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Molecular-dynamics methods are used to model diffusion in a 2 =5 [100] Al tilt boundary and in

bulk. The diffusion coefficient D and activation energy Q for atoms in the boundary and in bulk are
calculated for several different Al empirical interatomic pair potentials. These include a Morse po-
tential, spline potentials 6tted to bulk experimental data (elastic constants, phonon spectra, etc.),
and a pseudopotential. Reasonable agreement is obtained with experimental diffusion values for Al,
although activation energies are low. There is also a wide variation in results from one potential to
another because the atomic motion is sensitive to the shape of the primary well or minimum of the
interatomic potential. Rescaling the data with rough estimates of the different bulk melting temper-
atures that each potential predicts reduces the discrepancy between potentials. This is shown to be
true for virtually any pair potential by calculating diffusion rates for Morse potentials with changing
potential-well depth, position, and width. The variations between potentials are also explained in a
quantitative sense by a simple calculation of potential-energy-barrier height for vacancy migration
in a bulk model. A method is given for using a linear relation between barrier height and melting

temperature to predict diffusion coefficients and general transport properties in grain boundaries
and bulk for any pair potential in any fcc metal.

I. INTRODUCTION

With the advent of faster computers in recent years,
many researchers have used the techniques of molecular
dynamics to simulate dynamic grain-boundary behavior.
This involves constructing a geometric model of the
boundary composed of several hundred to a few thousand
atoms and then following the trajectories of the atoms in
time as the simulation progresses. Studies have simulated
vacancy-diffusion mechanisms in a-Fe and Al boun-
daries, ' premelting grain-boundary phase transi-
tions, grain-boundary sliding and migration, segrega-
tion energies of impurities at boundaries, and crack
growth at boundaries due to applied stress. '

The common element in all work of this type is that to
perform a molecular-dynamics simulation a potential-
energy functional for the system is chosen, which, in
turn, determines the force acting on individual atoms.
For ease of calculation, this is often a pair potential (as in
Refs. I —8), so that the total force acting on an atom at
any instant is simply the sum of all pairwise interactions
between the atom and its near neighbors. The time-
consuming part of the simulation is integrating Newton's
equations of motion for the system, which requires know-
ing which atoms are close enough neighbors to a particu-
lar atom to interact with it. All the physics of such a
model is determined by the choice of energy functional or
pair potential, since after atom positions and velocities
are initialized, the resulting trajectories of the atoms in
time are deterministic.

For metals, a great variety of both theoretical and ex-
perimentally determined pair potentials exist in the litera-

ture. How the shapes of various potential functions {and
hence the force of interaction between atoms) influence
the simulated system is not always clear, since some po-
tentials have many rninirna and inflection points. For ex-
ample, a molecular-statics grain-boundary simulation
uses the potential function to minimize the energy of the
boundary and thus find its 0-K structure. Yet, even for
these calculations, which do not take dynamic properties
into account, the energy and structure of [100] twist
boundaries in Al (Ref. 10) and Au (Ref. 11) were found to
depend strongly on the choice of pair potential. Similar-
ly, in a review of grain-boundary melting studies, Pon-
tikis' noted that the conflicting results of different simu-
lations are due in part to the sensitivity of melting phe-
nornena on the choice of pair potential and cutoff radius
for interactions with near neighbors.

In this paper we present a systematic study of how
different pair potentials affect the dynamic properties of
atoms in a grain boundary by calculating the diffusion
coefficient D and activation energy Q in a bicrystal model
of a X=5 (013) tilt boundary for four Al pair potentials.
For comparison purposes, in addition to the bicrystal, a
bulk model is also simulated. We have focused our
efforts on understanding the dynamics of tilt boundaries
in Al because of the semiconductor industry's interest in
thin-film metallizations subject to diffusion-related relia-
bility problems (i.e., electromigration where tilt boun-
daries act as fast-difl'usion paths for migrating Al atoms),
but the results can be extended to any fcc system. Since
D and Q are fundamental measures of the relative free-
dom of atoms in a boundary to move about, the results
should also have relevance to more macroscopic effects
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such as the crack propagation or boundary sliding and
migration mentioned previously, insofar as they can be
modeled accurately with pair potentials.

However, it should be noted that the pair-potential ap-
proximation for fcc metals, though widely used, is not as
complete as density-functional techniques such as the
embedded-atom method (RAM) of Daw and Baskes, '

where the energy of an atom is a function of both a pair-
potential term and the electron density due to all other
atoms in the model. As derived by Foiles, ' the EAM en-

ergy can be approximated as a single effective pair poten-
tial by expanding the embedding functional in a Taylor
series and dropping three-body and higher-order terms.
The resulting pair potentials for several metals were
shown by Foiles to model liquid-metal properties well,
and are similar in shape to the Al pair potentials that will

be used in the following sections. However, the fuller
EAM description of the energy (which includes many-
body effects) is known to be more accurate for surfaces
(and grain boundaries) where the symmetry of the bulk
lattice is lost. While we are not aware of any molecular-
dynamics simulations using the EAM that have studied
diffusive motion at grain boundaries, it would be fruitful
to compare the results of such calculations to those in
this paper.

In Sec. II the details of our model and calculations are
outlined. This is followed in Sec. III by diffusion results
for several pair potentials and an analysis of the factors
that contribute to the observed differences. It was found
that rescaling the diffusion values by the melting temper-
ature of a simulated bulk model provided the most useful
correlation between potentials. In Sec. IV, to further test
this dependence, parameters in a simple Al Morse poten-
tial are varied and melting temperatures and diffusion
rates again calculated. Finally, the simulation melting
temperatures are coupled to simple calculations of the
potential-energy barrier height for vacancy migration in
the bulk to give a method for predicting D and Q in fcc
metals for any interatomic pair potential.

~Bulk Boundary Bulked

atoms are simply the fcc lattice sites. We modeled a cube
5ao on a side (a0=4.04 A in Al), containing 500 atoms,
and periodic in all three directions. Simulations for
larger bulk models gave similar results.

For a symmetric grain boundary, the first-order ap-
proximation for the starting-atom locations are the lattice
sites of the appropriate coincidence-site-lattice (CSL)
model. We chose to simulate the frequently cited X=5
(013) boundary, which has a tilt angle of 8=36.9'. A
representation of the model is shown in Fig. 1, where the
tilt axis is along the x direction. The model is periodic in
the x and y directions, but has a wall of atoms held fixed
on either end in the z direction, analogous to the bicrystal
model of Kwok, Yip, and Ho. ' This effectively simulates
an infinite tilt angle plane (an x-y plane} in the center of
the model, sandwiched between (013) planes of atoms in
roughly a bulk configuration. The kite-shaped structure
outlined in the center boundary region represents the
long-range periodicity of the boundary. The lighter-
colored atoms are mobile in the dynamic portion of the
simulation; the darker atoms are immobile. The dynamic
region of the model contains 600 atoms and has dimen-
sions as follows: 5ao in the x direction, (3~10/2)ao in
the y direction, and (21/&10)ao in the z direction. The
fixed walls contain enough (013}layers of atoms to extend
beyond the cutoff length of the particular pair potential
being used, so that a mobile atom near the fixed wall in-
teracts with perfect bulk solid. Typically this requires
-300 fixed atoms, so that the total bicrystal model size is
N —=900 atoms. In both the bicrystal and bulk model all
three dimensions are -20 A in length, which was chosen
so as to be at least 3 times longer than the cutoff length of
any of the pair potentials.

II. MODEL AND CALCULATIONS

The basic method for performing a molecular-
dynamics simulation on an atomic solid is well known. A
small number of atoms (usually a few thousand at most)
are placed in a startng configuration that represents the
system being modeled. Appropriate border conditions
for the simulation box are chosen, as well as an energy
functional that describes the total energy of the system as
a function of individual atomic positions. Then the ener-

gy of the ensemble of atoms is minimized (a molecular-
statics calculation} to find a relaxed 0-K equilibrium posi-
tion for each atom. The molecular-dynamics portion of
the simulation is performed by giving each atom a ran-
dom velocity and integrating Newton's equations of
motion for the system of atoms. The output of the simu-
1ation is the trajectories in time of each atom, from which
various dynamic quantities of interest can be calculated.
Within this framework, two models, one for bulk and one
for a grain boundary, were simulated.

For a bulk model the starting positions for the Al

V
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Z

FIG. 1. Three-dimensional representation of a X=5 (013)
coincidence tilt boundary in a fcc lattice. The bicrystal model is
periodic only in the x and y directions. The lighter-colored
atoms move during the dynamic part of the simulation; the
darker ones are held fixed.
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Because the presence of the fixed walls of atoms is a
nonphysical restriction, a few comments are in order.
Their effect is to damp the motion of atoms near the
walls. A method that avoids this is that of Broughton
and Gilmer, who simulated coincidence twin boundaries.
The presence of a second boundary oriented opposite to
the first means the ends of the simulation box are now of
similar orientation and thus the box can be periodic in all
three dimensions. We performed our simulations on such
a model and found similar diffusion coefficients for the
boundary regions as in our simpler bicrystal model.
However, in the twin model the boundaries have a rela-
tively low activation energy for migrating in the z direc-
tion, which makes it diScult to accumulate good statis-
tics and calculate a consistent diffusion coef6cient for
grain-boundary atoms. In some cases the two boundaries
would annihilate each other, leaving the entire model in a
bulk configuration. Thus in the bicrystal model, the walls
of fixed atoms, while nonphysical, have the beneficial
effect of keeping the grain boundary centered where good
statistics for the diffusion can be generated. A second
type of border condition, used by Nguyen et a/. , in-
volves replacing the fixed walls with duplicates of atoms
from the dynamic region, so that each border atom
moves in step with a dynamic companion atom. We did
not implement this technique, but instead simulated the
model with successively larger z dimensions while moni-
toring the motion of the grain-boundary atoms. The
smallest z dimension was chosen (for speed of calculation)
that did not constrain the atoms in the grain boundary.

To find the static 0-K structure for the bicrystal model,
the ideal atom positions given by the CSL model must be
relaxed so each atom feels no force. The forces between
atoms are derived from the pair-potential approximation
for the system's energy 4, written as

N4= g gp(rj ),
i=1 j&i

where P is the energy of interaction between two atoms i
and j separated by a distance r;J, and the sum is over all
pairwise interactions in the model. The energy was mini-
mized using conjugate-gradient techniques, allowing the
bicrystal to expand or contract in the z direction (perpen-
dicular to the boundary) as well as allowing each atom to
move relative to its neighbors. The amount of z-direction
expansion which gave an energy minimum varied for the
different potentials from —0.026ao to 0.225ao. In addi-
tion, a (013) plane of atoms at the boundary was removed
to give a lower-energy state, as others have noted is
proper for the X=5 fcc boundary.

The dynamic part of the simulation was performed for
constant X, volume V, and energy E, consistent with the
rnicrocanonical ensemble. At time t =0 each atom was
given a random velocity consistent with a total system
energy chosen so that the system would equilibrate at a
desired temperature. The lattice was also expanded by an
amount appropriate for that temperature and the linear
thermal-expansion coefficient for Al (a=25 X 10 /K),
so that at each temperature the lattice spacing matched
the experimental value for bulk Al. While this did not

(bicrystal model),
4Nt

(2)N

g (x, —x, ) +(y, —y, ) +(z, —z,. )2

i=1D=
6Nt

(bulk model),
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FIG. 2. Atom trajectories for one (yz) plane (see Fig. 1) of the

Al grain boundary simulated for —11 psec (3000 time steps) at
800 K. The circles represent initial t =0 positions of the atoms;
the lines are their trajectories in time. Most of the atomic
diffusion occurs in the center grain-boundary region.

keep the pressure constant across a wide temperature
range for all the potentials, doing so in some cases would
have required a nonlinear thermal-expansion coefficient.
Also, the actual value of the calculated pressure seemed
to be an artifact of the particular potential used, so that
this method allowed more consistency in comparing re-
sults between potentials.

For computational speed, Newton's equations of
motion for the system were integrated by the simple leap-
frog method, using a time step equal to —,', of the period T
of highest-frequency atomic vibration as given by
T=hlksSD, where ii and ks are the usual constants,
and 8& is the Debye temperature for Al (428 K). This
gives a time step of 3.74X 10 ' sec. Typically, the simu-
lation conserved energy to within 1% over 1000 time
steps; the velocities were rescaled periodically by a small
amount to keep the total energy exactly constant.

As the simulation progressed, the trajectory of each
atom was generated. A sample set of trajectories for a
(100) plane of the bicrystal model is shown in Fig. 2.
While atoms away from the grain boundary primarily os-
cillate around their lattice sites, in the grain boundary
atomic jumps to near-neighbor sites and in the ix direc-
tion, as well as generalized diffusive motion, are evident.
This motion allows the diffusion coeScient D in the two
models to be calculated from the mean-square displace-
ment of individual atoms by the equations

N

g(x; —x;)+(y; —y;)
D=
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where t is the time elapsed in the simulation, (x, ,y, ,z, )

is the original t =0 position of atom i, and (x;,y;, z;) is its
current position. In the limit of long simulation times,
the slope of the mean-square displacement-versus-time
data should be constant for a region undergoing
random-walk diffusion; hence the diffusion coefficient is
defined for the region. For the bulk model, statistics
could be accumulated for all N =500 atoms. For the bi-
crystal model the boundary was defined as being seven
(013) planes in width (-9A), which encompassed
N = 180 atoms. Only two of the three dimensions
(x and y) were included in the bicrystal part of Eq. (2)
since diffusion perpendicular to the boundary was typi-
cally 50% less than in the plane of the boundary. Simula-
tion runs were also limited to between 25000 and 50000
time steps (-100 psec), so that mixing of grain-boundary
atoms with atoms from the bulk regions of the model was
negligible. This, coupled with the exclusion of z-direction
motion in Eq. (2) and the lack of z-direction migration of
the boundary itself (as noted previously), allowed a con-
sistent diffusion coefficient to be calculated for grain-
boundary atoms. An example of mean-square displace-
ment data for the bicrystal model is shown in Fig. 3(a}.

It should be noted that D in an asymmetric region like
a grain boundary is actually a tensor quantity. Equation
(2} for the bicrystal is an average over two of the tensor
components. In contrast to the bicrystal simulation of
Kwok, et al. of a X=5 a-Fe tilt boundary, ' we did not

(a)
sf

15

observe diffusion in the boundary plane to be greater
parallel to the tilt axis than perpendicular to it. This was
true for all of the potentials studied. This may be because
of differences between fcc and bcc diffusion, or because
molecular-dynamics simulation times are not long
enough to distinguish between the various directions of
diffusion. However, runs as long as those in Ref. 1 were
performed (up to 400 psec) without a statistically
significant difference being detected.

The activation energy Q for atomic motion in the
boundary region and in bulk was measured by calculating
D at various temperatures and fitting to the general
diffusion relation

D =Doexp
B

(3)

which yields Q and the prefactor Do. If a vacancy mech-
anism for the diffusive motion is assumed, then Q is the
sum of a migration energy Q and a vacancy-formation
energy Qf. In an attempt to extract the Q portion of
the activation energy, the jurnp frequency for atomic
hopping as a function of temperature was monitored.
This requires defining what is meant by a "jump" from
one lattice site to another. We proceeded analogously to
Kwok et al. ' by assigning a spherical volume to each lat-
tice site, equal in diameter to —

„

the nearest-neighbor dis-
tance in the bulk lattice. As the simulation progressed,
an atom was flagged when it moved from its current
sphere to a second one on another lattice site. If it stayed
inside the new sphere for two vibrational periods (60 time
steps} or moved on to a third sphere, it was assumed to
have "jumped" to the second site. This could only hap-
pen when the new site was unoccupied (i.e., vacancy
diffusion) or by a kind of cooperative mechanism where
several atoms changed lattice sites more or less simul-
taneously. By counting the jumps and vacancies that
were created, the quantity I, the average jump frequency
per vacancy, was calculated as a function of temperature.
The relation

0
0 40

lime (peec) I =I oexp
kqT

(4)
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FIG. 3. (a) Mean-square displacement of atoms in the grain-
boundary region of the bicrystal model vs simulation time at
several temperatures. The linear data mean random-walk
diffusion is taking place; the slopes of the straight-line fits are
proportional to the diffusion coeScient for the region. (b) Melt-
ing factor S(K) calculated across the z direction of the bicrystal
model (see Fig. 1) for the same set of temperatures as in (a). The
"dip" in the center of each curve is increased grain-boundary
disordering as the temperature rises.

z

allows the migration energy Q and prefactor I a (which
is related to an attempt frequency) to be extracted. The
difficulty with this method is that I must be calculated as
an average over all vacancy trajectories active in the
model at a particular time. At lower temperatures (-—,

'

the melting temperature T ) only one or two vacancies
were typically created, and this is not difficult. However,
at temperatures nearer T the grain boundary becomes
very disordered (a more liquidlike diffusion begins to take
place), and calculating the vacancy concentration be-
comes ambiguous.

A final calculation that proved useful was to monitor
the atomic disordering by calculating the structure or
melting factor S at different locations within the bulk and
bicrystal models. This is given by

2
Z

s(K,z)=
z X ezp((K r, i

N, J —i
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III. RESULTS AND ANALYSIS

There are a wide variety of Al interatomic pair poten-
tials available in the literature. For this study one pseu-
dopotential and three empirical potentials were chosen as
representative of the different methods typically em-

ployed in deriving a pair-potential function. They are
plotted in Fig. 4 as potential energy P for two atoms
separated by a distance r.

The first potential, A11, is the pseudopotential of
Dagens and Rasolt. ' Although it extends indefinitely,
for computational purposes it was truncated where it
crosses the axis at a distance r =4.832 A. The second
potential, A12, is due to Esterling and Swaroop, ' who
fitted piecewise fourth-order polynomials to experimental
Al phonon spectra. The potential A13 is the standard
semiempirical Morse potential for Al, with parameters
chosen so that it gives the correct experimental compres-

0.3

0.2-

0.1-

1 pseudopotential

2 Esterling, Swaroop

0
0.0

-0.2—
Melius

0 3 . s . a

2.0 2.5 3.0
s ~ ~ ~ ~

3.5 4.0 4.5 5.0 5.5 6.0

FIG. 4. Interatomic pair potentials for Al. References are
given in the text. The nearest-neighbor distance in the fcc Al
lattice is 2.86 A.

where K is the reciprocal-lattice vector (4n. /ao)(1, 0,0), E,
is the number of atoms in a thin (xy) planar slab of the
model at a given z position, r is the position of atom j,
and ( ) denotes a time average. The value of S ranges
from 1.0 for a perfectly ordered solid to 0.0 for a perfect-
ly disordered or melted one. An example of these data
for different temperatures in the bicrystal model is shown
in Fig. 3(b), calculated from left to right across the grain
boundary (so that the boundary is in the center of the
plot). The curves for successively higher temperatures
show increased disordering (and finally melting} in the
boundary region, while the adjacent bulk regions show
only a slight decrease in S, consistent with an increased
amplitude of vibration by those atoms around their lat-
tice sites (but no melting). At lower temperatures the
only effect of the fixed walls is a slight upturn of the data
at the ends of each curve, meaning the amplitude of vi-
bration is less for atoms nearest the wall, as anticipated.
At higher temperatures the width of the melted region is
restricted by the presence of the fixed walls; however, as
mentioned previously, motion in the grain boundary itself
is not restricted.

sibility factor, energy of vacancy formation, and lattice
constant for the bulk material. Parameter values for Al
derived by Cotteril and Doyama' were used for a poten-
tial that extends to the second-nearest-neighbor distance
(4.04 A) in the Al lattice. It was then truncated and shift-
ed so that it went to zero at that distance. The final po-
tential, A14, due to Baskes and Melius, ' is a piecewise
cubic spline fit to various experimentally determined bulk
properties, including the energies of vacancy formation
and migration, the elastic constants, sad the stacking-
fault energy.

All the potential functions, when applied to a group of
atoms, include a volume-dependent term. In constant
NVE molecular dynamics this term is ignored since the
volume is held fixed. However, we performed an analysis
due to Najafabadi and Kalonji' which involves calculat-
ing the response of a bulk crystal to tensile stress applied
along one crystal axis. It was found that of the four po-
tentials, only the More potential, A13, was in equilibrium
(zero stress and an energy minimum} at the correct lattice
spacing of 4.04 A. This means the other three potentials
require the volume-dependent term to be in static equilib-
rium with the proper fcc lattice as the minimum-energy
configuration. This suggests caution in interpreting
simulation results across a range of temperatures (which
requires changing the system volume); however, this is a
problem inherent in the pair-potential approach.

From Fig. 4 it is also clear that while all four potentials
are similar in general shape, there is considerable varia-
tion in the position and depth of the primary potential
well near the nearest-neighbor distance (2.86 A). This is
particularly evident when the interatomic force
F(r) = (d/dr)P(r) is—calculated. The four Al potentials
give widely differing force interactions due to the many
inflection points and Iocal minima some of them contain.
Thus one would expect there might be a significant
dependence of the dynamic properties of simulated Al on
these differences in the force functions.

The diffusion data resulting from the simulation for
both the bicrystal and bulk model over a range of temper-
atures for each potential are shown in Fig. 5 plotted
versus reciprocal temperature and normalized by the ex-
perimental melting temperature of Al (930 K). The open
symbols are grain-boundary diffusion data for each of the
four potentials; the corresponding solid symbols are for
bulk. Typically, two runs of 25000 time steps with
different initial conditions were performed at each tem-
perature. This gave a statistical variation of roughly a
factor of 2 in the diffusion coefficient at lower tempera-
tures due to the random-walk nature of the diffusion.
Longer runs (100000+) of time steps were no better in
this respect, so multiple short runs were a more efficient
means of generating good data. Each set of data in Fig. 5
is fitted by a straight line so that Do and Q can be extract-
ed using Eq. (3). These values are listed in Table I, as are
results for Q as calculated by Eq. (4) and the simulation
data for atom-hop frequencies. In all but one case,
Q & Q as expected. The one exception (bulk A13) is due
to the extraction of both Q and Q from the very limited
amount of bulk diffusion the A13 potential allows, even
for runs at temperatures above 930 K (as seen in Fig. 5).
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FIG. 5. Simulated diffusion data for the four potentials of
Fig. 4 plotted vs reciprocal temperature. Open symbols are for
grain-boundary diffusion in the 2= 5 bicrystal model; the corre-
sponding solid symbols are for diffusion in the bulk model.

For runs of 25000 time steps both the A13 and A14 po-
tentials allowed only one to four diffusive hops at the
lower temperatures and about ten at the higher. In con-
trast, runs for the A11 and A12 potentials in bulk pro-
duced more than 50 hops at the same temperatures, and
runs for the grain-boundary model typically produced
hundreds or even thousands of hops. Hence, the Q and

Q values for bulk A13 and A14 are coarser estimates
than the other activation energies in the table.

Several other comments concerning the data of Fig. 5
and Table I are in order. First, Gjostein and Hwang
and Balluffi ' give compilations of experimental diffusion
data in grain boundary and bulk for many fcc metals
plotted versus the homologous temperature T /T. At
T for all fcc metals, D is —1.0X10 cm /sec for
grain-boundary diffusion and -1.0X10 cm /sec for
bulk diffusion. The activation energy Q for Al from these
two references, as well as electromigration experiments
performed on pure-Al thin films, is 0.4-0.7 eV for
grain-boundary diffusion and 1.2-1.7 eV for bulk. How-
ever, the spread in data in the Hwang-Balluffi compila-
tion of grain-boundary data is such that at a given tem-
perature there is at least a (2—3)-order-of-magnitude un-
certainty in D. Comparing Fig. 5 and Table I to these
numbers shows that much of the simulation data is of the
right order of magnitude near the melting temperature,
but that the activation energies are somewhat low. One
reason for this, particularly for the bulk data, is that at
the beginning of each simulation run one atom was re-

moved from the model (bicrystal and bulk) so as to pro-
vide an initial vacancy for diffusion to begin. In the bi-
crystal model, runs with and without this initial vacancy
gave very similar diffusion results. This was true for the
bulk model at temperatures near T, but for T( —

—,'T
atoms in the bulk model without the initial vacancy
would not diffuse (i.e., there was not sufficien energy to
create the first vacancy). This means that the bulk data
overestimate the true diffusion rate, at least at lower tern-
peratures, and hence the extracted activation energy is
also lower. This is somewhat fortuitous in that the lower
level of detectability of the simulation is D —=3.0X10
cm /sec [one nearest-neighbor hop in 25000 time steps
for an (N =500)-atom model], but to be consistent with
the other diffusion data, this overestimation is not
corrected for in the raw data of Fig. 5.

The following correlation between the data of Fig. 5
and the pair potentials of Fig. 4 can also be noted. Poten-
tial A11 has the shallowest potential well at the nearest-
neighbor distance (2.86 A) and also the fastest diffusion
rate at a given temperature. Conversely, A14 has the
deepest well and slowest difFusion rate. This matches the
intuitive model of an atom hop to an adjacent vacancy
being moderated by the height of the potential barrier
created primarily by its near neighbors. To test the idea
that the inner repulsive part of the potential is the most
critical, the bicrystal model was simulated using All (the
pseudopotential) with several cutoff values so that the po-
tential ranged in extent from 3.99 to 6.65 A. Almost no
variation in the diffusion coefficient was found, meaning
the "tail" of the potential has little effect on the diffusion
to first order.

The analysis can be made more quantitative in the fol-
lowing way. We observed that all four potentials gave
similar melting-factor, S(K), data for disorder in the
grain-boundary region over a range of temperatures, as in
Fig. 3(b). However, the temperature at which disordering
took place varied widely between potentials. Further-
more, if "melting" of the grain-boundary region was
defined as an S(K) value of 0.1 [a temperature of —800
K in Fig. 3(b)], then all the potentials showed similar
grain-boundary diffusion rates at their respective "melt"
temperatures. This suggested that rescaling the diffusion
data by a bulk melting temperature unique to each poten-
tial would reduce the spread of data in Fig. 5.

To estimate the bulk T induced by each pair poten-
tial, S (K) from Eq. (5) was calculated for the bulk model.

TABLE I. DifFusion prefactors Do and activation energies Q for each of the four Al potentials extracted from the data of Fig. 5 for
both grain-boundary and bulk diffusion. The method for estimating the migration energies Q and bulk melting temperatures T is
discussed in the text.

Potential

Grain boundary

QD0
(cm /sec) (e&) (e&)

Do
(cm'/sec) (eV)

Bulk

Q
(e&)

A11
A12
A13
A14

5.98 x 10-'
6.07 x 10-'
7.07 x 10-'
6.64x 10-'

0.183
0.424
0.554
0.455

0.088
0.251
0.229
0.239

6.55 x10-'
2.95 x 10-'
6.81 x 10
8.65x10 '

0.238
0.664
0.685
1.24

0.229
0.552
1.06
1.01

900
1200
1600
1700
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FIG. 6. Melting factor S(K) for nine simulation runs in the
bulk model for the pseudopotential of Fig. 4. Each run began at
an incrementally higher energy; the equilibrated temperature
for each (in K) is listed at the top of the plot. This potential
gives a disordering or melting at —870 K (experimental T for
Al is 930 K). The temperature plateau between runs 6 and 7 in-

dicates energy has gone into disordering the lattice (increased

entropy).
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FIG. 7. Simulated diffusion data of Fig. 5 replotted vs re-
ciprocal temperature, but normalized by the T appropriate to
each potential (see Table I). The meaning of the symbols is the
same as in Fig. 5. Within an order-of-magnitude variation, all
grain-boundary and bulk diffusion values now lie on the same
lines.

Figure 6 is an example for the pseudopotential A11. Nine
runs of the simulation were made at incrementally higher
initial energies as shown along the x axis. During each
run the model was allowed to equilibrate for several
thousand time steps at the temperature shown at the top
of each vertical segment. Within each segment, the melt-
ing factor across one dimension of the simulation cube is
plotted. The trend of the data is clear: as the tempera-
ture increases, so does disorder, until at a temperature of
T —=870 K there is a sharp transition to a disordered
state (between runs 6 and 7). Although the total energy is
difFerent for the two runs, the temperature is almost
equal, which means the added energy went into disorder-
ing the bulk solid (a phase transition). This is, of course,
not the best way to measure a melting temperature, since

the constant-volume constraint surely affects the result,
and superheating of the crystal structure (past the real
melting point of the solid) is known to be a problem for
molecular dynamics. However, the simulation was per-
formed for larger bulk models (up to 1372 atoms} with
the same results for T, so that it is at least a rough esti-
mate of the melting temperature consistent with the NVE
ensemble. Rounded values of T thus obtained for the
four Al potentials are listed in Table I and range from
close to the experimental value of 930 K for A11 to 1700
K for A14.

Using these values, the diffusion data of Fig. 5 were re-
plotted versus the T /T ratio appropriate for each po-
tential. The results are shown in Fig. 7. The variation
between data for the different potentials is now less than
an order of magnitude, as compared to the 2 —3 orders of
magnitude before. The equation for the fitted line for the
grain-boundary diffusion is D=D& exp[ —Q*(T /T)],
where Do =1.54X10 cm /sec and Q'=3. 26. The
bulk data are 6tted by the same equation with

Do =3.11X10 cm /sec and Q*=4.56.

IV. POTENTIAL PARAMETERS
AND CONCLUSIONS

To test the generality of the preceding analysis, the
effect of adapting the shape of the A13 Morse potential
was simulated. The equation for the Morse potential is

(6)

where the three free parameters in the potential are $0,
which determines the depth of the potential well; ro,
which sets its position; and a, which determines its steep-
ness. By adjusting any or all of the parameters, the shape
of the potential function and hence the interaction force
of an atom with its near neighbors can be tailored. To
isolate their effects, each parameter was varied over a
small range of values centered on $0=0. 12 eV, r0=2. 86
A, and a=2.35 A ' as used in the A13 formulation of
the Morse potential. ' Each adapted potential was used in
the bier ystal model to calculate a grain-boundary
diffusion coeScient at 900 K. The results are shown in
Fig. 8 as three curves, one for each of the parameters.
The units along the x axis signify that each parameter is
varying linearly between the values shown at each end of
the curves. The point common to all three curves is for
parameter values of the A13 potential. We note that the
general shape of the curves matches one's intuition re-
garding the effect of Eq. (6}on atomic motion. For exam-
ple, a linear change in $0 changes the potential barrier
height linearly. Since the atqms are thermally activated
to cross the barrier, a linearly increasing barrier height
implies an exponential falloff in the diffusion. Hence the
Po curve in Fig. 8 is linear on the logarithmic plot. Simi-
larly, since ro appears in the exponent of Eq. (6), a linear
increase in ro gives an exponential increase in the barrier
height. This should give a faster-than-linear falloff in the
diffusion rate for increasing ro, as is indeed the case in
Fig. 8. The same analysis should hold for cz since it also
appears in the exponent of Eq. (6). However, the a curve
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The point common to all three curves is for rp=2. 86 A,
$0=0.12 eV, and a=2. 35 A (the standard values for the A13

Morse potential truncated at the second-nearest-neighbor dis-

tance).

shows only a linear increase in diffusion for decreasing a.
Bulk melting temperatures for each of the 12 adapted

Morse potentials were estimated from the bulk S(K)
data as in the preceding section. As before, each poten-
tial showed a melting transition at a specific T, which,
for the 12 potentials, ranged from 500 to 3000 K. When
the diffusion data of Fig. 8 were plotted versus a norrnal-
ized T /T, all 12 values fell nearly perfectly on the
grain-boundary line of Fig. 7, with even less spread than
the diffusion data of the original four Al potentials. This
is evidence that the curves of Fig. 7 are, in a sense,
universal relations representing normalized diffusion for
any potential that can be constructed, physical or not, for
the Al bicrystal and bulk models.

To carry the analysis one step further, a relation be-
tween potential barrier height and T was sought that
would enable the diffusion properties of a potential to be
predicted easily. An analog is the empirical relation not-
ed by Shewmon between activation energy and melting
temperature, which holds for many metals and is of the
form Q/T =K, with X a constant. The barrier height
in the bulk model for an atom to jump to an adjacent va-

cancy is the difference between its energy on its lattice
site and that on the saddle point of the barrier (midway
between the two lattice sites). We first calculated these
energies by placing atom i at one of these locations (a lat-
tice site adjacent to a vacancy or on the saddle point) and
relaxing the positions of the remaining atoms around it
with a conjugate-gradients algorithm to rninirnize the to-
tal energy of the model. The height of the energy barrier
was then calculated by the sum of interactions g ~,P(r,,).
for atom i with all other atoms in the model. When cal-
culated for several different potentials, this gave a rough-
ly linear relation between barrier height and T . Howev-
er, surprisingly, a much better correlation was achieved
for the same calculation done without relaxing the sur-
rounding atoms (and has the advantage of being simpler

to implement as well). First, the bulk lattice was expand-
ed by a factor 1+aT, where a is the thermal-expansion
coeScient for Al, the same as when the molecular-
dynamics simulation is performed. Then the sum of
P(r; ) for atom i interacting with its neighbors (all on
their unrelaxed perfect lattice sites) is done for atom i at
the saddle point and its original lattice site (adjacent to a
nearest-neighbor vacancy). The difference between the
two energies is Qsn, a static barrier height of sorts. The
results of this calculation for each of the four original Al
potentials and the 12 adapted Morse potentials versus
their respective melting temperatures T are shown in

Fig. 9. It can be seen that within an error of +200 K all

the values fall on the same line, which, by analogy with
the Shewmon relation, is given by the equation
T =(1918 K/eV)Qsa —(102.5 K). We believe this is

again a universal relation that holds for all Al potentials.
Its significance is that it that it can be used to correlate
simulation results between two different potentials or,
indeed, to predict simulation results for any potential in
the following way. Given a particular pair-potential
function, the barrier calculation outlined above can be
done over a range of lattice expansions (which corre-
spond to different temperatures). This generates a curve
similar to the dotted line in Fig. 9. This particular line is
for the A13 Morse potential. The point where the dotted
line crosses the solid line gives a rough estimate of the
melting temperature that potential will induce in a bulk
sample (within the NVE constraints mentioned previous-
ly). Once T is known, the diffusion at any temperature
in the grain boundary or bulk can be estimated from the
curves in Fig. 7. Thus, a simple static calculation of the
barrier height Qsa yields dynamic diffusion results
without the need to perform the more time-consuming
dynamic simulation. Furthermore, although the work
presented here has all been for Al potentials, it can easily
be extended to other fcc metals since the only quantity

3000—

2500

2000

E

1500

1000

-AI4

rse r
0

rse f
rse u

500
I

0.5
I

1.0 1.5
Barrier Height Q (eV)SB

FIG. 9. Melting temperature plotted vs barrier height for
bulk vacancy diffusion (calculation explained in the text) for
each of the four Al potentials of Fig. 4 and for the 12 adapted
Morse potentials of Fig. 8. The significance of the dotted line is
discussed in the text.
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relative to the pair potential appearing in the molecular-
dynamics equations for the atomic motion is a factor of
Flm, F being the interatomic force dg—ldr and m the
atomic mass of the simulated material. If the interatomic
force derived from any potential is written in reduced
units of eV/ao (where ao is the lattice constant of the
metal} and scaled by the mass m, a homologous Al poten-
tial can be derived. The above method would then pre-
dict the new potential s diffusive properties. Hence,
grain-boundary and bulk diffusion rates can be predicted
for any fcc material and any pair potential.

In summary, idealized models of a X=5 (013} tilt
boundary bicrystal and a bulk solid have been used to
simulate diffusion at grain boundaries and in bulk via the
techniques of molecular dynamics. We have shown the
choice of interatomic pair potential to be a critical factor
in determining the mobility of diffusing atoms. In partic-
ular, diffusion coefficients can vary by 3 orders of magni-
tude for simulations at the same temperature with
different potentials. This is because the shape of the prin-
cipal potential well differs widely for different pair poten-
tials, and its depth, width, and position affect the ability
of an atom to diffuse past its neighbors.

Using the structure factor S to determine the melting
temperature T that a potential induces in a bulk model
correlates the results of different potentials. Just as
diffusion rates and other dynamic properties of most bulk
solids scale with their relative melting temperatures, so
too does each potential's respective T normalize the
diffusion results. This was found to be true for several Al
potentials from the literature as well as for a set of adapt-
ed Morse potentials. By calculating the height of the po-
tential barrier that each pair potential creates for a
diffusing atom in a static bulk model, a universal relation
between T and the barrier height Qsii for each potential
was found. This enables the diffusive properties of any
potentia1 for any fcc material to be predicted without
resorting to a time-consuming full-scale molecular-
dynamics simulation. Because the diffusion of atoms un-
derlies many dynamic effects, such as crack formation
and propagation and electromigration, it should be possi-
ble to extrapolate the effect of the choice of pair potential
on those kinds of simulation as well. We are not certain if
this same relation between Qsa and T applies to bcc
metals since the diffusion mechanisms may well be
different. Also, we have only presented results for a X=5
boundary; we are currently performing dynamic simula-

tion of diffusion in tilt boundaries of varying geometry to
see if similar relations can be derived.

Finally, as to the question of which pair potential is
"best" in the dynamic sense, no easy answer can be given.
None of the four potentials studied here gives totally sa-
tisfactory diffusion rates across a wide range of tempera-
tures in grain boundary and bulk when compared to ex-
periment. Our results indicate that it is perhaps more im-

portant to be able to compare results between different
pair potentials than to interpret the magnitude of a par-
ticular simulation's result, since that can be an artifact of
the pair potential used. (A side benefit of this fact is that,
in practice, it should be possible to use very-short-range
potentials that induce more diffusion to speed up lengthy
dynamic calculations, and then map the results to more
realistic potentials). This is likely a Saw inherent in the
pair-potential approximation and the constraints of NVE
molecular dynamics. Recent work by Adams et al. us-

ing the embedded-atom method in a molecular-statics
calculation to calculate activation energies, and thus
deduce bulk diffusion rates for a variety of transition met-
als, gave good results when compared to experiment.
Since, as noted in the Introduction, the EAM has advan-
tages over pair potentials in describing grain-boundary
interactions, it can be hoped that full EAM dynamic
simulations of boundary diffusion will yield more accu-
rate results than seem possible within the pair-potential
approximation.
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