15) and
(17) by min{L,,,L,V ll,,}. In particular, at w; —w,—0
and /;, — o the peak intensity is proportional to the sam-
ple thickness L. This allows one to consider this non-
linear backscattering process as a bulk effect.

Figure 2(c) describes a bulk contribution to the diffuse
background intensity at frequency w,. Using Egs. (8) and
(9) one can readily verify that this contribution is isotro-
pic and does not depend on the direction of incidence of
the probe wave. In addition, this contribution is not sen-
sitive to a small difference of frequencies w; —w, because
of the equality Aw=0 for all the ladders of Fig. 2(c).
Therefore, the diffuse background intensity is proportion-
al to an effective thickness of the sample:

Lo=min{L,V1I,,} . (19)

For the ratio of the backscattering peak intensity
I, (w;) at 6,=0; and that of the diffuse background
Iy(w,), we have obtained the following estimate:

Ipeak(ws) ~_2_ﬂl LAw
Io(ws) A LO

(20)

At sufficiently small values of Aw and A/ this ratio may
be large. It should be stressed that this peak could be ob-
served only with a high-angular-resolution technique.
The reason is that the integrated background intensity o
considerably exceeds that for the backscattering peak:

L
00~ peak - @1

The contributions of Figs. 2(b) and 2(c) considered
above do not depend on the relative directions of the
wave vectors k, and k; (see Fig. 1). On the contrary, Fig.
2(d) exhibits such a dependence. However, at
Ik, —k;|>>I"" (i.e., at not overly small values of 6;) all
diagrams of 2(d) type turn out to be small by the amount
of the parameter A /1.
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Up to now we discussed the diagrams with four
diffusion propagators and/or Cooper particle-particle
diffusion propagators. Extra diffusion propagators
(Cooper particle-particle diffusion propagators) result in
the additional small factor A/l. On the other hand, using
a small number of diffusion propagator and Cooper
particle-particle diffusion propagators [see, e.g., Fig. 2(e)]
one deals with diagrams describing the surface contribu-
tion and, hence, those that are small by the amounts of
parameters / /L, or I /L,,. Indeed, in contrast to Figs.
2(b) and 2(d), in Fig. 2(e) the region of nonlinear mixing is
not separated from the surface sources by the infinite se-
quence of scattering events and therefore this region is
confined to the surface layer of width /.

IV. DISCUSSION

According to Egs. (14)-(17) the shape of the PC back-
scattering peak in a disordered medium differs strongly
from that for linear backscattering. If the specular
reflectivity of the surface is not too large and the parame-
ter h in Eqgs. (12) and (13) is of the order of unity, then the
shape of the PC peak at |6, — GSI <<1 is expressed by

do(6,)
dQ

where the peak width A0 given by Eq. (17) turns out to be
considerably smaller than that for linear backscattering.

Another characteristic feature of nonlinear back-
scattering is the relative smallness of the diffuse back-
ground intensity Jy(w,) as compared to the PC peak in-
tensity /.. (o) [see Eq. (20)] at a proper choice of sys-
tem parameters. Thus, in contrast to linear backscatter-
ing (where I ., /1, =2), there is no universal relationship
between peak and background intensities for the non-
linear backscattering considered here.

The qualitative explanation of this fact may be given in
terms of photon trajectories, i.e., sequences of scattering
events. In case of linear backscattering, any pair of pho-
ton trajectories connected with time-reversal transforma-
tion contributes both to the peak and background intensi-
ties. For nonlinear mixing the backscattering peak and
the diffuse background are determined by completely
different trajectories [see Fig. 3(a) for backscattering and
Fig. 3(b) for diffuse background].

Another fact which should be explained is that a set of
special trajectories [Fig. 3(a)] (containing, say, N trajec-
tories) may give a larger contribution than a much richer
set of general trajectories [Fig. 3(b)] (containing N2 tra-
jectories). The reason is that due to the phase conjuga-
tion for a trajectory [Fig. 3(a)], the phase of the outgoing
signal wave does not depend on a particular choice of this
trajectory (for given trajectories of pump photons).
Therefore, the amplitudes of outgoing signal waves corre-
sponding to these N trajectories are added coherently to
give the contribution into the intensity proportional to
N2. On the other hand, for Fig. 3(b) the phase of the out-
going signal wave depends on a particular trajectory.

The contributions to the intensity of the outgoing wave
given by different trajectories [Fig. 3(b)] are incoherent.
Thus, the total contribution of N? trajectories [Fig. 3(b)]

~((0,—6,)2+[(6,—6,)*+(A0)*1*)" 12 | (22)
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FIG. 3. Trajectories of the probe and signal photons contrib-
uting to (a) the backscattered peak and (b) the diffuse back-
ground.

is proportional to N? and the ratio of the contributions
depicted in Figs. 3(a) and 3(b) remains finite in the macro-
scopic limit N — oo.

To explain qualitatively the value of this ratio, one
should consider in detail the process of wave mixing in a
relatively small region of size ~I. This process is illus-
trated by Figs. 4(a) and 4(b), which correspond to the tra-

(b

FIG. 4. Processes of four-wave mixing contributing to (a) the
backscattered peak and (b) the diffuse background.
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jectories in Figs. 3(a) and 3(b), respectively. The wave
vectors involved in the process should obey the phase-
matching condition valid to the accuracy of the wave-
vector uncertainty in the region of a size I >>A:

|k; +k,+k, +k,,| S1/1 . (23)

As the pump waves 1 and 2 in Figs. 4(a) and 4(b) are com-
pletely incoherent in a disordered medium, the contribu-
tion of the process depicted in Figs. 4(a) and 4(b) to the
outgoing-signal-wave intensity is just proportional to the
volume in momentum space constrained by the inequality
(23) at fixed values of the wave vectors of the probe k;
and signal k; waves, and the absolute values of the wave
vectors k,; and k,,. For the backscattering peak genera-
tion [Fig. 4(a)] we have k;+k ~O0; in this case the
volume considered is proportional to the area ~A 2 of a
sphere of the radius Ikpl~k_' [see Fig. 5(a)]. For the
background generation [Fig. 4(b)] when |k;+k |~A"",
the volume is proportional to the circumference ~A ™!
[see Fig. 5(b)]. The correct dimension in both cases is
provided by the factor / to the proper powers. Therefore,
the ratio of the peak and background intensities may be
estimated as I, (w;)/Io(w;)~1/A, which is in agree-
ment with Eq. (20) up to the factor L,,/L. The latter
factor reflects the fact that the constructive interference
of the trajectories [Fig. 3(a)] takes place only if the
difference between the phases acquired by the propaga-
ting probe and signal waves due to the difference between
frequencies w; and w, is not too large. This requirement
restricts the total length of a trajectory [Fig. 3(a)] by the
value £L,,=c/|w;—o,|. Introducing the mean diameter
Ly, ~(L,,N'? of a random-walk trajectory (with a step
1) of length L, ,, one obtains for L, an estimation which
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FIG. 5. Regions in the momentum space corresponding to
processes shown in Figs. 4(a) and 4(b), respectively.
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FIG. 6. The angular width A8 of the backscattered peak vs
Vao=Vo—o,l

coincides with Eq. (15). Thus, the backscattering peak
intensity is contributed by trajectories [Fig. 3(a)] confined
in a layer of the thickness L,,, while the diffuse back-
ground is contributed by the whole sample.

The characteristic feature of the nonlinear process con-
sidered is that the parameters of the backscattering peak
are sensitive to a small difference Aw=w; —®,. In partic-
ular, the angular width of the peak (17) as a function of
VTAwl is plotted in Fig.6. The crossover from linear to
constant behavior is expected at

V]Aw|r~1/L, , (24)

where Ly=min{L,VIll,,}. For a semi-infinite sample,
relation (24) is reduced to Aw~c/I;,. The slope of the
linear behavior in the V'Aw part of Fig. 6 equals
~A/V'cl. Thus, the dependence of the peak width on
the difference between frequencies allows one to find both
! and [;;. It is also worth noting that when approaching
the Anderson localization point, the length L, in Eq. (24)
should be replaced by the localization radius L,,., provid-
ed that L, . <L,. If the experimental value of L, deter-
mined by Eq. (24) turns out to be much smaller than the
value of min{L,V/1l,,} obtained independently, such an
experiment may be considered to be evidence in favor of
the Anderson localization of photons.

V. CONCLUSION

In conclusion, we summarize the main results of the
article.

(1) The disorder induces the phase-conjugation process
in the presence of a probe wave and a single pump wave.

(2) There exists a sharp backscattering peak at the sig-
nal frequency o, in the direction opposite that for the
probe wave.

(3) There is no universal relation between the intensi-
ties of the backscattering peak I, (w,) and the diffuse
background Iy(w,) at the frequency w,. In particular,
the ratio I ., (@) /Io(w;) may be large.

(4) In contrast to linear backscattering, the shape of the
nonlinear backscattering peak is mainly determined by
the scattering process in the bulk of a sample rather than
in the surface layer of thickness /.
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(5) The width of the backscattering peak is sensitive to
a small difference in the frequencies, w; —w,, of incident
waves. Such dependence can be a test for the Anderson
localization of photons.
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