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Ginzburg-Landau theory of diamagnetic phase transitions in a quasi-two-dimensional electron gas
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A microscopic derivation of the coefficients of the Ginzburg-Landau equation for the diamag-

netic phase transition into a two-dimensional Condon-domain state is presented. Explicit expres-

sions for the critical temperature and for the temperature-dependent coherence length are ob-

tained for the first time. The effect of critical fluctuations on the diamagnetic susceptibility above

the critical temperature is calculated and the experimental feasibility of observing this effect is

briefly discussed.

It is well known that normal metals under the condi-
tions of strong de Haas-van Alphen effects may undergo a
diamagnetic phase transition to Condon domains. ' A few
years ago it was pointed out that in a quasi-two-dimen-
sional dense electron gas this diamagnetic instability may
pin the chemical potential between Landau levels. This
will drive a quantum Hall effect (QHE) within a single
domain —an ideally conducting phase (ICP). In contrast
to the conventional QHE, where the chemical potential is
pinned in the Landau gap by disorder, in the ICP state
each phase plays the role of an electron reservoir for the
other phase, keeping the chemical potential fixed in a
midgap position. This is clearly an intrinsic QHE.

Condon domains can be observed as line splitting in nu-
clear magnetic resonance. In Ref. 5 it was suggested
that the nondissipative nature of the ICP state can be
verified by the measurement of the spin-lattice relaxation
time T ~ (8) due to the hyperfine interaction between the
conduction-electron spins and the nuclear spins. The ex-
perimental feasibility of NMR in two-dimensional (2D)
electron gases was demonstrated for the first time in Ref.
6. Since within an ideally conducting phase the nuclear
spin-lattice relaxation time T ~ , the relaxation rate of
the ~hole sample is dominated by the relaxation processes
within the domain walls.

The interpretation of such an experiment requires the
knowledge of the local field 8 within a domain wall. The
calculation of this 6eld in the general case, where the tem-
perature is far below the critical temperature, is not an
easy problem. The problem can be simplified consider-
ably, however, near the critical temperature by using a
Ginzburg-Landau- (GL-) like expansion of the thermo-
dynamic potential. In the existing theory of the Condon-
domain walls, the coefBcients of the GL free-energy
functional are not known explicitly. In two-dimensional
electron gas, ho~ever, the free energy, magnetization, and
susceptibility for the homogeneous system could be calcu-
lated with an exponential cs:exp( —h, ta, /ksT) accura-
cy. ' Using these analytical expressions, we construct
here a Ginzburg-Landau expansion for diamagnetic phase
transitions in 2D electron gases.

Our model system consists of an anisotropic free-
electron gas in which the easy axes (x-y) are perpendicu-
lar to a uniform static magnetic Geld H, . Taking into ac-
count the effect of magnetic interactions (MI) in a self-
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where mp is the free-electron mass and rp=—e /mpc is the

consistent manner, the single-electron energies in this
model are
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where tu, =e8/cm y is the in-plane cyclotron frequency,
ro, e8/cmp is the electron-spin Larmor frequency, k, is
the electron wave number perpendicular to the x-y plane,
and d is the distance between neighboring planes. The
magnetic field 8 used in this expression is the local, self-
consistent 6eld, 8 H+4trM(8) where M is the magne-
tization associated with all the other electrons in their cy-
clotron orbits. The condition m„y &(mo permits neglect of
the spin term in Eq. (1) and makes it easier to ful611 the
condition of the quasi-two-dimensionality: pro, »6, . Un-
der these circumstances the electron motion is very
coherent and highly 2D, with the corresponding energy
spectrum consisting of well-separated Landau levels.

Under the conditions of the diamagnetic instability the
chemical potential p is pinned in a midgap position in
each ideally conducting phase. 2 The corresponding fixed
value of p is given by

p istuc nr @toe (nF+1) ~np 2trh
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where

rp, =e8&/cmzy, ro, =e8&/cmzy

8& =—8„, nppp/nF, and 8 & —=8„„, nppp/(nF+1),
where no is the areal density of electrons, which is con-
stant throughout the sample, and p ph /ecis the flux
quantum. Thus each phase plays the role of an electron
reservoir for the other phase, keeping the chemical poten-
tial fixed in a midgap position.

The criterion for the diamagnetic instability in the sys-
tems under study
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classical radius of the electron. In terms of n, condition
(2) takes the form

nF &n, . (4)

In writing Eq. (1) it is implicitly assumed that the self-
consistent field B is spatially homogeneous. Below the
critical 6eld [B, np(pp/n, )j the translational symmetry
in our system is, however, broken and the self-consistent
field B becomes spatially inhomogeneous. If the field
varies slowly over a cyclotron radius R, aH(2nF)'~,
where aH —=(ch/eB)'~ is the magnetic length, one may
de6ne local Landau levels by using an average of the inho-
mogeneous 6eld over a cyclotron orbit in Eq. (1). For ex-
ample, in the case where the domain structure is one di-
mensional, say along the x direction, we de6ne the aver-
age 6eld B(xp) for an electron orbit centered at xp by (see
Ref. 7)

e XO+ rc
B(xp)- 8(x)y(x —xp)dx
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FIG. l. (a) Schematic illustration of the K vs 8 diagram for
the homogeneous electron gas near the critical temperature T„
and (b) the corresponding domain-wall profile obtained by ex-
panding the free energy of the inhomogeneous system about 80.

where
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This de6nition is meaningful near the critical tempera-
ture since the coherence length characterizing the spatial
variation of the 6eld 8 is much larger than r, (see later).
Note that the spatial variation of 8(x) removes the de-
generacy of the Landau levels with respect to k» through
the dependence of a„,k, (B(xp)) on xp ( k»aH). Thus we
may write the grand canonical thermodynamical potential
for our 2D electron-gas system near the critical tempera-
ture

G -G(Bp)+ L,L» dq I Bi(q) I'
4

-x(Bp) I «q)'I,
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with g(Bp) —8 r0/88 p, and E(q ) 2j ~ (qr, )/qr„wherej ~ is the spherical Bessel function of order 1. The linear
term of this expansion vanishes since 8rp/88p—M(Bp) 0 (see Fig. 2).

Since the variation of B&(x) is very slow over a length
scale r„we can minimize this free energy with respect to

where Bq„=B(xp), as a spatial integral (over the orbital
centers): L,L»Jdxp tn(B(xp) ) (see Ref. 7).

Since 8(x) varies between the values 8& nppp/(nF- —
+1) and 8&=nppp/n» o—f the 6eld deep inside each
domain, one may define a mean field for the domain-wall
region by (see Fig. 1)
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and a fluctuating field by

8,(.)=-8(x) -8.,

with I 8~ (x) I & Bp/2nF &&Bp. We thus choose to expand
the appropriate free energy

Bn
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about Bo to second order in the fluctuating field B~. In
terms of the Fourier transform Bt(q) of 8&(xp) 8(xp)

F&&. 2. The variation of the magnetization M as a function of
B around Bo for the homogeneous electron gas. The different
graphs correspond to different temperatures with a—= hrs, o/

2kgT.
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, q'Bi(q)—Z(Bp) +~(8.)r,'

8 i (q) for qr, « 1. The result is
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or in real space
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with &p —= 4 r,'g(Bp). This expansion may be continued up to third order in 8~ with the result

1 d'—g(Bp) 8)(x) —go2 Bt(x)—
4x dx

8 1 8X 82( ) 283( )
tlBo 3 88p'

(i2)

The coefficients of this expansion can be directly calcu-
lated from the closed analytical expression for M(B) ob-
tained in Ref. 2. A graphical illustration of this function
for various temperatures is shown in Fig. 2. It is clearly
seen, just from the symmetry of the graphs, that all the
odd derivatives vanish at Bo. The expressions for the sus-

ceptibility g(Bp) and its first and second derivatives are
thus

4kBT
X(8.) -X.-X.

roc,o
(13a)

x
88

&'x

, 88, s-s,
go 8kBT
bp2 ~co~,o

(i3b)

(13c)

where co, ,p
=—eBp/rn„~c and
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where the coherence length gp is given by

, kBT
Co—= 32 rc
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and e=—2 [(T—T, )/T]. The critical temperature T, can

be readily obtained from the requirement 1/4n —g(Bo)
0 with g(Bo) given by Eq. (13a). The result is

Tc
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where n, is the critical value of nF, given by Eq. (3), or in

terms of the critical field 8, by n, noPo/8,

Thus the resulting equation for b ~ (x) =—Bi(x)/bp has a
GL-like form

debi(x) —&p' b)(x)+bj'(x) -0,
dx

The nonuniform solutions of Eq. (15) below T, are

bi(x) -+ v'I eI tanh (is)

where g(T) is the temperature-dependent coherence
length given by

fT = JZ(p

~l e I

(is')

should be longer than the cyclotron radius r, . Both of
these conditions require I eI «1, i.e., that T should be
sufficiently close to the critical temperature T,. Then the
field variation between two neighboring domains 58(T)
=8&(T) —8((T) (4I eI/nF)Bp is much smaller than
in the low-temperature limit T && T„ for which
AB Bp/nF and a QHE is in action within each domain.
In this low-temperature limit our approach is no longer
valid since all the derivatives of M(8) with respect to 8
both at 8 & and 8 & are nearly divergent (see Fig. 2).

Note also the analogy between Eq. (15) and the GL
equation describing a domain wall between the supercon-
ducting and the normal regions in the intermediate state
of a type-I superconductor (see also Refs. 7-9).

A straightforward application of the GL expansion de-
rived above is the calculation of the effect of critical fluc-
tuations on the orbital susceptibility above T,. This is
done by considering our expression for the GL free-energy
functional 6 [Bi] to second order in Bi [Eq. (10)] and by
constructing the partition function for all possible con-
figurations of the fiuctuating field Bi(q):

Each of these solutions describes a domain wall with
spatial size of order g(T) and field variation between
8 ~ Bp (v I e I /2nF)Bp and 8 & Bo+4'

I e I /2nF)Bo,
the fields deep inside the domains.

Note that for the expansion (12) to converge, I bi I

should be smaller than one and the coherence length
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The susceptibility fiuctuations above T, is obtained by
differentiating twice with respect to Bo the free energy of
the fluctuations F —kg TlnZ

1 8F
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Eq. (21) and the Ginzburg critical region
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Using the long-wavelength expansion applied in deriving
Eq. (11) for our 2D system the integral in Eq. (20) can be
readily evaluated with the result
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where we take g(Bo) I/4tr for T ~ T, .
This critical diamagnetic fluctuation effect becomes

quite signi6cant by reducing the magnetic 6eld below the
critical 6eld B„that is, by increasing nF above the critical
value n, . By doing so one increases both the amplitude
(nF/n, ) (1 tt, /n—F) of the susceptibility Buctuation in

Let us estimate this fluctuation eN'ect for possible candi-
dates for exhibiting ICP, say, graphite intercalation com-
pounds GIC's. " Using typical numbers for AsF& GIC's,
i.e., d=lO A, m„„=O.Ittto, and EF=1 eV, we have
n, =120 and condition (4) can be satisfied if the applied
magnetic field H is smaller than 10 T. For these values of
the parameters we get, from Eq. (22), a critical width hT,
of the order of 2 K, when the applied 6eld is about one-
half (i.e., about 5 T) of the critical field B,. At H =20 T
the magnetic gap htn, is of the order of 100 K, much
larger than the Landau-level broadening. " The Landau-
level broadening at lower magnetic fields' might, howev-

er, smear out this critical fluctuation effect.
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