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Super8uxons in periodically inhomogeneous long Josephson junctions
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Dynamics of a periodic array of fluxons in a dc-driven damped long Josephson junction with an
installed periodic lattice of local inhomogeneities are investigated analytically by means of the
perturbation theory. In the case when the array and the lattice are commensurable, the array as
a whole remains in a pinned state unless the dc bias current density exceeds a certain critical
value. It is demonstrated that, in the same time, stable defects in the form of a "hole" or surplus
fluxon may propagate along the pinned array. In the long-wave approximation, an evolution
equation (an "elliptic sine-Gordon" equation) for local deformations of the array is deduced.
That equation supports exact kinklike solutions ("superfluxons") which describe the defects men-

tioned. In the presence of dissipation and dc bias current (with the density smaller than critical),
I-V characteristics of the junction corresponding to the motion of a superfluxon are found. The
results obtained are in good agreement with results of recent numerical and physical experiments.

The dominating role of magnetic flux quanta (fluxons)
in dynamics of long Josephson junctions (LJJ's) is gen-
erally acknowledged today. Of special interest are dy-
namics of periodic arrays of fluxons in a LJJ with an in-
stalled lattice of local inhomogeneities. ' In particular,
a dependence of the critical bias current density f„, i.e.,
that which tears oÃ an array pinned by the lattice, upon
an array's density (proportional to the magnetic field at
LJJs' edges) demonstrates sharp peaks at the values of the
magnetic field corresponding to the array-lattice commen-
surability. 7 If the bias current density does not exceed f„,
the commensurable array cannot move as a whole. How-
ever, since the array possesses finite rigidness, compres-
sion ~aves may propagate along it. It has been revealed
in recent numerical simulations' that in the case where
the pinned array is almost commensurable, i.e., a
sufficiently long commensurable segment of the array con-
tains a defect in the form of a surplus or lacking fluxon,
the defect may propagate along the pinned array as a de-
formation wave under the action of the dc bias current
with a density smaller than f„. The aim of the present
paper is to analyze this phenomenon.

The analysis is based on the well-known sine-Gordon
(SG) model of a dc-driven damped inhomogeneous LJJ:

zeroth approximation (a f e 0), a quiescent fluxon
array is described by the following exact solution to the
unperturbed SG equation:

y(x) -tr —2am[(x —&)/k], (2)

where am is the Jacobi elliptic amplitude, the elliptic
modulus k (0(k (1) is an arbitrary parameter that
determines the array's period

L 2kK(k) (3)

[K(k) is the complete elliptic integral of the first kind],
and ( is an arbitrary constant (the "array's coordinate").
The period L may be interpreted as a spacing between ad-
jacent fluxons in the array. I will assume the following
commensurability relation to hold in the zeroth approxi-
mation:

a pL,

with p an arbitrary integer [the more general case of the
commensurability, a -(p/q)L, can be analyzed too, but it
gives rise to much more tedious calculations ].

The full Hamiltonian of the dissipationless (a 0)
model (1) includes the Hamiltonian of the unperturbed
SG system,

p« —p„„+sing —ap, —f+e g b(x —an)sing. (1)
Hp —oo

dx[-,' (y,'+y„')+ (1 —cosy)), (s)

In Eq. (1), p is the normalized magnetic flux, a is a dissi-
pation constant, f is the dc bias current density, a is a
spacing of the lattice formed by pointlike inhomogeneities,
and s is a "strength" of a separate inhomogeneity. The
cases e&0 and e(0 correspond to the so-called mi-
croresistor and microshort (microshunt), i.e., a short re-
gion in the LJJ where the tunneling of the superconduct-
ing pairs across the junction is, respectively, suppressed or
enhanced.

Supposing the parameters a, f, and e small, I will base
the analysis upon the perturbation theory. As for the
spacing a, no restrictions will be imposed on it. In the

the array-lattice interaction Hamiltonian

H, —e g [1 —cosp(x an )], (6)

and the item which takes account of the dc drive,

p + oo

HI-f dxy(x).

Now let us assume that the array is deformed at a large
scale A, ))L. To this end, it is sufficient to presume that
the quantity ( in the expression (2) is a slowly varying
function g(x, t )((„-L/1,), while the modulus k remains a
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constant. By inserting the expression (2) with the vari-
able ( into terms (5) through (7), it is straightforward to
find the full Hamiltonian H Ho+H, +Hf expressed in
terms of ((x,t):

H dx[ —,
'

p(g, +(„)—2ea 'cn ((/k)+G(], (8)

where cn is the elliptic cosine, p=4k E(k)/K(k) is the
array's mass density [E(k) is the complete elliptic in-
tegral of the second kind], and G =ttfk/K(k).

The Hamiltonian (8) gives rise to the equation of
motion

g«
—

g „+4ea 'p 'k 'sn(g/k)cn(g/k)dn((/k)

p 'G —ag, , (9)

where sn and dn are the standard elliptic functions. The
last (dissipative) term in Eq. (9) was added on the basis of
energy-balance analysis. Let us note that the limit veloci-
ty corresponding to the left-hand side of Eq. (9) is the
same as the limit velocity (equal to unity in our notation)

I

:-TT—-xx+2(sgne)sn( 2 -)cn( 2 -)dn( 2 -) -0, (io)

where ==—2(/k, and X and T are related to x and t in an
obvious way. Equation (10) may be naturally called the
elliptic sine-Gordon (ESG) equation. It depends upon the
continuous parameter k and the sign parameter sgne. In
fact, we have two different ESG equations corresponding
to two difl'erent signs of e. At k 2« 1, Eq. (10) is close to
the usual SG equation:

:"TT—"xx+sin= ——', k sin(2:-)+O(k ) .

It is well known that the SG equation (11) perturbed by
the small term -sin(2:-) is not integrable; see, e.g. , Ref.
9. This suggests that Eq. (10) cannot be integrable either.

Let us return to Eq. (9). At G 0, it has an exact solu-
tion describing a quiescent superfluxon:

for Eq. (1), i.e., it coincides with the Swihart velocity of
the LJJ considered. In the case G -a 0, Eq. (9) can be
cast into the dimensionless form

g(x)-kF(sin '[(1 —k )cosh [2xk '(e/ap)' ]+k j ' ), —ao(x(0,
4(x) -2kK(k) —g( —x), 0 & x & +

for e& 0, and

g(x) —kF[cos '[(1 —k')' '(cosh'[2xk '[(1 —k')
l
el/ap]'t ] —k ) 't ]] —~ (x &0

g(x) —g( —x), 0 (x & +~,

(i2a)

(12b)

(i3a)

(i3b)

for e (0. Here F(z) is the incomplete elliptic integral of
the first kind.

The superfluxon solutions (12) and (13) are dis-
tinguished by the boundary condition

energy after 200 collisions. A reason for this fact remains
to be understood.

Let us now proceed to the case G, aa0. In the range

f (f = —'(e/irpk ) [(5k —2k —2)(1+k )
g(x -+~) —g(x -—~) -2kK(k) —=L (i4) +2(1+k —k )'']

[recall that L is the spacing (3) of the fluxon array]. Thus
the superfluxon (12) or (13) may indeed be interpreted as
a "hole" (a lacking fluxon) in the array. Quite analogous-
ly, a superfluxon of the opposite polarity, given by the
solution (12) or (13) with the opposite sign, describes a
surplus fluxon in the array. A solution describing a mov-

ing superfluxon can be obtained (in the case a G 0)
from (12) or (13) by the obvious Lorentz transformation.

In relation to the nonintegrability of Eq. (10), recall
that nonintegrable equations may support exact one-
soliton solutions, but collisions between solitons in nonin-
tegrable systems ought to be inelastic on account of emis-
sion of radiation (quasilinear waves). " A collision be-
tween superfluxons of the opposite polarity has recently
been simulated numerically within the framework of the
ESG equation (10) in Ref. 2. Despite the apparent nonin-
tegrability of this equation (see above), the collision seems
practically absolutely elastic in a wide range of parame-
ters: In a system with periodic boundary conditions (a to-
tal length of the system was taken to be much greater than
the size of a superfluxon), a net radiative energy loss,
defined as a drop of the kinetic energy of the colliding
superfluxons, was surely less than 1% of the initial kinetic

for e& 0, and

x(f /a e) in
1 —k

V (1 —V ) ' (ir p/32)k [K (k)/E(k)]

x(f /a I el )(sin 'k)
for a&0.

(i8)

where p is the commensurability index defined by Eq. (4),
the array as a whole remains pinned. In the same time, a
defect of the array in the form of a "hole" or a surplus
fluxon, described by the superfluxon solution, moves with
a certain velocity V determined by the energy balance be-
tween the dissipation and dc drive. For a solitary fluxon in
the homogeneous dc-driven damped LJJ, the equilibrium
velocity has been found in Ref. 8:

V'(i —V') ' -(xf/4a) '

In the present case, the energy-balance analysis yields the
following results:

V'(1 —V') '-(x'p/8)k [K (k)/E(k)l
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As is known, the x-averaged quantity p, is proportional
to the voltage across the junction. Using Eqs. (2) and
(14), one can find the following general relation:

2+V/I, (19)

I, ' «a/ I e I . (21)

1 being a total length of the system. Thus, a superfluxon
carries the same voltage as a usual fluxon moving with the
same velocity V. Nonetheless, the I-V characteristics, i.e.,
a dependence p, (f), are different for a superfluxon and for
a usual fluxon owing to different dependences V(f) [com-
pare Eqs. (17) and (18) to Eq. (16)].

Let us estimate limits of applicability of the theory
developed. According to expressions (12) and (13), a
characteristic size X of the superfluxon can be estimated as
follows:

~'-pk
I sI '/ln(1 —k') (20)

Equation (9) may be regarded as a Whitham-type equa-
tion' for envelopes. Its applicability condition L «k can
be cast, with regard to Eqs. (3) and (20), into the form

Thus the description developed is applicable to fluxon ar-
rays which are not too rarefied.

In conclusion, it is worthwhile to note that if we ana-
lyzed a model of a periodically inhomogeneous LJJ with a
harmonic modulation function cos[(2x/a)x] [instead of

b(x an—)] in Eq. (1), we would have obtained,
instead of Eq. (9), a usual SG equation for g(x, t), with
perturbing terms similar to those in Eq. (9) (cf. an analo-
gous situation in the one-fluxon problem' ). However, the
case of the harmonic modulation can scarcely be realized
in an experiment.

Detailed comparison of the results reported here with
results of numerical simulations of both the SG model (1)
and the ESG model (9), as well as with experimental re-
sults, will be given elsewhere. 2 The agreement between
theoretical, numerical, and experimental results proves to
be fairly good.

I am indebted to Alexey V. Ustinov for valuable discus-
sions.
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