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The stability of quasicrystals endowed with atomic Lennard-Jones-like pair potentials was inves-

tigated with use of the method of steepest descent. Starting from two- and three-dimensional Pen-
rose patterns, the basic units were decorated in various fashions with one or two sorts of atoms. In
accord with previous studies, all monatomic two-dimensional quasicrystals decay to a hexagonal
periodic crystal with defects; diatomic systems remain stable when the relative size of the atoms is

suitably chosen. In three dimensions, the monatomic quasicrystalline unit-sphere packing was

proven stable as well as the structure of truncated icosahedra, even if in the initial configuration the
atoms were displaced statistically up to 7% and 25%, respectively, of the edge length (noise). A
series of decorations (among them one involving Mackay icosahedra) relaxed to the amorphous
state. In these transitions the atoms arrange in families of Fibonacci planes whose separations scale
down to atomic distances in a self-similar fashion.

I. INTRODUCTION

Solid matter can occur as different types of structures.
These are periodic (crystals), quasiperiodic (conventional
incommensurate structures), aperiodic (glasses), and as
we have known since 1984, quasicrystalline structures.
The crucial property of quasicrystals which makes them
so different from the conventional incommensurate struc-
tures is the combination of noncrystallographic symme-
try and sharp diffraction peaks.

To prove the existence and stability of these structures
from a microscopic point of view is rather hard for both
the conventional structures as well as for the quasicrys-
tals. Concerning quasicrystals, one of the first ap-
proaches has been a phenomenological one using a
Landau-type theory. ' There the free-energy is expand-
ed in powers of p(q), the Fourier components of the mass
density, with wave vectors q pointing, e.g. , along the
edges of an icosahedron. It is found that stability may
exist. Microscopic models were used by several authors.
Let us first mention the work in two dimensions. Landon
et al. ' and Sasajima et a/. have performed molecular-
dynamics calculations. Starting with a monatomic Pen-
rose pattern and a Lennard-Jones potential it was found
in Ref. 9 that the pattern is unstable, relaxing to a hexag-
onal lattice with some defects. However, decorating the
Penrose pattern with two types of particles, Landon
et al. ' confirmed stability (using a Johnson-like poten-
tial), provided that the temperature is low enough. A
similar result was obtained by %"idom et a/. ' from
Monte Carlo simulations of a two-component Lennard-
Jones system and by Leung et al. " for a diatomic dode-
cagonal quasicrystal. Janssen demonstrated the stability
of a very different pentagonal diatomic quasicrystal in a

relaxation model. '

Concerning three-dimensional systems, Szeto and Vil-
lain' have shown that a densely packed hard-sphere
model does not exhibit quasiperiodic solutions for the
ground state. Burkov and Levitov' have proved analyti-
cally that under some assumptions the ground state of a
d-dimensional tiling with codimension l can be quasicrys-
talline if the interactions between the tiles are reaching
far enough. Similar possibilities were discussed by
Narasimhan and Jaric. ' Some speculations about the en-
ergies of three-dimensional Lennard-Jones quasicrystals
are contained in an article of Levine and Steinhardt. '

Matching rules' ' also imply the possibility of having a
quasicrystal ground state of a local Hamiltonian. Recent-
ly, Janssen' presented a spring model where the atoms in
a three-dimensional quasicrystal interact harmonically,
and calculated the density of phonon states.

Like Sasajima et a/. we have used a Lennard-
Jones-like potential. But instead of dealing with molecu-
lar dynamics we applied a steepest-descent algorithm
starting from two- and three-dimensional one-component
Penrose patterns. ' In two dimensions the previous re-
sults are confirmed, i.e., monatomic systems proved un-
stable, and decorated diatomic systems were stable. In
three dimensions the initial Penrose pattern relaxes to a
glassy state if all vertices of the rhombohedra are occu-
pied. If, however, atoms are removed according to the
unit-sphere packing discussed by Henley, even the
monatomic quasicrystal remains stable, or more precisely
metastable. Thus, our results demonstrate that it is not
necessary for the stability of three-dimensional quasicrys-
tals to have at least two sorts of atoms.

The purpose of this paper is twofold: first, to give
more details of our previous calculations of Ref. 19, and
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II. THE MODEL

The perfect quasicrystalline rhombohedral tiling is
constructed by the grid method in two dimensions and
also in three dimensions. Initially, all vertices of the
rhombs or rhombohedra are covered with atoms.
Modifications are made in three dimensions by removing
subsets of the vertices, or, what is equivalent due to the
scale invariance of the quasicrystals, by inserting subsets
of atoms in an inflated quasilattice.

The centers of the atoms are the origins for the pair in-
teraction potential. We use a truncated Lennard-Jones
potential of the following form:
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second, and more important, to extend these calculations.
One of these extensions concerns the degree of metastabil-
i'ty for the metastable monatomic quasicrystals. This
point addresses the question of how much the atoms may
fluctuate from their positions in the Penrose pattern such
that the system still relaxes to a quasicrystalline struc-
ture. Using a Gaussian distribution for these fluctuations
we have found that the unit-sphere packing still relaxes
to a quasicrystal if the mean fluctuation does not exceed a
critical value which is about 7%%uo of the edge length of the
rhombohedra. For larger values the system turns into an
amorphous structure. Diatomic quasicrystals of suitable
decoration return to quasicrystalline order even with
much higher initial noise.

The second extension is the study of three-dimensional,
two-component systems. Depending on the decoration,
we obtain both stable and unstable systems. These re-
sults, therefore, may be useful for presorting the structure
models of binary quasicrystals.

The paper is organized as follows. In Sec. II we
present the model for Lennard-Jones systems. The
steepest-descent method and the structural analysis are
described in Sec. III. A short section (Sec. IV) is devoted
to the two-dimensional systems. Section V contains the
results for the three-dimensional monatomic model, sup-
plemented in Sec. VI for two-component models. A sum-
mary and a discussion of the results will be given in Sec.
VII.

For diatomic systems we must replace P, o, and E by
P,b, o,&, and E,b for atoms of types a and b and therefore
three different potential types are used.

The radius o. of the potential minimum was optimized
before relaxation by fixing the atoms to their initial posi-
tion and minimizing the total interaction energy. The op-
timal value of o is always close to the shortest separation
of atoms in the decoration. This minimum separation
R;„,however, frequently is smaller than the radius R of
the first pronounced shell of atoms (having an appreciable
occupation number). As a rule, stability was registered if
o =R;„and R;„=R. But the system was unstable if
0 =R;„and R;„(R, and even when testing several
values of 0 in the whole range between R;„and R we
could not stabilize it, except in trivial cases (see Sec. V).

In two dimensions, no finite-size effects were found; in
three dimensions these were appreciable. Therefore we
had to use periodic boundary conditions, which we im-
plemented by rational approximants in the following way.
To construct a Penrose tiling we used the grid formalism.
The six-dimensional points in the strip which are to be
projected into three dimensions can be found easily by
dualizing the cells of the grid. We replaced the usually
rational independent grid vectors by rational dependent
ones, but left the tiling vectors unchanged. The same
procedure is found in Refs. 21 and 22, where the orienta-
tion of the strip is changed to a rational direction, but the
projection direction remains irrational.

In the approximated case the grid vectors are (p, q, O),

(p, —q, O), (q, O,p), (O,p, q), (O,p, —q), and (q, O, p), —
where p and q are integers of the Fibonacci chain. In the
perfect grid, the grid vectors point to the vertices of an
icosahedron and span an irrational grid, but for
p/q =1/0 and 1/1 we get a simple cubic and a centered
cubic grid, respectively. Higher approximations only
yield tetrahedral symmetry V'i, (which includes
reflections on the x-y, y-z, and z-x planes) of the grid
planes. The grid vectors (of equal length) produce an
approximated tiling with a cubic cell of periodicity.
The possible range of the approximants p/q of ~ is
2/1, 3/2, and 5/3, yielding a periodicity length
2(rp+q )(v+2)

The rational approximation yields a different frequency
of the possible vertex types but does not alter the local
geometry of the tiling pattern.
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Here r denotes the distance ~r; —rj ~
between the atoms i

and j, o the radius of the potential minimum, P a trunca-
tion factor (always taken as 2 here) to make the potential
range finite, and E sets the energy scale. The truncation
of the potential defines a suSciently small shell of in-
teraction for every atom which is necessary for computa-
tion. Using a finite range, the time for calculation grows
linearly with the number of atoms; otherwise it would
grow with the square.

We have used numerical computation to study the sta-
bility of the quasicrystals and analytical tools to examine
structure and temporal changes. The basic features of
the relaxation procedure and analysis will be described in
the fo11owing sections.

A. Relaxation

Although the method of "steepest descent" is static, it
can, however, be interpreted dynamically as describing
an overdamped atomic motion at zero temperature. In a
first step we calculate the force
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B. Structural analysis

The straightforward way to examine a structure is by
depicting it in real space, which is no problem in two di-
mensions.

To display the vertices of a true three dimension-al
quasicrystal, we project them onto a plane perpendicular
to a fivefold axis. Then a point in the plane represents an
entire row of vertices which smears out during relaxation.
In the case of rational approximants, the calculations
were done in a coordinate frame parallel to the directions
of periodicity. Therefore it was necessary to rotate the
sample to the fivefold axis before displaying it.

A more quantitative way to obtain structural charac-
terization is the radial pair distribution function G(r), or
its Fourier transform, the powder structure factor S(q):

S(q)= 1+J 4n r [p(r) po]j dr—
0 qr

0 qr
(3)

where p0 denotes the average density of atoms around a
central atom. The second term of Eq. (3) yields the
characteristic scattering intensity of the quasicrystal,
whereas the third term describes the homogeneous part.
The information contained in G(r) allows us to locate
nearest, next-nearest, and eventually higher-order neigh-
bor separations, as well as to determine their coordina-
tion number. But it does not measure the bond-
orientational order which is crucial for quasicrystals.
Therefore we calculated, according to Steinhardt
et al. , the modulus

which atom i feels from all atoms j in its own potential
range. Then each atom is displaced by a vector 5; =A,F;.
Through normalizing 5, by the maximal force max~F„~
we ensure that the largest displacement is A.. The pro-
cedure is iterated until equilibrium (minimal energy) is
obtained. We used the relative change hE/E of the ener-

gy per atom to decide whether the atoms have reached
the final state. When the pattern is near the minimum of
the energy, overrelaxation can happen if the displacement
vectors 5, are too large, and then the energy increases
again. To avoid overrelaxation the steps are diminished
by dividing the displacement parameter A, by 2. The
number of iterations ranges from 100 to 1000. In most
cases we stopped relaxation, when the relative change of
energy hE/E per iteration was less than the numeric pre-
cision. Relaxation for unstable open clusters was the
slowest. Here we stopped at b,E/E =10

In 1983 Mercier and Levy used a similar method to
examine the stability of "amorphous" clusters with
icosahedral symmetry; at present we would call them
quasicrystalline.

QI~ =
~ g Yi (8, , $,. ) .

1

& bond i

Here 8, and p, denote polar and azimuthal angles of the
ith-nearest-neighbor bond relative to a fixed laboratory
coordinate system, and Nb is the number of bonds. As
nearest neighbors, we defined all atoms separated a dis-
tance of less than 1.2 times the length of the first coordi-
nation shell in agreement with the definition of Ref. 24.
In an isotropic medium QI vanishes for 1)0, and in hex-
agonal or cubic media Q& is finite for 1=4,6, 8. In an
icosahedral medium of long-range bond-orientational or-
der Q6 dominates, whereas Q4 and Qs are zero.

Thus with QI we have a measure of the bond-
orientational order.

For diatomic quasicrystals partial radial distribution
functions and partial structure factors are defined. Al-
though the partial distribution function is useful to deter-
mine the nearest-neighbor shells, the partial structure
factors are of less use if the types of atoms are not
specified exactly. We calculated G(r) and S(q) as if the
two types of atoms were the same, and the resulting func-
tions turned out to be typical for quasicrystalline materi-
als. Partial bond-orientational multipole moments are
not very informative because of the many differing
lengths of various bond types. The numerical values do
not indicate the symmetry of the sample and the changes
during relaxation.

IV. TWO-DIMENSIONAL SYSTEMS

For monatomic small clusters of pentagonal symmetry,
consisting, for example, of the 16 atoms of a filled de-
cagon in the Penrose pattern, we found that they remain
stable for many iterations, but finally become hexagonal.
Larger clusters, for example of 30X30 atoms, quickly
convert into hexagonal domains with many types of de-
fects. These results (Fig. 1) agree essentially with those of
Sasajima et al. in Ref. 9.

Generally, in two dimensions instability is expected for
any arbitrary pattern because there is a unique crystalline
packing of hard disks with isotropic potentials, which is
the hexagonal one. The special reason for instability of
the Penrose pattern is the anisotropic distribution of
atoms within a shell.

If the potential radius is small, many bubbles are ob-
served, diminishing when the potential radius increases
until they form single vacancies. The bubbles appear be-
cause in the case of a small potential range the initial
mean separation of the atoms is too large, and the in-
teraction is of a limited range. The quasicrystal ought to
be contracted; the atoms can move only marginally dur-
ing each relaxation step and the hexagonal domains
which they form are very rigid.

When the potential radius is large enough there are
compact hexagonal domains glued together in arbitrary
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FIG. 1. Two-dimensional quasicrystal resulting from a primitive monatomic decoration of the Penrose rhombs. A large and a
small rhombus are indicated. Left side, initial state; right side, final state, which contains patches of hexagonal-close-packed struc-
ture, however, with many defects like (1) dislocations, (2) grain boundaries, (3) vacancies, (4) disclinations, and (5) antidisclinations.

orientations with small-angle grain boundaries between
them. Frequently atoms arrange in pentagons in the hex-
agonal domains, which then form the cores of disclina-
tions. Domains of different orientations also are linked
by pentagons. The counterpart of the pentagons are hep-
tagons, quasicrystalline vertex figures with seven atoms.
Heptagonal configurations are usually the centers of an-
tidisclinations. They are always combined with other de-
fects like dislocations and disclinations. Finally, the lat-
tice lines are often distorted and disrupted due to the
high density of defects.

For diatomic quasicrystals the decoration introduced
by Landon et al. and also applied by Widom' was used.
If the radii of the pair potential are optimized before re-
laxation, the system displays extreme stability inasmuch
as the atoms in the bulk do not move at all. If the radii
are scaled by a common factor, the quasicrystal expands
or contracts without structural change. We find only
small boundary effects when using open boundary condi-
tions.

The calculations were mainly performed to test the al-
gorithm and provide confidence for an extension to three
dimensions. With the results in two dimensions we also
gained insight into the influence of boundary conditions
on the relaxation process.

V. THREE-DIMENSIONAL MONATOMIC SYSTEMS

In two dimensions we mainly confirmed the results of
Refs. 7—10. To our knowledge no microscopic quantita-
tive results exist in three dimensions. Therefore, we gen-
eralized our method for three dimensions and examined
several decorations of quasicrystals, starting with a sim-
ple decoration of all vertices.

A. Systems with all vertices occupied

The smallest distance of atoms in a three-dimensional
Penrose tiling is the short diagonal of the oblate rhom-
bohedron, having length d=0. 563 in units of the edge
size. If all vertices are occupied, the width of the opti-

mized potential radius e is about 0.58. The atoms of the
next-largest separation, d =1 and 1.052, "feel" only a
very small force. Therefore, the pattern is altered slowly
during the iteration procedure. But, finally, it becomes
unstable, although it takes approximately 500 relaxation
steps. Increasing 0. in the range between 0.58 and 1.03
drives the system very fast into a glassy state. We have
examined three values for o: the minimal distance 0.58,
the most frequent distance 1.0, and an intermediate value
0.8, because for o. =0.8, the atoms at d=0. 563 feel no
significant repulsive force yet, but those at 1.0 are still
within the attractive range of the potential.

The results are documented by our analytic tools.

1. Projection

In projection along a fivefold axis (Fig. 2) the atoms are
lined up in rows. During relaxation, the alignment is
lost, and the projected atoms cover the projection plane
rather homogenously (Fig. 2). If cr is small, bubbles ap-
pear like those in two dimensions, but they are not as dis-
tinctly visible as there because of the three-dimensional
projection. For larger o the situation also is like that in
two dimensions: a bond length similar to the mean atom-
ic distance forces the bubbles to vanish in the final state.

It is interesting to note that in the course of the decay
the quasicrystalline phase does not pass directly into the
amorphous state but via a sequence of transient states, of
which we do not yet know whether their structure is
similar to that of an icosahedral glass or whether they
comprise a new type of icosahedral structure. In the first
relaxation steps the atoms arrange in planes, which in the
projection along a fivefold axis constitutes a generalized
pentagonal grid with two spacings of ratio 1:r ("Am-
man grid, " Fig. 3). The polygons formed by the inter-
secting planes are golden triangles with edge length 1,1,~
or v., ~, 1. In the following steps new planes of reduced
density form in between the old ones, leading to a
deflated Amman grid which is scaled down by ~. The
golden triangles are successively subdivided into smaller
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FIG. 2. Three-dimensional quasicrystal resulting from a primitive monatomic decoration. The quasicrystal is projected along the
fivefold axis, and hence in the initial state each open circle represents a row of atoms lying along the projection axis. Two representa-
tive rhombohedra have been drawn. Left side, initial state, right side, final state. The amorphous character of the sample is seen
clearly.

ones of simi. lar shape. Amorphization begins when the
edge length of the triangles reaches the average separa-
tion of the atoms.

This behavior reveals the hierarchy of local atomic ar-
rangements. Those atoms which have the most aniso-
tropic environments in the initial pattern move first, be-
cause these atoms feel the largest force. On the other
hand, there are many vertices which are surrounded by
20 prolate rhombohedra, forming a neighborhood of per-
fect icosahedral symmetry. These vertices become the in-
tersections of five Amman planes in the course of the re-
laxation. The central atom and its first neighbors feel no
force and thus remain fixed until the last stage of
amorphization.

For the pair potentials applied in this work, these in-
termediate structures are unstable. Thus their physical
significance is unclear to us. However, using a purely
repulsive potential we found that they can be stabilized.
Further investigations are in progress.

2. Radial distribution function (RDF)
and structure factor (SF)

Perfect quasicrystals have discrete peaks in the radial
distribution function. The coordination numbers are
nonintegers due to averaging over all possible vertex en-
vironments (Fig. 4). Depending on the value of o, the re
laxed crystal shows three or more coordination shells,
but the RDF smoothes oft' at larger separations as for a

FIG. 3. Three-dimensional quasicrystal with the monatomic primitive decoration. Left side, projection after 400 iteration steps.
Atoms have aligned in clearly visible Fibonacci planes. The intersection points of the Fibonacci planes are the vertices with perfect
icosahedral symmetry; right side, the same quasicrystal after 800 iteration steps. The Fibonacci structure has decayed almost com-
pletely and the vertices with perfect icosahedral symmetry also begin to vanish.
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FIG. 4. Left side, radial distribution functions of the initial quasicrystalline state with the primitive rnonatornic decoration (upper

part) and of the final amorphous state (lower part). A perfect quasicrystal has discrete peaks (like a crystal), whereas an amorphous
structure only shows the peaks of the short-range order; right side, structure factor of the initial state (upper part) and the final state
(lower part). Although the structure factor of an infinite quasicrystal has discrete peaks, the Fourier transform of the radial distribu-

tion function contains broad peaks and artificial fluctuations due to the finite size of our samples. In the amorphous state most of the

quasicrystalline peaks have disappeared and only the short-range order remains represented by the first maximum.

homogeneous, amorphous medium.
In the initial state, there is a small coordination shell at

0.563 with a frequency of 0.76, but the most pronounced
coordination shells are at 1.0 and 1.051 with frequencies
of 6.00 and 6.47. The value 1.051 belongs to the short di-
agonal of a rhombic surface element. Thus at about 1.03,
a double shell is located with an intensity of 12.47 like in
dense packings. After relaxation, the initial radius of the
first coordination shell is always equal to the optimal o.
The closer o is to R, the radius of the first coordination
shell of the initial configuration, the fewer steps are
necessary to move the atoms from R to a new shell at o.
During relaxation, the first peak increases up to a max-
imum coordination number of about 10. Independent of
the choice of a, there are two further peaks at about 1.7o.
and 2o., resulting from the diagonal of two triangles shar-
ing one side and from three atoms lying on a straight line,
respectively. This split second-nearest-neighbor peak is
characteristic for metallic glasses. When cr is about 1.0
further peaks exist with decreasing intensity due to the
dense packing of atoms. (Note that the potential range P
is coupled to the potential radius o.) When o is 0.8 or
0.6, there are far fewer peaks which shows that the atoms
are not packed densely and that there must be vacancies
and bubbles in the quasicrystal.

The powder structure factor of the perfect system (Fig.
4) displays peaks which can be identified with and in-
dexed as those obtained by projection from six-
dimensional reciprocal space. The width of the peaks,
however, is finite, because in the integral [Eq. (3)] we have
cut off the radial distribution function at the radius of
that sphere, which just fits into the periodicity cell of the
approximant of the Penrose pattern. The cutoff is also
responsible for the negative value of the structure factor
and the remaining oscillations at low wavelengths, which
are subtracted incompletely with the term 4mr po in the
integral [Eq. (3)]. Otherwise, the intensity of the homo-

geneous scattering would have concealed that of the
quasicrystalline scattering in which we are interested.

After relaxation, the quasicrystalline dominant peaks
disappear. Only the typical structure factor of an amor-
phous material remains with short-wavelength modula-
tion due to the finite range of integration.

3. Bond-orientational order

In the perfect state Q2, Q4, and Qs vanish as expected,
but Q6 takes the value 0.153, indicating long-range
icosahedral bond orientation. The reduction of Qs to
2.9X10 in the course of relaxation indicates that the
long-range bond order has vanished. But it does not
mean that the icosahedral ordering of the nearest neigh-
bors, which is typical in dense-packed amorphous materi-
als, has vanished, too. To examine the short-range order
one would have to calculate correlation functions and not
only multipole moments.

B. Monatomic unit-sphere packing

The smallest atomic distance of 0.563 turns out to be
the reason for the instability of the fully covered primi-
tive Penrose lattice. The atoms separated by this distance
form rings of ten members in the shape of a crown or
chains being fractions thereof. If a chain has an even
number of links, then we remove every second atom in
order to leave the greatest possible number of atoms in
the cluster. If a chain has an odd number of links, and in
the case of rings, we also removed every second atom
then beginning at an arbitrary atom. With this construc-
tion none of the remaining atoms is separated by less
than 1.0 from a neighbor. There are also other construc-
tions providing a packing with the same properties by
Henley, by Olami and Alexander, and by Oguey and
Duneau.
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1. Projection

The number of removed atoms is only about 5% (Fig.
5). The structure of the projected pattern remains pen-
tagonal. Now in the course of relaxation the structure
changes by minor local fluctuations only, and the struc-
ture remains stable (Fig. 5). A more systematic algorithm
for the removal of atoms would place only a fraction of
the 5% of atoms involved into energetically almost
equivalent positions. This could enhance the stability
marginally, but is not expected to alter our results.

2. Radial distribution function and structure factor

The structure of the RDF is not changed by removing
a subset of atoms; only the peak at 0.563 has vanished.
During relaxation some very close peaks in the RDF
(Fig. 6) merge into one; altogether the peaks stay distinct.
The coordination number remains nearly unchanged and
is 10.67.

The peaks of the structure factor (Fig. 6) retain their
position; only the intensity is altered slightly. Local dis-
tortions cannot be identified since the peak width is finite
due to the periodic boundary condition. Since the width
scales like l where I is the diameter of the periodicity
cell, we expect that an infinite system shows Bragg peaks
and that the long-range positional order is not disturbed
in the relaxation process.

3. Bond-orientational order

The bond-order parameter Q6 increases slightly from
0.180 to 0.183, indicating only minor changes of the
icosahedral bond angles, while Q2, Q4, Qs are approxi-
mately zero before and after relaxation.

packing with that of a bcc and fcc packing using the
same potential type, the same potential radius, and the
same potential range. We found an energy of —2. 8 for
bcc and —3.2 for fcc (both without relaxation) whereas
the energy of the relaxed quasicrystalline state with
periodic boundary conditions is about —2.9 and was de-
creased only by 1% during relaxation. This fact shows
that our quasicrystalline packing can be as stable as crys-
talline packings.

The Landau theory up to the third order in p(r) used
in Ref. 2 leads to a similar result, i.e., the energy of the
quasicrystal is below that of the bcc lattice. However,
this agreement may be accidental, because Biham et al.
have shown that this is no longer true if the fourth-order
term is also taken into account (see footnote in Ref. 5).

Very recently, 01ami and Alexander have investigat-
ed the density of several packings in more detail. From
their results one cannot conclude that Henley's unit-
sphere packing is the densest one. But it is at least the
densest known until the present.

Control calculations have been performed also with
finite samples of the unit-sphere packing monatomic
quasicrystal and open boundary condition. For 1888-,
6070-, and 13 189-atom clusters the energy per atom was
—2.52, —2.61, and —2.65, respectively, the last two
configurations not having been relaxed fully. These
values converge towards the energy per atom —2.86 of
the sample with 1902 atoms and periodic boundary con-
ditions (being the rational approximant 5/3). The higher
energy of the open clusters is due to the surface effects.
For all cases the structure in the interior of the samples
was the same. Thus we may conclude that periodic
boundary conditions actually simulate the behavior of
samples of infinite size.

4. Discussion of the stability

To investigate the degree of metastability we compared
the energy per atom of the quasicrystalline unit-sphere

C. The stable decoration with noise

Having discovered a stable monatomic quasicrystal, it
appeared to us of considerable interest to find a measure

oo 08oo o"o. o oo 0880 oo
8 o PiP085'0 OS o eo OS o 8
OOOO„OOOO 00 OOOO OO OOOO

eo octeooo o o o o oo OS
000 0 "0000 "0 00 0 000

QOO 00 0000 00 0 «00 0000 0
08 o eo OS o 88 o 80 OS00 0 0 00 0 &00 0 0 00 0

0 0 00 0 00 0 0 00 0 «00
eo OS. o SPO eo OS o 88 0800 0 0 0000„00 0000, 000

0 00 0 0 0 0 0 04 0 00«0 0 0 00 0 0 00 0 "00
OO OOOO OO O 00 Oat'0 OO 00
0 80 OS o 80 0'tao oe o 80000 00 0, 0+00 0 «OO~OQg, o 0

ao oo oo a 000085'0000
9tooo~aa98ooo8000800080oog
ocoo oooo oo oooo oo oooo

8o aM'oaA a@a aC o oa 0aoaaoo aooa oaa
ooo oo aooo oo 0 oa oooo o
ooqaoaeaaoqaaa~aooeaooqo

oo 0 0 oo a oo 0 o ao o
a a oo a oo a a oo o aa

80 08 a 8ipo 80 OS o Roa'8
oa 0 0 oooo aa oooo ooo
oooo aa o ao oa0 aoa a ao a a ao o oo

oo oooo ao o oa ocho ao oo
0 80 0800080aa%0a0800080
Qoo oo oooo oo o oa oooo o

FIG. 5. Three-dimensional quasicrystal with the unit-sphere packing. The places where atoms have been taken out of the quasi-
crystal with the monatomic primitive decoration are marked with a cross. The quasicrystalline character of the sample has not
changed. Left side, initial state; right side, final state. Only minor fluctuations appear, caused by movements of the atoms to improve
their local potential energy.
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tuations, but they remain discrete; right side, structure factor. The diagrams for the initial state (upper part) and the final state (lower
part) demonstrate that the quasicrystalline long-range order is unaltered and similar to that of the primitive decoration.

for the width of the metastable valley of the monatomic
unit-sphere decoration. Therefore we displaced the
atoms of the unit-sphere packing randomly before relaxa-
tion. The bond-orientational displacement was chosen
isotropically, whereas for the radial displacement we used
a Gaussian distribution. If the average displacement is
increased to about 6% of the unit edge length, we note
the following properties of the initial state: There is so
much noise that the quasicrystalline structure has nearly
vanished in the projection (Fig. 7). The RDF (Fig. 8) has
lost its isolated peaks although there remain certain dis-
tinct shells and the structure appears not completely
amorphous. In the structure factor (Fig. 8) the quasicrys-
talline peaks are small and peaks greater than 30 recipro-
cal edge lengths cannot be seen due to the Debye-Wailer
factor produced by the noise.

If the average displacement is less than 6%, then in the
course of the relaxation pentagonal symmetry returns

with remarkable clarity (Fig. 7). The RDF (Fig. 8) now
has small discrete peaks whereas the coordination num-
ber remains constant. The quasicrystalline peaks in the
structure factor (Fig. 8) have acquired the height of the
perfect quasicrystalline ones, and the peaks greater than
30 wavelengths are seen again. During relaxation, the
icosahedral order increases slightly and the energy per
atom is lowered again from —2. 5 to —2.85. The original
pattern is restored completely.

But if the average displacement is chosen to be greater
than 7% of the unit length, the final state is amorphous,
although the initial state does not differ extremely from
the case of smaller displacements (Fig. 9). If we look for
the maximal displacement of the atoms in the initial state
we find some which are displaced by 40% of the unit
edge length and hence penetrate deep into the repulsive
range of other atoms. The energy per atom is only about—1.4 and the icosahedral parameter Q6 is changed from
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FIG. 7. Unit-sphere packing at low temperature {small noise, 6%). Atoms which have been lined up in the perfect quasicrystal are
now displaced individually. Left side, initial state with fluctuations caused by the random displacements; right side, final state, where
the Auctuations have disappeared and the atoms have returned to the position in the perfect state.
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FIG. 9. Unit-sphere packing at higher temperature (large noise, 8%). Left side, initial state; right side, final state. Although the

initial state is not very different from that of the quasicrystal with small noise, the structure has been changed completely into an

amorphous state.
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FIG. 10. Left side, radial distribution function of the unit-sphere packing with large noise. The shells of the initial state (upper
part) have disappeared. The final state (lower part) is amorphous; right side, structure factor of both states. The quasicrystalline
character disappears.
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0.17 to 0.11. The amorphous character of the final state
is revealed by the RDF (Fig. 10) as well as by the struc-
ture factor (Fig. 10). The energy per atom decreases dur-
ing relaxation to —2. 3 but remains higher than that of
the stable phase. The icosahedral order has disappeared.

These results show that the "basin of attraction" of the
metastable icosahedral configurations has a Pnite mea-
sure. Therefore it is not unlikely that a liquidlike initial
configuration relaxes to a quasicrystalline structure,
which would not be possible if the final state is in a "golf
hole. "

The basin of attraction is even larger than estimated
from the maximum amplitude e of the noise. This is be-
cause the noise was introduced to the initial "nonequili-
brium" configuration. Nevertheless, let us assume that
the relaxed quasicrystalline structure is stable against
fluctuations smaller or equal to e. Taking as elastic con-
stant E/tr we can determine a lower bound for the bar-
rier separating the relaxed configuration froin any other
locally stable configuration to be of the order of
b,E;„=E(e/o ) . Thus for temperatures for which kT is
much smaller than hE;„ the lifetiine of the relaxed
structure may become very large.

The results do not prove that real monatomic quasi-
crystals must exist, but for their existence these proper-
ties are necessary.

VI. THREE-DIMENSIONAL DIATOMIC SYSTEMS

Until now, monatomic quasicrystals have not been

discovered as well as monatomic metallic glasses. For
the latter this is due to the fact that the cooling rates
available today are too low. For the presently largest

cooling rates of about 10 K/sec the monatomic metals

still crystallize. From computer simulations it is estimat-

ed that cooling rates of 10' K/sec were required. For
intermediate rates a structure between crystalline and

amorphous may occur. Whether or not this structure is

quasicrystalline cannot be answered. It would be in-

teresting to perform molecular-dynamics simulations

with variables cooling rates.
We therefore investigated also diatomic quasicrystals

with respect to stability.
There are many possibilities to decorate a quasilattice.

We studied decorations which have been proposed for
aluminum-based icosahedral phases.

We will use two decorations derived by Henley and
Elser ' ' from periodic alloys. They involve the
Mackay icosahedra (MI} and the truncated icosahedra
(TI), also examined by Guyot and Audier in Refs. 31—33.
The decorations were slightly modified following Dubois
and Fruchart in Refs. 34 and 35.

The parameters to be fitted are now the bond lengths
o,t„ the potential ranges P,b, and the bonding strengths
(bond energies} E,b between atoms of types a and b. In
all cases we used optimized bond lengths and P,b =2tr,b.
In molecular-dynamics and Monte Carlo simulation stud-
ies (Refs. 7, 9, and 10}it is necessary to choose the bond
strength between di8'erent atoms to be greater than be-
tween equal atoms to avoid phase separations, and thus
often E,2 =2E» =2E22 is used. In our model the atoms

have very low mobility, and therefore phase separations
are almost impossible. Hence arbitrary values for E,b
can be taken, but this option was not examined here
when the system was stable. We used the same relations
as in Refs. 7, 9, and 10. Only in the case of unstable
decorations have we also chosen other relations between
the bond strengths, but stability was not dependent on
the specific set of bond strengths. Only the shape of the
peak of nearest-neighbor atoms in the radial distribution
function varied slightly.

A. Mackay icosahedra

1. Description of the decoration

In the decoration related to the MI model (Fig. 11}six
atoms of the first type are placed on the vertices of a pro-
late rhombohedron. The acute corners are left empty.
Six atoms of the second type are placed at the center of
the edges near the acute corners and six at the points di-
viding the long diagonal of the rhombic surface elements
in the ratio ~:1.

Once the prolate rhombohedra are filled with atoms,
then also the decoration of the oblate rhombohedron is
fixed. This simple form of decoration, however, turned
out to be very unstable and therefore was modified.

There are two atoms of short separation in the oblate
rhombohedron, namely those lying on a front and a back
face of the solid. From each pair we removed one
partner. There are also short bonds between atoms from
the edges and on the faces, together with voids in other
parts of the rhombohedron. We have removed the atoms
on the edges of the oblate rhombohedron, thereby also
changing the decoration of the prolate rhombohedra. By
this procedure the bond lengths are modified and binding
energy is increased, but the stability of the decoration is
not improved.

2. Results

The results of the relaxation are similar to those ob-
tained from the monatomic decoration with all vertices

FIG. 11. The prolate rhombohedron in the diatomic decora-
tions. Left side, MI decoration; right side, TI decoration. The
two types of atoms are drawn in different sizes. In the MI
decoration the rhombic diagonals are divided in the ratio v.:1.
In the TI decoration the major diagonal of the rhombohedron is
divided in the ratios v". 1:v.. The decoration of the oblate rhom-
bohedron follows from the common rhombs.
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FIG. 12. MI decoration, one prolate rhombohedron has been drawn. As in Fig. 11, different sizes of rings denote different types of
atoms. Left side, initial state; right side, final state. The initial order has decayed and the final state is amorphous. At the vertices

with perfect icosahedral symmetry, the structure seems to be more stable.

occupied: In the projection we see that the quasicrystal-
line structure vanishes although the final state does not
seem to be completely amorphous (Fig. 12). The relaxa-
tion is very slow; highly symmetrical vertices and their
environment remain fixed for many iterations. But the
radial distribution function (Fig. 13) is typical for an
amorphous material and so is the structure factor (Fig.
13). The energy of the quasicrystal, which has been only—1.02, decreases to —1.36 in the case of the original
decoration and from —1.46 to —1.84 in the case of the
modified one.

The reason for instability may be that the MI decora-
tion does not yield a dense packing of two types of
spheres for the oblate rhombohedron. The atoms move
from their initial positions into the voids.

B. Truncated icosahedra

1. Description of the decoration

The second type of decoration considered is related to
the TI model. One sort of atom is placed at the vertices

and on the middle of all edges. These surround vacancies
in the form of cages with centers on the principal diago-
nal at v:1:~. They are filled with atoms of the second type
(Fig. 11). The decoration of the oblate rhombohedron is
again determined by the adjoining prolate rhombohedra,
but now comprises a very dense packing of two types of
spheres, and we expect stability.

2. Results

A quasicrystal with the TI decoration remains stable as
seen by comparing the initial and the final state in Fig.
14. The radial distribution function (Fig. 15) and the
structure factor (Fig. 15) emphasize this conclusion.
There are only small fluctuations of the atoms around
their initial positions. The peaks in the radial distribu-
tion function are broadened slightly and the intensity of
the structure factor decreases by only a small amount.
The energy is lowered from —2. 35 to —2.37.
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FIG. 13. Left side, radial distribution function of the MI decoration. The two different types of atoms are not distinguished, but

the changes from the initial state (upper part) to the final state (lower part) can be immediately seen; right side, structure factor. The
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FIG. 14. TI decoration, one prolate rhombohedron has been drawn. The different types of atoms are indicated by different sizes of
rings as in Fig. 11. Left side, initial state; right side, final state. As can be seen from the discrete character of the picture, the struc-
ture is unaltered during relaxation.

C. Truncated icosahedra with noise

Also, for the stable diatomic decoration we investigat-
ed the degree of metastability by statistical displacement
of the atoms in the initial state.

Contrary to the monatomic stable decoration, no sharp
value for the mean displacement was found, which al-
lowed us to distinguish relaxation back to an ordered
state from decay to an amorphous state.

Even when the mean displacement was 25%%uo of the
edge length (which corresponds to about 50%%uo of some
atomic separations), and although the RDF and SF were
completely smeared out, after a sufficient number of
iteration steps (about 3000 or 4000) the order returned, to
our surprise, and the potential energy of the relaxed state
was nearly independent of the degree of displacement.
The characteristic peaks of the relaxed perfect quasicrys-
tal can be seen in the RDF and SF, whereas in the projec-

tion a rest of disorder is found.
Although the phenomenon is not yet understood com-

pletely, we suggest two possible interpretations: (i) the
truncated-icosahedron decoration represents a so-called
tetrahedrally close-packed (tcp) structure (Refs. 13 and
36), where all atoms arrange in almost perfect tetrahedra.
When the random displacements are applied some
tetrahedra are destroyed so that the quasicrystal contains
voids and interstitials. In the course of the relaxation
new tetrahedra may be formed, and thus the coordination
number (and therefore the potential energy) returns to
the value of the perfect quasicrystal. The tcp structure
appears highly degenerated. (ii) Before relaxing the
quasicrystal we had fitted the potential radii to the
geometry of the perfect Penrose pattern. Maybe our cal-
culations yield a hint that quasicrystalline order can grow
out of disorder if the atomic sizes are adjusted.
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VII. SUMMARY AND DISCUSSION

We have simulated the relaxation of quasicrystalline
structures by the method of steepest descent. In two di-
mensions, results obtained with the molecular-dynamics
method were confirmed. The monatomic quasicrystals
are unstable because there is an optimal packing for iden-
tical spheres. However, diatomic quasicrystals in two di-
mensions with the decoration of Landon et al. ' are
stable. Extending the method to three dimensions, we
find that a monatomic quasicrystal with all vertices occu-
pied is unstable because certain atoms with very short
separations disturb a unit-sphere packing. If one partner
of these pairs is removed, a stable decoration is obtained,
not only at 0 K, but also at higher temperatures. Thus
within the limitations of our model monatomic quasicrys-
tals can really exist. After examining diatomic quasicrys-
tals we can state that decorations related to the Mackay
icosahedra are unstable, whereas the truncated-
icosahedron decoration is stable.

During our calculations we found more and more that
the crucial criterion of stability of a quasicrystalline
decoration is the density of the packing of one or two

types of spheres. This fact can be understood by recalling
the properties of the potential we have used: the
Lennard-Jones potential is isotropic. Therefore it does
not prefer any bond-orientational symmetry. It favors
dense packings of spheres, because the denser a packing
is the more bonds per atom exist and the larger the bind-
ing energy per atom becomes.

Very recently Elswijk et al. determined the structure
of quasicrystals of the Al-Cu-Li type experimentally and
found that they can be described exactly with the TI
decoration involving a random distribution of Al and Cu
atoms on the edges and vertices of the rhombohedra. We
therefore conclude that our calculations do not only de-
scribe a rather artificial decoration but a realistic one and
can also contribute to the experimental discussion of the
structure of quasicrystals.
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