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The time-dependent position self-correlation function of the particles of two-dimensional lattice
gases was estimated by Monte Carlo simulations at various concentrations c. Two exponential de-

cay modes were identified for c &0.5 and three modes for c & 0.5 in the resulting intermediate in-

coherent dynamical scattering function. Published microscopic theories for that quantity are found

to be at variance with the numerical results at larger wave vectors. A phenomenological description
of the results is achieved by two-state models for c &0.5 and three-state models for c )0.5. A de-

tailed physical interpretation of the model parameters, however, is an open question.

I. INTRODUCTION

The diffusion of tagged particles in lattice gases is in-
teresting because of their correlated motion in a dynami-
cal background. The long-range diffusion of tagged parti-
cles is now well understood through a series of theoretical
papers. ' The theoretical work was paralleled by vari-
ous numerical simulations. ' This paper is directed to
the analysis of the intermediate incoherent dynamical
scattering function (intermediate IDSF). It is deSned as
the spatial Fourier transform of the position self-
correlation function of particles and, hence, contains in-
formation on the tagged-particle motion over different
length and time scales. The incoherent dynamical
scattering function (IDSF), which is the Fourier trans-
form of the position self-correlation function with respect
to space and time, is experimentally accessible by in-
coherent inelastic scattering of neutrons. The intermedi-
ate IDSF as well as the IDSF were studied in several pa-
pers. ' ' ' As detailed below, the comprehension of
these quantities is much less satisfactory than that of the
long-range diffusion. The emphasis of this paper is on the
analysis of numerical simulation results by phenomeno-
logical models, but also comparisons with the existing
theories are made.

The main incentives for analyzing the simulation re-
sults on the intermediate IDSF of particles in lattice
gases by phenomenological models were, first, the desire
to better understand the physical mechanisms entering it,
and second, the aim to contribute to the analysis of, espe-
cially, quasielastic neutron scattering experiments on hy-
drogen in metals. These systems are realizations of lat-
tice gases; yet often the systems studied by experiments
are more complicated than those treated by the formal
theories. " One wants to understand the basic features
observed in such experiments; this may be achieved by
appropriate modeling.

One basic mechanism for correlations in the motion of

tagged particles in lattice gases was identified by Bardeen
and Herring. ' Suppose a particle made a transition to an
empty neighboring site of the lattice at t =0. Immediate-
ly after the transition, a vacancy is present at the site
where the particle came from, whereas at the other neigh-
bor sites vacancies are present according to the probabili-
ty of occurrence of vacant sites. The presence of this
"special vacancy" behind the tagged particle induces a
backward correlation in its random walk. Bardeen and
Herring were concerned with self-diffusion in metals,
which is characterized by a small concentration c„«1 of
vacant sites. The subsequent elaboration of this mecha-
nism gave a complete description of the long-range
difFusion of tagged particles in the limit c„«1.'3 The
Bardeen-Herring mechanism was used by van Beijeren
and co-workers ' to also describe tagged-particle
difFusion at arbitrary vacancy concentrations c, . They
stressed the role of the special vacancy in determining the
velocity autocorrelation function of the tagged particle
for general c„. The formal theory based on these ideas is
in excellent agreement with the simulations of the mean-
square displacement (the equivalent theory of Tahir-
Kheli is based on a different approach). It appears that
the diffusion coefficient is indeed determined by the gen-
eralization of the Bardeen-Herring mechanism to arbi-
trary vacancy concentrations.

As will be discussed in this paper, the simple modeling
of the intermediate IDSF of particles based on the back-
ward correlations induced by the vacancies is not satis-
factory. Model and simulations disagree at finite wave
vectors. In a phenomenological picture of tagged-
particle diffusion at arbitrary vacancy concentrations, the
Bardeen-Herring mechanism is probably better charac-
terized as a type of "blocking-induced backward correla-
tion. " Namely, when a tagged particle attempts to make
a transition to an already occupied site, it cannot perform
this transition. It turns out that the random blocking
events of the tagged particle are dominant in determining
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the intermediate IDSF. Expressed differently, at larger
vacancy concentrations this function exhibits the typical
features of a trapping model, not those of a backward-
correlated one.

The investigations are restricted to lattice gases of arbi-
trary concentrations on the two-dimensional square lat-
tice. One reason for this restriction is the better statistics
which can be achieved in the numerical results in two di-
mensions, another one is the low coordination number
(z =4) of the square lattice, which enhances correlation
effects. An undesirable feature of the two-dimensional
lattice is the recurrent nature of the random walk of
tagged particles, resulting in logarithmic corrections to
the mean-square displacement. The particles are as-
sumed to be noninteracting; however, double occupancy
of lattice sites is forbidden.

Section II contains the numerical simulations of the in-
termediate IDSF and its analysis. In Sec. III analytical
theories are compared with the numerical simulations.
Section IV describes the phenomenological modeling of
the simulation results and Sec. V contains the concluding
remarks.

II. NUMERICAL PROCEDURE

possible nearest-neighbor sites is selected at random. If
this site is occupied by a particle the vacancy exchanges
its actual position with the neighboring particle position.
Exchange of two vacancies is excluded because such a
process does not inhuence the dynamics of the particles.
Since the initial and actual positions of all the particles
and vacancies are monitored one can readily obtain quan-
tities such as the time-dependent position self-correlation
function of particles, G, (r, t}. In this procedure the
discrete time t is directly measured in units of Monte
Carlo steps per vacancy (MCS/v). It is seen that the
average number of jumps performed by the vacancies and
hence by the particles during 1 MCS/v equals N (1 c)c-,
where N is the total number of lattice sites. On the other
hand, this is exactly the average number of jumps per-
formed by the particles during 1 MCS/p in the standard
version of the Monte Carlo simulations. Hence, both
time units are completely equivalent. It is clear that the
efficiency ratio between both approaches (i.e., the ratio
between the number of attempted vacancy jumps during
1 MCS/v and the number of attempted particle jumps
during 1 MCS/p) equals (1—c)lc so that for c )0.5 the
new method is preferable while for c (0.5 it is the old
one.

A. Monte Carlo simulations on square lattice

The hopping process of the tagged particles was nu-
merically simulated by a modified standard Monte Carlo
procedure. Since the standard procedure was
comprehensively described in Ref. 10 for the case of
tracer diffusion in a three-dimensional fcc lattice, as well
as in the series of subsequent papers (for a review see Ref.
7}, we only mention some special features and charac-
teristic modifications used in the present approach.

The position self-correlation function G, (r, t) of parti-
cles is defined, e.g., in Ref. 8. To estimate G, (r, t) by
simulations, we collected for given r and t the events
defined by r =hr ( t ), where b,r ( t } is the difference be-
tween the actual position r (t} of the jth particle
(j= I, . . . , N, where N is the total number of particles)
at time t and its initial one, r (0). In our simulations it
was sufficient to assume that the distance ~r~ varies be-
tween 0 and 64 (the lattice constant is taken as unity),
and the time t between 0 and 200 Monte Carlo
steps/particle (MCS/p) at most. We also utilized the
symmetry of the square lattice. The intermediate IDSF
I(k, t) was calculated by a standard numerical cosinus-
Fourier transformation of the function G, (r, t).

In order to systematically investigate the intermediate
IDSF we performed numerical simulations for seven fixed
particle concentrations, i.e., c =0.0998, 0.3005, 0.5008,
0.7010, 0.90, 0.952, and 0.9805. We typically used lat-
tices with N =600X600 sites and for the longer runs
500X500 sites, and imposed periodic-boundary condi-
tions. The main modification was introduced for e & 0.5.
Namely, to achieve good statistics we used the vacancies
instead of the particles to implement the hopping process
in the lattice gas. In each Monte Carlo step a vacancy is
selected at random, instead of a particle, as was done in
the standard version of the program. Then, one of four

B. Results of the simulations
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FIG. 1. Intermediate incoherent dynamical structure func-
tion as a function of time, for three values of the wave number.
Double points at the same time are from different runs.

The general result of the simulations is that the inter-
mediate IDSF I (k, t) consists of several exponentially de-
caying functions. Some typical results of the numerical
simulations are shown in Fig. 1; a particle concentration
of c =0.7010 was chosen and three different k values in
the (1,1) direction. The main feature of the results is the
exponential decay of I(k, t} with time for longer times.
As the fitted straight lines indicate we observe a well-
defined asymptotic decay described by a simple exponen-
tial function of time, this feature was found for all parti-
cle concentrations and wave vectors. For small k (e.g.,
k =0.430 in the figure) the decay law is -exp( D«k t)—
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and D„agrees within the accuracy of the analysis with
the tracer-diffusion coefficient at the corresponding con-
centration.

It is also seen from Fig. 1 that the intermediate IDSF
cannot be described, for smaller times and larger k, by a
single exponential function of time; there are deviations
from the fit with a straight line. We analyzed these devi-
ations systematically for all particle concentrations stud-
ied, as a function of the wave vector k in the (1,1) direc-
tion. For c =0.7010, we investigated also k in the (1,0)
direction. The details of the analysis are shown in Figs.
2(a) —2(c) for c =0.7010, k =2.0065, and k in the (1,1)
direction. Figure 2(a) shows the complete time range
covered for these parameters; not all data points are
shown. A well-defined asymptotic behavior
I&(k, t) = W', (k)exp[ —R &(k)t] can be extracted from the
data, and is represented by the straight line. In Fig. 2(b)

O.

we depict the logarithm of the diff'erence I (k, t) —I,(k, t).
We observe that there appears a time range, where this
difference can again be represented by an exponential
function, Iz(k, t) = W2(k)exp[ —R2(k)t]. The time range
extends from relatively short times to the times where the
difference I —I, is significantly above the statistical fluc-
tuations of the data; it is an intermediate time in the scale
of Fig. 2(a}. The subtraction procedure is repeated once
more in Fig. 2(c), where in[I(k, t) —I&(k, t) —Iz(k, t)] is
plotted. The difference I —I& —I2 can be represented,
over the whole remaining time range, by a single ex-
ponential, I3(k, t) = W3(k)exp[ —R 3(k)t].

We thus observe that the intermediate IDSF can be
decomposed, for this particular concentration and wave
vector, into a sum of three simple exponential functions.
The decomposition of the intermediate IDSF in three ex-
ponential functions was possible for all k values at the
concentrations of c =0.5008, 0.7010, 0.90, and 0.9502.
At the lower concentrations of c =0.0998 and 0.3005
only a decomposition into two exponential functions
could be made, I(k, t)= W, (k}exp[—R, (k)t]
+ W2(k)exp[ —R2(k)t]. This is demonstrated in Figs.
3(a) and 3(b) for the case c =0.3005 and k =2.0065. The
case c =0.9805 requires a separate discussion, since it is
difficult for this case to decide between a decoupling into
two or three components. The sum of the weights must
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FIG. 2. Analysis of the intermediate incoherent dynamical
structure function at c =0.701 as discussed in the main text.
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FIG. 3. Analysis of the intermediate incoherent dynamical
structure function at c =0.3005 as discussed in the main text.
Double points in (a) at the same time are from different runs.



41 DIFFUSION IN CONCENTRATED LATTICE GASES: 2787

be one at arbitrary k. The crosses in Figs. 2(c) and 3(b)
are determined by this condition. They agree well with

the extrapolation of the fitted straight lines to t =O. We
consider this agreement as an important self-consistency
test.

The quantities R;(k) and W~(k) are plotted in Figs.
4(a) and 4(b), respectively, for c =0.701, k in the (1,1)
direction, and i =1,2, 3. The Fourier transform of a sum

of exponential functions in time consists of a sum of
Lorentzians in the frequency domain whose widths are
R;(k) and the corresponding weights 8';(k), hence we

will call the R, (k) widths and the 8;(k) weights. A simi-

lar behavior as shown in Fig. 4 was found at the other
concentrations above c =0.5. The dashed line in Fig.
4(a) represents the mean-field prediction for the width

R2(k). Namely, the width function R (k) of a particle
performing uncorrelated random walk on a square lat-
tice, in a background of other particles, is

R (k) =(1—c)4I'(1-—,'cosk, —
—,'cosk ),

I(k, t) =1—g 8';(k)R;(k)t + (2)

For short times, the behavior of a tagged particle should
exhibit uncorrelated hopping in an average background,
i.e., meanfield behavior. Hence, the coefficient of the

where I is the transition rate between two sites and
(1—c) the average blocking factor. It is surprising that
the intermediate width R2(k) is so well described by the
mean-field expression (1). We made the same observation
for all other particle concentrations above c =0.5. Fig-
ures 5(a) and 5(b) show R;(k) and W, (k) for c =0.3005, k
in (l, l) direction, where only two modes were identified.
Generally, the mode with the lowest width R, (k) is the
"diffusive mode, " it behaves as D„k for small k as al-
ready noted above. Also its weight approaches one for
small k, as it should be.

A general relation for the widths and weights is ob-
tained in the following way. The expansion of the inter-
mediate IDSF for small time reads
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FIG. 4. Widths R;(k) and weights JY;(k) deduced from the
simulated intermediate IDSF at c =0.701, for different k values.
The dashed line in (a) represents mean-field behavior; cf. the
main text.

FIG. 5. Widths R;(k) and weights W,.(k) deduced from the
simulated intermediate IDSF at c =0.3005, for different k
values. The dashed and dashed-dotted lines are explained in

Sec. IV.
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first-order term must be equal to the mean-field width
R (k) of the tracer particle in the lattice gas,

g W;(k)R;(k)=R (k) . (3)

FIG. 6. Behavior of the intermediate IDSF as a function of
time, for short times. The points represent simulation results
and the line corresponds to the mean-field expression.

one parameter appearing in the theory was not properly
identified. The result for the Laplace transform of the in-
termediate IDSF can be given in the form

I (k, s}= [s +X(k,s)] (4)

where X(k,s} is called a self-energy or memory function.
Fedders and Sankey give D;(q, co); this quantity is ob-
tained from I(k,s) by substituting s = ice—and k=q.
Their self-energy is designated by K(q, ro} and it is ex-
pressed in terms of two auxiliary quantities, which are
finally related to lattice Green functions. The relations
involve only algebraic equations which are readily solved.
We calculated the lattice Green functions numerically
and solved the relations for the self-energy, keeping the
Laplace variable s. Finally, the form (4) was transformed
back into the time domain by numerically inverting the
Laplace transform. ' The result is given in Fig. 7 for the
typical concentration c =0.701, together with the simula-
tion data. One observes good agreement between simula-
tions and theory at smaller k, but appreciable deviations
at larger k.

Fedders and Sankey' also provided an approximate
form for the self-energy which we examined also. The
form is, in our terminology,

This "sum rule" was well obeyed by the quantities R;(k)
and W;(k) obtained at all concentrations. Further
analysis of the behavior of R;(k) and W;(k) is made in
the following sections.

Also, a numerical test on the initial-time behavior of
the intermediate IDSF was made in the following way.
According to (3), the intermediate IDSF is then given by
I~F(k, t) =exp[ —R (k)t] and the width R (k) is given by
(1). This expression has been plotted in Fig. 6 for
c =0.701 and k, =k2=2. 0065/&2, together with data
points from the simulations. One recognizes very good
agreement for short times; discrepancies appear for larger
times. The same behavior was found at all other wave
vectors and concentrations.

X(k, s) =R (k) 1—

where R (k) is the width function of the intermediate
IDSF of a tracer particle that performs an uncorrelated

tm

I

III. COMPARISON WITH ANALYTICAL THEORIES
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Three groups developed analytical theories of tagged-
particle diffusion in lattice gases in higher dimensions in
the past. These theories had all the same starting point,
namely, the master equation for the hopping diffusion of
one tagged particle in a lattice gas, where the background
particles also diffuse, and double occupancy of sites was
excluded. The formal procedures used in these theories
were very different. However, the physical approxima-
tions which were made appear to be identical; hence the
results should be equivalent.

Fedders and Sankey' formulated a multiple-scattering
approach by using diagrammatic methods. They includ-
ed the repeated scattering of a tagged particle with one
vacancy; the other background particles are treated in
mean-field approximation. The results for the static
correlation factor are not completely satisfactory. A
correct form was given for simple-cubic lattices" but
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FIG. 7. Comparison between the simulation results for the
intermediate IDSF and theory. Points, simulation results;
dashed lines, simplified theory of Fedders and Sankey; solid
lines, theories of Sankey and Fedders and of Tahir-Kheli (indis-
tinguishable).
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walk in the lattice gas. For the square lattice it was given
by (1). It is required that the correct tracer-difFusion
coefficient results for small k, K(k, O)=f(c)R(k) for
k~0, where f (c) is the correlation factor. The empiri-
cal approximation p, =2cI does then determine p2(k),
namely,

p2(k}=2c [1—f(c)] (6)

1+ ( cose)
1+[(2—3c)/(2 —c)]( cos8 )

(7)

where (cos8) is the average angle between consecutive
transitions of the tagged particle in the limit c~1. This
quantity has been calculated exactly for various lattices,
see, e.g., Ref. 16. The expression (7) agrees well with the
simulation results, apart from small discrepancies, see
below. Unfortunately, the complete IDSF was not de-
rived by these authors.

Tahir-Kheli and Elliott approached the problem of
tracer diffusion in lattice gases by studying the equation
of motion for the position self-correlation function of
(tagged) particles. There appears a hierarchy of coupled
equations involving higher-order time-dependent occu-
pancy correlation functions. These functions describe the
occupancy of lattice sites by tagged particles, other parti-
cles, or vacancies. The hierarchy is decoupled by neglect-
ing time-dependent occupancy correlation functions for
one tagged particle and two vacancies, all being at
different sites. The correlation factor obtained by
Tahir-Kheli and Elliott is identical to the one given above
(7); this implies that the approximations are equivalent to
those made by Nakazato and Kitahara. They also identi-
fy a self-energy by writing the IDSF in the form (4), and
they use —ice instead of s. A more suitable form for an
explicit calculation of the self-energy appears in a subse-
quent paper. Here X(k,s) is expressed in terms of an
auxiliary quantity which is related to lattice Green func-
tions by algebraic equations. We solved these equations,
where we used numerically integrated lattice Green func-

As is obvious from (4) and (5) the approximate IDSF has
two poles in the Laplace domain, or consists of a sum of
two exponentials in the time domain. For small k there is
only one diffusive pole with weight =1. The comparison
with the simulation data is included in Fig. 7, in form of
the dashed lines. There is reasonable agreement for small
k, at larger k this approximate form also does not give a
correct description of the simulation results. The same
holds for other concentrations and wave vectors. It is in-
teresting to note that this approximate form of the IDSF
yields better agreement with the numerical data than the
original theory (solid line). Since the approximation was
constructed in an ad hoc manner, one must consider this
improvement as fortuitous.

A completely different approach was taken by Nakaza-
to and Kitahara. They studied the evolution of the sys-
tem under the influence of a I.iouville operator in a suit-
able occupation-number space and took c(1—c} as their
expansion parameter. They could obtain a frequency-
dependent diffusion coefficient at arbitrary concentra-
tions. From the static diffusion coefficient the following
correlation factor is obtained:

tions and determined the intermediate IDSF I (k, t) in the
time domain by numerical Laplace inversion. The result
of this procedure turns out to be identical to the theory of
Sankey-Fedders. The same remarks as made above also
apply to this theory: good agreement for small k, appre-
ciable discrepancies at finite wave vectors; cf. also Fig. 7.
The general conclusion is that this class of theories does
not yet give a satisfactory description of the intermediate
IDSF at general wave vectors.

Recent improvements of the theory of tagged-particle
difFusion in lattice gases were made by Tahir-Kheli and
van Beijeren and Kutner. Tahir-Kheli treated the corre-
lated vacancy-tracer diffusion in the frame of his theory
in a self-consistent fashion. This is especially important
when the background particles have a different (smaller)
transition rate. van Beijeren and Kutner provide a fourth
variant of the theory of tagged-particle diffusion by inves-
tigating the stochastic process of return of the special va-
cancy to the tracer. This is the vacancy which has made
the original exchange with the tagged particle. As point-
ed out by them, only the subsequent exchanges of the
tracer with this vacancy can lead to correlation effects in
the diffusion. Hence their theory can be considered as a
generalization of the original theory of Bardeen and Her-
ring' to lattice gases of arbitrary concentrations. Also in
their theory the correlated vacancy-tracer motion is
determined self-consistently, and the results are identical
with those of Ref. 5. The results give an improved and
excellent agreement with the data on the asymptotic
mean-square displacement and its correction in d =2.
The improved theories of Tahir-Kheli, van Beijeren, and
Kutner have not yet been extended to the self-correlation
function of particles for arbitrary times. It is an open
question whether such an extension will result in an irn-

proved theoretical description of this quantity.

IV. PHENOMENOLOGICAL MODELS

In Sec. III we arrived at the conclusion that the
theoretical understanding of the intermediate IDSF for
lattice gases at arbitrary concentrations is still rather un-
satisfactory, despite the various theoretical efforts. In
this section we wish to interpret the behavior of the inter-
mediate IDSF as revealed by the simulations in terms of
phenornenological models. We shall first describe some
simplified models, and comment on other, partially phe-
nomenological approaches.

One simple model for tagged-particle diffusion in the
limit of small vacancy concentration is the encounter
model, which was originally developed in the NMR con-
text. ' lt is based on the fact that a vacancy makes, on
the average, only a few exchanges with the tagged parti-
cle and disappears afterwards. ' Wolf' applied this mod-
el to the derivation of the IDSF. The resulting intermedi-
ate IDSF consists of a single exponentia1; only the width
is more complicated as a function of k than in mean-field
theory. While the long-time behavior of the simulated in-
terrnediate IDSF can be described correctly by this mod-
el, the short-time behavior is not correct. Also the exten-
sion to larger vacancy concentrations is not obvious.

Ross and Wilson determined the IDSF by calculating
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G, (r, t) as a sum of the contributions with a given number

n of attempted transitions. The temporal probability for
n attempted transitions follows from the assumption of a
Poisson process; the probabilities for the spatial distribu-
tion of the tagged particle after n steps are determined by
the simulations. It is clear that a phenomenological rep-
resentation of the IDSF is achieved by this method; how-
ever, the physical meaning of the spatial probabilities
after n steps remains unclear.

A candidate for the phenomenological description of
the intermediate IDSF of lattice gases seems to be the
simple backward jump model, where the tagged particle
has a larger than average rate for jumps in the backward
direction and smaller rates for jumps in forward or side-
ward directions. For a general description of correlated
jump models see Ref. 20. The backward jump model
would incorporate in a natural manner the existence of
the backward correlations that are expressed by the
correlation factor f(c}. However, the width and weight
structure that we observed in the simulations at finite
concentrations c are not in agreement with the predic-
tions of the backward jump model. First, the backward
jump model yields only two decay modes while we found
three decay modes at concentrations c & 0.5. Second, the
behavior of the widths and weights as a function of k, as
deduced from the simulations, is more similar to the be-
havior of a trapping model than to the backward jump
model. This becomes evident by a comparison of Figs. 4
and 5 with the Figs. 5.2(a) and 5.2(b) of Ref. 20. We also
tried to fit the backward jurnp model to the intermediate
IDSF in the time domain but we found severe discrepan-
cies.

An extension of the simple backward jump model is a
model where general, distinct, waiting-time distributions
are used for the individual steps. This extension was
developed by Kehr, Kutner, and Binder. ' They deter-
mined the waiting-time distributions by numerical simu-
lations and analyzed them in terms of the stochastic pro-
cesses that occur in tagged-particle diffusion. The au-
thors then derived the IDSF in the frame of the general
backward jump model, and gave explicit results for it
where the previously determined waiting-time distribu-
tions were used. This approach seems to give a correct
description of the IDSF in the frequency domain for fcc
lattices. However, the backward jump model with gen-
eral waiting-time distributions is rather complicated, as
well as the structure of the waiting-time distributions
themselves. Thus no practical description of the IDSF is
obtained by this procedure. An open question is whether

the model assumption of a memory between two succes-
sive steps of the tracer atom only, does also hold for lat-
tices with lower coordination numbers. Deviations from
this assumption were observed in the honeycomb lat-
tice. '

We now describe the simulation results at smaller con-
centrations in terms of two-state models. As noted above
the behavior of the widths R;(k) and weights W, (k) as
shown in Fig. 5 is similar to those models. In the two-
state model, the particle is alternatively in state (l}where
it performs an uncorrelated random walk with rate y &, or
in state (2) where it may perform a random walk with
rate y2. If y2=0, then we have the trapping model. The
transitions between the states are characterized by the
rates y, for transitions to state (2) and y„ for release from
that state. Explicit expressions are given in Ref. 20.

When simulation data are compared with a model the
question arises whether a fit should be made in the time
or frequency domain. A fit of the simulation results for
the intermediate IDSF in the time domain would be more
direct, and it would give stronger weight to the long-time
or low-frequency behavior. We decided to use the widths
R;(k) and weights 8;(k) that were extracted from the
simulation data, for the fit to the models. In this way we
gave stronger emphasis to the high-frequency behavior.
Here we had in mind the possible comparison with in-
coherent neutron scattering results. The actual fits were
made simultaneously for the widths and weights at the k
values as shown in Fig. 5 for c =0.3005; analogous fits
were made for c =0.0998. The results of the fits for
c =0.3005 are indicated in Fig. 5 for the trapping model
(y2=0) with dashed lines, and for the two-state model
(y2%0) with dashed-dotted lines. One recognizes fair
agreement between the simulation results and the trap-
ping model, and very good agreement with the general
two-state model.

The following physical picture emerges from the
analysis. A tagged particle in a lattice gas at low concen-
trations performs an uncorrelated random walk until it
hits another particle. It is then immobilized when it at-
tempts to move in the direction of that particle. This
"trapping event" is rather transient; already in the next
step the particle may be free, or it may escape. In con-
trast, in a backward jump model the particle has always a
tendency for backward jutnps. The results of the fit for
both models are given in Table I, at two concentrations.
The parameters of the trapping model appear to be
reasonable, especially at the lower concentration. The

TABLE I. Fit parameters of the trapping and two-state models at two diH'erent concentrations. The
quantities y,N are derived from the other parameters.

71
r2

3 r

Reft

Trapping

1.0177
0
0.1439
1.0804
0.8981

c =0.0998
Two-state

1.1019
0.6140
0.1825
0.2940
0.9151

Trapping

0.8419
0
0.1301
0.5923
0.6903

c =0.3005
Two-state

0.9175
0.3813
0.0949
0.1480
0.7080
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transition rate in the free state is near unity, and the trap-

ping rate is much smaller than the release rate from the
immobile state. However, we would have expected an in-

crease of the trapping rate with concentration and an ap-
proximately constant release rate. An effective transition
rate can be defined by

Vr Vf
jef 71 + 72r r t

I

c =03005
k II (1,1)

k =2.0065

8

k= P2m

8- o

5 10 15 20
time (NCS/p)

c
I

10
0

FIG. 8. Comparison between the simulation results for the
intermediate IDSF and model predictions. Points, simulation
results; dashed lines, trapping model; dashed-dotted lines, two-
state model.

It corresponds to the effective number of transitions to
different sites per unit time. We observe that y,z is ap-
proximately 1 —c; this is a plausible result. In the trap-
ping and the two-state model the diffusion coefficient is
also given by y,s since the random walk is uncorrelated.
As a consequence, the diffusion coefficient deduced from
the parameters will be too large (the correlation factor is

missing) and the model prediction of the intermediate
IDSF at small k will deviate from the simulation results.
This is a consequence of the fact that we fitted the widths

R;(k) and weights W;(k), which gives preference to the
high-frequency behavior. The physical interpretation of
the fit parameters of the two-state model is not obvious.
In particular, we cannot associate the rate of transitions

y2 in state (2) with a clear physical picture. It is satisfy-

ing that the effective transition rate is again 1 —c, within
the scatter of the data.

The results of the trapping and the two-state models
for the intermediate IDSF I(k, t) are shown in Fig. g for
c =0.3005 at two k values where the parameters of Table
I were used. At the intermediate k value the predictions
of both models are almost identical and agree well with
the numerical data. For k at the Brillouin-zone boundary
ks, the prediction of the trapping model deviates from
the simulation data at larger times, whereas the two-state
model yields a satisfactory description. The deviation for
k =kz is a consequence of the strong discrepancy be-
tween the fitted and the simulated values of the widths
R;(k) at this k value. Of course we could also perform a
fit in the time domain. This would then lead to better
agreement at larger times but to larger discrepancies at
shorter times. In summary, the two-state model yields a

TABLE II. Fit parameters of the combined model and the
three-state model for c =0.7010. The parameters y» and y23
were set equal to zero, and y,z are derived quantities.

Combined model

y I =0.8935

yq =0.1247
a=0.2319
g =0.0198
a =0.0107

y,q =0.3944

Three-state model

y I =0.2005

y2 =0.0630
y3 =0.0244

y 12 =0.2588

y 1 3
=0.2521

ypl =O. 1381

y32 0 0618

y,~=0.2996

good description of the observed behavior of the in-
coherent intermediate IDSF at smaller concentrations.

We now turn to the interpretation of the simulation re-
sults at c =0.7010 by phenomenological models. As dis-
cussed in Sec. II and shown in Figs. 2(a) —2(c) the inter-
mediate IDSF exhibits three decay modes with three as-
sociated weights. Comparison of Figs. 4(a) and 4(b) with
Figs. 5(a) and 5(b) of the review shows that even at the
higher concentration the general behavior of the widths
and weights as functions of k is analogous to that of a
trapping model and not to the backward-correlated jurnp
model.

We analyzed the simulation data essentially by two
different models.

(i) In a so called "combined model" the tagged particle
is alternatively in one of the following states: In the first
state, the particle performs a correlated random walk
with I f the rate for jumps in forward or sideward direc-
tions, and with I b the rate for backward jumps. The
backward correlations dominate, thus I"b & I f. Instead
of the rates I b, I f we use as parameters the summary
transition rate y, =3I f + I b and the parameter
e=(I b

—I f )ly, . In the second state, the particle per-
forms uncorrelated motion with a summary jump rate y2
to neighbor sites. This jump rate may also be zero, then
the particle is immobile in the second state. The transi-
tion rate from the backward correlated state (1) to the un-
correlated state (2) shall be rI and the rate from state (2)
to state (1) shall be a, both rates are parameters of the
model.

This model was motivated by the following considera-
tions. First, the model yields three decay modes, thus it
is a candidate for the description of the simulation results
at higher concentrations. Second, the general picture of
the encounter model seems to be plausible at large con-
centrations, namely, that the tagged particle stays virtu-
ally immobile for random periods, interrupted by strong-
ly correlated exchanges with vacancies.

(ii) The second model that we employed is a three-state
model where the particle performs a random walk on the
lattice with different transition rates in each of the states.
In principle, transitions between each of the states are ad-
mitted. For practical reasons two transition rates be-
tween states were set equal to zero, see below. It is easy
to set up and solve the master equations of these models,
see, e.g., the review.
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FIG. 9. Fit of the widths R;(k) and weights W, (k) by phe-
nomenological models. Symbols, results extracted from the
simulations; dashed lines, the combined model; dashed-dotted
lines, three-state model.

Both models were fitted to the numerical results on the
widths R;(k) and the weights W, (k};a simultaneous fit of
all quantities at the different k values was made. The re-
sulting parameters of the fit are given in Table II. As
Figs. 9(a) and 9(b) demonstrate, the combined model can-
not well describe the simulation results on R;(k) and
W;(k). Also the average transition rate, defined by a gen-
eralization of (8), does not agree with the expected value
1 —c. The typical features of a backward-correlated rnod-
el, namely, a mode with large width at all k values, and
the vanishing of a weight at the Brillouin-zone boundary
kz, are not present in the simulation data. By contrast
the three-state model does provide a good fit of the nu-
merical data on R, (k } and W, (k). Two parameters of
this model were set equal to zero, after a provisional fit
with nine parameters showed them to be small and rather
uncertain. Since in the three-state model two more pa-
rameters were used than in the combined model, a better
agreement with the data could be expected. In any case,
the model does describe the essential features of the nu-

c =0.701
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k = 2.0065N ~
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I I I I 4.

20 40
time (NCS/p)
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FIG. 10. Comparison between the simulation results for the
intermediate IDSF and model predictions. Points, simulation
results; dashed lines, the combined model; dashed-dotted lines,
three-state model.

merical data. The point is that we cannot associate an
obvious physical interpretation with the three different
states and the transition rates between them. One satis-
factory feature of the fit is that the average transition rate
is again 1 —c within the numerical accuracy.

Finally, Fig. 10 shows the prediction of both models
for the intermediate IDSF in the time domain, when the
parameters of Table II are used. We observe that the
combined model does not provide a good fit of the data,
in particular at the intermediate k value. In contrast, the
three-state model gives a very satisfactory description of
the data in the time domain.

We also made a fit of the simulation data to the com-
bined model in the time domain This fi. t was satisfactory
(remember that this procedure gives stronger weight to
the long-time behavior}, but the resulting widths and
weights were then very different from the ones that were
deduced from the numerical data.

In summary, we can fit the behavior of the widths and
weights of the intermediate IDSF at the higher concen-
tration c =0.7010 quite well by a three-state model, simi-
lar to the lower concentrations, where a satisfactory fit
was achieved with a two-state model. The physical
meaning of the model and its parameters is unknown at
present.

V. CONCLUSION

In this study we have estimated the space- and time-
dependent position self-correlation function of the parti-
cles in two-dimensional lattice gases by numerical sirnula-
tions. The intermediate IDSF was then obtained by a
spatial Fourier transform. The analysis of this quantity
showed the existence of two decay modes at concentra-
tions c &0.5 and of three decay modes at concentrations
c)0.5. The decay parameters (or widths of the corre-
sponding Lorentzians in the frequency domain) and the
associated weights were determined for several wave
numbers.

The numerical results for the intermediate IDSF were
compared with formal theories of that quantity. There
are discrepancies between the simulation results and the
predictions of those theories. Evidently there is a need



41 DIFFUSION IN CONCENTRATED LATTICE GASES: 2793

for more refined microscopic theories of the position
self-correlation function in lattice gases.

One major aim of this study was the interpretation of
the simulation results by phenomenological models. In
this respect we were only partially successful. We could
well describe the numerical results by two-state models
for c (0.5 and by three-state models for c )0.5. Howev-
er, the parameters of these models lack a physical inter-
pretation. In other words, no consistent physical picture
could be found which would allow a direct interpretation
of the data. The obvious models for the tagged-particle
motion in lattice gases, namely, the model of backward
correlated jumps, and its combination with temporary
transitions to a less mobile state, do not lead to a con-
sistent description of the numerical data. One point
seems to emerge from the analysis. Namely, the time-
dependent mechanism of backward-correlated motion of
tagged particles is more similar to a transient trapping
picture, at arbitrary concentrations of the lattice gas,
than to the picture of backward correlation at each step
of a tagged particle. One particular feature, which is not
understood, is the mean-field-type behavior of one of the
widths at c )0.5. One may say that one portion of the
particles performs an uncorrelated, mean-field-type
motion. However, the weight of this mode is k depen-

dent; hence there is coupling to the other modes. This
coupling should result in hybridization with the other
modes.

We omitted concentrations very near to one from our
study. This region deserves a detailed investigation. In
the limit c~1, the waiting-time distributions for tagged-
particle transitions can be calculated exactly, extending,
for instance, the approach of Benoist, Bocquet, and La-
Fore. It is a question of interest whether a complete
description of the intermediate IDSF can be achieved at
least for this regime.

Note added in proof. The ISDF was studied by Monte
Carlo simulations for lattice gases on the tetrahedral sites
of a bcc lattice by Faux and Ross. Their work included
several blocking conditions, namely no double occupan-
cy, as well as blocking to the first, second, and third
neighbors, respectively.
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