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Mean-field theory of the spiral phases of a doped antiferromagnet
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We develop a Schwinger boson-slave fermion mean4eld theory for the t-t'-J model, where t'

represents same sublattice hopping. In an expansion for small hole concentration 8', we show that
doping favors a spiral distortion of the spins in which the antiferromagnetic order parameter
spirals with a wave vector proportional to 8. In addition, we point out the novel possibility of a
double spiral state which has isotropic spin correlations, is disordered for arbitrarily small 8, and
exhibits a staggered chiral order. The relationship gath resonating-valence-bond theory and the
implications for neutron scattering experiments are discussed.

The interplay between doping and antiferromagnetism
is a central issue in theories of the oxide superconductors.
Undoped La2Cu04 is known to be an antiferromagnetic
insulator, and may be modeled by Cu02 planes with a
spin- 2 local moment on each Cu. Sr doping introduces
holes into the oxygen p orbitals. Following Anderson's
suggestion, ' there has been considerable interest in the
"t-J"model of a doped antiferromagnet
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constrained to the subspace with no double occupancy.
This follows from the large-U limit of a single-band Hub-
bard model. Zhang and Rice have argued that such a
model is a good description of the Cu02 planes, since oxy-
gen holes may form a singlet complex with copper mo-
ments, which may be considered a hole in a square lattice
of copper orbitals.

At half filling this model describes a spin- 2 Heisenberg
antiferromagnet on a square lattice which is believed to
have long-range Neel order at zero temperature. Away
from half 611ing, the model is characterized by a competi-
tion between t and J. J favors antiferromagnetic order for
the spins, whereas in a Neel state, t will tend to disrupt the
spin order, since as it hops, a hole will leave a trail of spins
pointing in the wrong direction. Quantum fluctuations
may repair a pair of overturned spins, which allows the
holes to hop coherently on the same sublattice. This gives
rise to a doubly degenerate band in the reduced Brillouin
zone for holes with minima at It (~ tr/2, tr/2). For t & J
the bandwidth is t /J, whereas for J & t, incoherent pro-
cesses renormalize the hole spectrum and there is a
coherent band centered at = —t with width =J. '

These processes may be treated in an eAective way by con-
sidering a renormalized model, which contains a same-
sublattice hopping term, g;1tIc;~~1 This leads . us to
study the more general "t-t'-J" model. The parameters in
this model may be strongly renormalized from their bare
values, and based on our experience with a single hole, "
we expect that for t )J the renormalized parameters
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FIG. l. S~h~matic pictures of the spin configuration in (a)
canting state, (b) (1,1) spiral state, (c) (1,0) spiral state, and
(d) double-spiral state. In (d) the small end of the spins are
meant to be pointing into the page.

should be qualitatively given by t = t'= J. We emphasize
that the physics of t' is very different from that of t, since
a hole may propagate coherently on the same sublattice
without disturbing the spins.

Further energy may be gained if holes can hop co-
herently onto the opposite sublattice which will split the
degeneracy between the two sublattices. This is only pos-
sible if neighboring spins are not completely antiparallel,
so they have nonzero overlap. One way which this may be
accomplished is for the spins to cant [Fig. 1(a)]. This is
precisely the mechanism for Nagaoka ferromagnetism.
Recently, Shraiman and Siggia3 pointed out that it is also
possible for the spins to form a spiral [Figs. 1(b)-l(d)].
In a classical theory, they showed that under certain con-
ditions the lowest-energy configuration of the spins is a
spiral with a pitch Q = bt/ J

In this paper we are interested in the effects of quantum
fluctuations in such states. We develop a mean-field the-
ory based on a slave fermion-Schwinger boson representa-
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tion of the t-t'-J model, which a11ows us to treat the con-
straint forbidding double occupancy in a straightforward
approximation:
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The Schwinger boson operators b;t keep track of the spins,
while the slave fermion operators f~t keep track of the
holes. We introduce the Lagrange multiplier X,; on each
site to enforce the constraint that the tota1 number of fer-
mions and bosons on each site be 2S. We consider general
spin S. For large S, quantum fluctuations are suppressed,
and our theory reduces to that of Shraiman and Siggia.
This mean-field theory is meaningless in the limit t & J,
since it ignores the incoherent processes which are known

to be important in that limit; however, we may get quali-
tative information by considering the renormalized model

with t =t'= J. Similar mean-field theories of the t-J
model have recently been studied by Yoshioka and by
Jayaprakash, Krishnamurthy, and Sarker.

At half filling there are no fermions, and (2) reduces to
the Schwinger boson representation of the Heisenberg
model. Mean-field theories based on this representation
have been very successful at describing the low-tem-

perature properties of the Heisenberg model. ' The
Schwinger boson mean-field approximation to the Heisen-

berg model amounts to treating X,; as a constant indepen-
dent of position and decoupling the spin interaction in a
Hartree-like approximation by introducing the order pa-
rameter D- (b,"Ib, +„-~

—b;fb;+-t) on each bond. (We
consider two sublattices A and 8 with i F A, so that there
are four kinds of bonds, iI +'x, + y. ) The resulting
Hamiltonian is diagonalized by Bogoliubov transforrna-
tion. For S (S, 0.19 there is a gap in the mean-field
boson excitation spectrum, and the spins have a finite
correlation length. For S & S, the gap closes, and in two
dimensions the Schwinger bosons Bose condense at zero
temperature, ' which signifies long-range antiferromag-
netic order. In what follows, we will consider T 0+, in

which case there is an exponentially small gap, and the ro-
tational invariance of the theory is not broken. In this
case there will be "almost Bose condensation" of the bo-
sons in the vicinity of the gap.

One eN'ect of a finite hole concentration in this mean-
field theory is to reduce the eff'ective spin, since the con-
straint specifies that b;tQ; 2S —b'. In the limit t, t' 0,
for b & b, —=2(S—S,), Neel order is destroyed by quan-
tum fluctuations. For S 2, using S, 0.19, we obtain

0.61; however, 8, may be smaller if in a more accu-
rate treatment of the fluctuations increases the critical
spin closer to 2 . %'e thus regard 8, as a continuous pa-
rarneter in our mean-field theory.

In addition, the form of the hopping term suggests that
we introduce the new order parameters Q-=—(b,'f b;
+b,'I b;+»i& and F„-=—(I," f;+»). We consider uniform
D „-, Q», and F„-. Q„- is the order parameter which de-
scribes canting and spiral, since it is nonzero when neigh-

boring spins have finite overlap. In order to classify
dift'erent states in terms of their order parameters D- and
Q-, it is convenient to consider classical (large S) spins.
If we choose a coordinate system in which spin i points up
we may parametrize spin i and its neighbors as

1
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where (8», p») are the spherical coordinates of spin i+rl,
and g; and g;+„- are arbitrary phases. Then

Q» 2S exp[i(X;+» —Z; —p»)] cos i 8»

D„--2$exp[i(g, +„-+g;)]sin —,
' 8„-.

In a Neel state 8» n, so that Q„- 0. There is a gauge
freedom in choosing the phases of Q- and D-. For exam-
ple, states with D„- D», Q- + Q „-, and F„- +F
are related to those with D„- D-, —

Q» + Q „-, and
F~ +F ~ via a gauge transformation of the form
bi b;~"', f; f;e"' with a; ir for i (mx, ny) such
that m+n 0 or 1 mod4, and a; 0 otherwise. Such a
gauge transformation will also shift the minimum of the
fermion band by (ir/2, n/2). In the calculations that fol-
low, we work in a gauge in which D„- has s symmetry"
(D- D), which corresponds to g; g;+- 0. In this
gauge, the minimum of the fermion band structure will
correspond to that of the t' band structure.

The diH'erent physical states may be distinguished by
the gauge-invariant quantities P- - =—D- Q-D- Q-. Ing, l7 77 If g $7

'

terms of the classical spins,

P- - 4S4sin8-sin8-exp[i(p- —p-)] .
l7, tf

From Fig. 1(a), we see that in the canted state p» p, so
hat P~ ~ P„-~. In addition P~~ P- -, which is real

and positive. In the gauge D- D, this corresponds to Q-
with s symmetry. The spiral states [Figs. 1(b)-1(d)] are
characterized by p- P -+x or P- - P- * The— .
three cases may be distinguished by P~&. A spiral in the
(1,1) direction [Fig. 1(b)] has P»„- P- „-, and is charac-
terized by Q» with p +p„symmetry |Q; Q- —

Q—Q z. A spiral along the (1,0) direction |Fig. 1(c)]
has P&& 0, and corresponds to Q„- with p symmetry
(Qs —Q;,Q+.~ 0). Another interesting possibility is
the "double spiral" state in which, locally, the spins spiral
in orthogonal planes in the i and y directions [Fig. 1(d)l.
Since p&

—
pit x/2, this state has P&„- iP„- - and is de-

scribed by Q„- with p„+ip~ =p symmet—ry Q„- iQ;
Before we discuss the properties of these states we

briefly outline the structure of the mean-field theory.
After a Hartree-Fock decoupling of the Heisenberg and
hopping terms the mean-field equations follow from the
constraint imposed by k and the self-consistency of D-,
Q„-, and F-. For spiral states they have the form
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Here we have defined Qk g„-e'" vQ- (and likewise for
Dk and Fk) and Mk —,

' JQk+tFk Thu. s,
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ferent form. The boson dispersion is
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where t~ is the band structure corresponding to t;J. For
example, if there is only second- and third-neighbor hop-
ping t ~ and t2, it will be

tk ~4tqcosk„cosk~+2t3(cos2k„+cos2k~) .

The minimum of this band structure is at kp (~x/2,
ir/2) when t3 & —,

'
I tq I . The mean-field dispersion for the

two branches of bosons is

rpk
— [(x+tbk+ IMkI ) —

I p JDkI 3'

In the canted state the mean-field equations have a dif-

The fermion band structure in both cases is given by

Ek tfk+ t
I QkI, where tf'k gk tk-k(by& bq& ). The

minimum of the fermion band structure will be at
(~ ir/2, ir/2) as long as t3 & —,

'
I tq I (0.28+b, )/(0. 22

+8,). Coupling to Q„- induces a splitting in the fermion

band structure, which causes a polarization F„- with the
same symmetry as Q„-. Canting will cause splitting
predominantly at k (0,0) and (O, n), whereas spiral

causes splitting at k ( ~ n/2, ir/2).
For the case 8 0, our equations correspond exactly to

those obtained earlier. ' We have performed an expan-

sion for small 8 at T 0+ and analytically obtained the

leading nontrivial corrections. Care must be taken in

evaluating the sums in the regions where mg =0. We con-

sider four kinds of states: canting, (1,1) spiral, (1,0)
spiral, and (l, i) double spiral. The energy differences be-
tween these states and the Q„- 0 state are

~Ecant-~ 2
i' 8 +—p 8 —1.67—+—p

3 —t 2 t 3
J 1+2(Ii+8,)/b, 2 J 2
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2
i' 8
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where p is the density of states at the bottom of the fer-
mion band t~. I~ 0.54 and I2 0.26 are numerical in-

tegrals. The expressions on the right-hand side refer to
the case S —,'. In a pure t-J model, with t' 0 (p '-0)
we find that the (1,1) spiral state has the lowest energy.
Classically, this spiral state and the canting state have the
same energy, as can be seen from the large-S limit. How-
ever, quantum fluctuations favor the spiral over the cant-
ing. For t'&0, there are different optimal solutions de-
pending on p. Assuming the minimum is at ( n/2, ir/2),
for pt /J &0.91 the (1,1) spiral is favored, whereas for
0.91 & pt /J & 0.45 the (1,0) spiral has lower energy. For
pt /J & 0.45, the spiral states are unstable relative to the
Neel state. In the parameter regime where the (1,0)
spiral state is favorable, the double-spiral state is cornpeti-

l.
tive. The difference in energy between the two decreases
for smaller b, . (5) is valid when b, & 0 and b«b, . A
separate calculation shows that if b, & 0 (i.e., S & S,) and
b« I b, I then the (1,0) state and the (l, i) state are de-
generate.

At long distances, the spin correlations are dominated
by the low-energy modes where rpk =0. In the (1,0) and
(1,1) states, rok= J8JD I k —kpI for k=kp ~ 1 26bt/.
J(1,0) or ~ 1.26Dt/J(1, 1). At T 0 there is Bose con-
densation at kp with a density np=b —b, which means
that there is incommensurate spira1 with wavelength

& ko ' which has long-range order. For spins on the same
sublattice at long distances (s,". .sj") —,

' npcos(2kp r;J).
In a neutron scattering experiment we would expect to see
a Bragg peak separated by kp from the antiferromagnetic
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wave vector.
The double-spiral state has very interesting properties.

If we examine the dispersion of the low-lying excitations,
we find that teak v8JDI((k( —ko) +e ]'t for [k(
=ko 1 40. bt/J T. hat is, there is a ring of low-lying ex-
citations rather than points. This means that the spin
correlations should be isotropic, and that neutron scatter-
ing experiments should reveal a Bragg ring around the an-
tiferromagnetic wave vector rather than Bragg peaks.
Furthermore, for arbitrarily small 8', there is a finite gap-a,Qat T 0, e=BJe ' . There is thus no Bose condensa-
tion, and the spins are disordered with a correlation
length (=b e ' . This happens because the ring of8,/8

low-lying excitations effectively lowers the dimensionality
and melts the long-range order. For b '(r(g, the
staggered spin correlations behave like

(s(0) s(r)) = —', no~Jo(kor) —Ji(kor) ].
Though the double-spiral state has no spin order, it ex-

hibits a hidden, Ising-like chiral order parameter. This
may be seen from the fact that the gauge-invariant quan-
tity P~„- is imaginary, and the imaginary part of P; „- may
be shown to be related to the chiral order parameter, '

I

Iy)CL'expZ4(gk +gk )(bktb-kj bkfb —kl)+ 2 (g
k

where gk- (tuk-+tbk+1 ~ IMkl)/Dk, sk Mk/l~kl
and ) C) is a rotationally averaged classical state which
corresponds to the Bose condensed part of the wave func-
tion. At half filling gk+ gk and the wave function is
composed of singlets between sites on opposite sublattices
with a positive weight. If projected to the constrained
subspace, this state becomes's a finite-range RVB wave
function of the form studied by Liang, Doucot, and An-
derson, '4 in which singlets are placed between sites on
different sublattices with phases in correspondence with
the Marshall sign rule. The wave function (6) shows that
in a spiral state there is also a contribution from singlets
between sites on the same sublattice. Furthermore, the
distinction between various spiral states is built into the
phases of the same sublattice singlets. In particular, in a
double-spiral state, since the symmetry of Mg is complex

p wave, the phase will be e', where 8 is the angle which
the bond makes with the x axis. The analogous wave
function for the canted state does not contain same-
sublattice singlets.
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contrast to the uniform chirality which has been proposed
in connection with flux phases and anyon superconductivi-
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Though the double spiral has higher mean-field energy
than the other spiral states, we believe that it is still a pos-
sible candidate. The energy calculated here may not be
reliable, since our mean-field theory violates the con-
straint forbidding double occupancy. Furthermore, fluc-
tuations in the order parameter Q„-, which should be relat-
ed to the "torsion mode" discussed by Shraiman and Sig-
gia, should behave very differently in the single- and
double-spiral states due to the existence of the ring of
low-lying excitations.

An alternative approach is to consider variational wave
functions which correspond to spiral states. This leads us
to an interesting connection with resonating-valence-bond
(RVB) theory. " Our Hartree-Fock decoupling may be
regarded as a variational wave function for an approxi-
mate Hamiltonian in which the constraint of no double
occupancy is treated on the average. For spiral states, this
wave function for the spins is of the form

k+ —
gk )(skbkl b"

k~ skbkl b —
kt )]

~
C), (6)

Neutron scattering studies' have indicated that there
is incommensurate spin order in La2 „Sr„Cu04, though
at present it is not known whether or not there is a Bragg
ring. In addition, the incommensurability seems to appear
only in superconducting samples, which lends support to
the idea that it is related to the hole mobility.

In summary, we have demonstrated in a simple mean-
field theory how doping can induce spiral order in a quan-
tum antiferromagnet. Quantum fiuctuations will disorder
the spins upon sufFiciently large doping, and tend to favor
spiral order over canting. In addition, we have pointed out
the novel possibility of a double-spiral state, which has
isotropic spin correlations, is disordered for arbitrarily
small doping and exhibits staggered chirality.
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