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Fluctuations in an impure unconventional superconductor
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We study the paraconductivity in an impure unconventional superconductor. We find that the

Azlamazov and Larkin term in three dimensions consists of two contributions, one involving a sum

of s-wave-like terms, and an extra piece involving differences of different coherence lengths. In

two dimensions the result is found to be universal, being proportional to the number of com-

ponents of the order parameter. The Maki-Thompson terms are found to be less divergent and

hence negligible due to pair-breaking effects.

The oxide superconductor discovered two years ago'
created a stir in the interest in superconductivity including
some speculations of unconventional pairing states. The
short coherence lengths in these systems also allo~ the
study of fluctuation effects. In Ref. 2 the fluctuation
contribution to the specific heat is measured. In the O(N)
model (N 2n), comparing this fluctuation contribution
above and below T, would give one the number of com-
ponents n of the order parameter directly. Unfortunate-

ly, this is not true if one uses a proper Ginzburg-Landau
theory, ' thus one can only put reasonable limits on n.
Measurements on paraconductivity and diamagnetism
have only been analyzed using the theory appropriate to
an s-wave superconductor, " ' and the possible implica-
tion of non-s-wave pairing has not been investigated. In
particular, one would like to obtain the physical parame-
ters, in particular n, of these new superconductors.

In this paper we would like to correct this unsatisfacto-
ry state of affairs. In particular, we investigate the effects
of impurities on paraconductivity in an unconventional
superconductor. Since impurities are known to be pair
breaking for non-s-wave pairing, ' one expects qualita-
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and similarly for Qk, which is given by
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tively different effects of the impurities than in an s-wave
superconductor, as born out in the present investigation.
For definiteness we first consider a spherically symmetric
d-wave superconductor, thus ignoring crystal effects. As
we shall explain below, most of our results (with proper
reinterpretation) have rather general validity. We assume
a pairing interaction of
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where P2 is the Legendre polynomial. The pair propaga-
tor Kkk(q, i Q„)is as shown in Fig. l. Assuming s-wave
impurity scatters, one can easily solve for the two-electron
propagator Dkk(e„;q,iQ„)displayed as (a) in Fig. 1 in

terms of the two-electron propagator without the impurity
ladder, Dk shown as (p) in Fig. 1. Since the bare interac-
tion (1) is independent of the magnitude of the momenta
k and k', one needs only the quantity
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where N(0) is the density of states for one spin, r the relaxation time for scattering with impurities, and H is the step
function. One finds
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Notice that the second term is independent of the relative
direction of k and k'.

Substituting this into the series in Fig. 1(a), due to the
angular dependence of the interaction, one sees that the
second term in (4) only contributes terms of at least
O(q ) and hence is negligible. This reflects the pair-
breaking effects of the impurities, and has far reaching
consequences, as we shall see below.

Since the bare interaction only acts on the l 2 sub-
space of the momenta, so does the pair propagator. More-
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FIG. 1. (a) The pair propagator. A single wavy line is the
bare interaction. (b) The two-electron propagator; double solid
line represents electron Green's function dressed by impurities.
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over, Kqq is independent of [k) and [k'(. It is con-
venient to write

are explicitly indicated)

K(q, io„)-[5/g —Q(q, io„)) (6)
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and similarly for Q~ ((.'„;q,i 0,). Defining
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(s)

Q'(q, i ii,) -U(q) g(( q [,i o.)U+(q), (7)

Because of the discussion below (4), we can approximate

Q by Q in this equation, the value of which, for small q
0„,is given by

and similarly for Q, the pair propagator is obtained as
(hereafter all matrices are in m space unless the momenta

where U(q) is the rotation matrix from z to q in the I 2
representation, Q is a diagonal matrix depending only on
the magnitude of q:
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where y is the digamma function.
Determining the divergence of K at q 0, 0„0is of

course just the Cooper problem with d-wave pairing in the
presence of impurities. This condition determines the
transition temperature T,:

and Maki. ' Here there are three distinct values of coher-
ence lengths (ri~ ) (also notice the difference of gq and
the corresponding quantity of the s wave). Moreover,
there is an extra factor of r in front of the frequency term.
This, as well as the i ' in (13), represents pair-breaking
effects. In s-wave pairing where the impurities are not
pair breaking, the second term of (4), representing "in-
scattering" processes, contributes an extra term in (13) so
that the total involves

~
2(.„(instead of [ 2(.„+r '

( in the
denominator. In our case the absence of these processes
results in the suppression of T, as well as the factor r in

(14). The electrons, once they are scattered, end up on
the "wrong" momentum space and do not contribute to
the pairing (on the average, up to q ).

One can easily obtain the fluctuation contribution to the
specific heat in the manner of Ref. 11. In three dimen-
sions (3D) we find
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r —= (T —T, )/T, is the reduced temperature. These results
should be compared with that of Aslamazov and Larkin, "

Notice the presence of the r ' in the denominator, repre-
senting the suppression of T, by impurities. Eliminating
the pairing interaction in favor of T„onegets

where C,'(3D) is the corresponding expression for an s-
wave superconductor. Our result is just what one would
obtain by independently adding the contribution from
each m component. Since our "mass term" is independent
of m, our result agrees with that of Ref. 10. The numeri-
cal value of the sum over m is 16.65.

We shall first evaluate the Aslamazov and Larkin"
(AL) contribution as shown in Fig. 2. As in Ref. 11, the
two electron loops are just given by the q derivative of
Dqq of Fig. 1. The current-current response function (at
zero wave vector) reads
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which can be evaluated using the unitary transformations (7) and (14). For three dimensions one can average over all
i j components, and use the spherical coordinates
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The q derivatives act only on Q and K and give the contribution
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and this is a sum of contributions from each component. However, the q dependences of U give rise to an extra contribu-
tion. Since if all coherence lengths were equal, then U is obsolete and (17) would be the only contribution, this extra con-
tribution will involve differences of the various ri s (raised to the appropriate powers). After the analytic continuation
and momentum integrals, one obtains the (AL) paraconductivity at zero frequency (in units of e /h)

l/2 ' 1/2 l/2 f

16 gd+ + + 2 (ni-go)
. q2,

exactly as the structure expected above. The (positive
definite) extra contribution arises from the form of the su-
percurrent in the superfluid, and is absent in the specific
heat [Eq. (15)]. The numerical value in the large bold
parentheses is 7.00.

In 2D the normal to the film, taken as z, is a unique
direction. The response function needed is the average of
Rzz and Ryy We find the interesting fact that the deriva-
tives on U(q) give a term which vanishes for q in the x-y
plane. Hence in the 2D regime (where q, 0 and the q
integral reads d ' f [dq, dq~/(2ir) ]), we obtain the sim-
ple result of a sum over the number of components [cf.
(17)], and since each component contributes an amount
which is independent of g, we obtain the universal result

o' " (2D) r(1/16dt)n . (19)

Extra terms analogous to those in (18), which in principle
can exist and would involve terms like in[[(ri~+ri2)/
2] /riiri2], does not arise.

The form of Eqs. (16), as well as the argument below it,
and (17) is rather general, therefore the form of (18)
should still be valid when one takes the crystal symmetry
into account (also notice that the dimension of conductivi-
ty is e /0, divided by a length). In 2D the coherence
length is replaced by d and hence one obtains a universal
term (19) corresponding to the contribution (17). At this
point, however, we do not have an argument whether the
logarithmic terms discussed below (19) can arise or not in
the general case.

To complete our discussion we discuss the Maki'-
Thompson' (MT) contributions, as shown in Fig. 3. The
evaluation of these diagrams runs parallel to the s-wave
case. There the contribution to the paraconductivity
arises from an integral of the form

dq 1 1
(2o)

(2ir)d Dq' (i+riq') '

where the diffusion pole (Dq ) ' (D denotes the diffusion
constant) arises from the impurity ladder correction (i.e.,
the in-scattering terms) to the pairing interaction (Fig. 4).
In our case it is more convenient to consider the diagrams
with and without the impurity ladder separately. For the
first type the (Dq ) ' term is simply absent. For the
second type one sees that one always has an integral of the
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[cf. Eq. (4)] which provides a factor of rDq, canceling
that of the diffusion pole. Thus a calculation parallel to
the s-wave case only gives rise to integrals of the form
(20) with Dq replaced by r '. Hence in 3D there is no
contribution to the paraconductivity, and in 2D the contri-
bution is -lnt and negligible compared with the t AL
terms. (Moreover, in 2D there is no necessity of any regu-
larization procedures as in the case of the s wave. ' ' )
Thus basically the pair breaking by impurities (the ab-
sence of the in-scattering contribution as q 0) makes
the MT term insignificant compared with the AL term.
This conclusion is completely general, and should be true
as long as the relevant-pairing interaction averages to zero
over the Fermi surface.

We have also performed the calculation for a p-wave
superconductor. As expected the above qualitative con-
clusions still hold, and Eq. (19) holds quantitatively.

« the high-T, superconductors it is generally believed
that the Cu02 planes are sufficiently decoupled that one
should use the Lawrence and Doniach' (LD) theory of
layered superconductors. Our calculation can easily be
extended to this case. Rather similar to the s-wave case'
we find that our AL result is simply Eq. (19) with d re-
placed by the distance between the layers and reduced by
the interlayer coupling factor (notice, however, that r 1

for an s-wave superconductor):

FIG. 2. The Aslamazov-Larkin term. Noncrossing impurity
lines are implicit.

(c)
The Maki-Thompson terms. Shaded areas indicate

vertex correction by impurities. In (a) and (b) both the dia-
grams with and without the explicit impurity line are included.
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FIG. 4. The vertex

impurities.

I

+

correction to the pairing interaction by

The corresponding MT contribution, investigated recently

by Hikami and Larkin, is, of course, again negligible in

our case.
In conclusion we find that, for a non-s-wave supercon-

ductor, the paraconductivity in 3D consists of a term in-

volving the sum of inverse coherence lengths and an extra
term involving their differences, which vanishes when all
the coherence lengths are equal. In 2D the result is

universal. Further, the magnitude of the AL contribution
is reduced by the factor r in Eq. (12). The Maki-
Thompson terms can be ignored. The measurement of
this paraconductivity, especially in 2D, should be very
useful in understanding the oxide superconductors. Ex-
periments have been done on the Y 1:2:3 (Refs. 3-6) and
the Bi 2:2:1:2(Ref. 7) compounds, where the layered su-

perconductor calculation should apply. In Refs. 3 and 4 it
is found that the paraconductivity can be fitted to the s-
wave AL contribution [Eq. (21) with r I], provided that
an arbitrary reduction factor of -3-7 is included. More-

over, there is no evidence of any MT contribution. In view

of Eq. (21) it may be that the order parameter is a single
component (n 1), albeit an unconventional one. (This
sort of order parameter, however, is only allowed with
crystal-symmetry considerations). Hagen et al. , howev-

er, find that their result cannot be fitted to (the AL contri-
bution of) the LD theory. Friedmann et al. , analyzing
their data in a different way, find that various theories can
be fitted to their data and hence the situation is not very
conclusive. For the Bi 2:2:1:2 compound an ambiguity
arises as to whether each individual Cu02 layer or double
layers form the quasi-2D systems in the LD theory. In
Ref. 7 it is found that the paraconductivity is t~iee the AL
value one would expect if each double layer forms a
quasi-2D system. Under that assumption it is then tempt-
ing to conclude that n ~ 2. More careful experiment and
data analysis is needed to arrive at more concrete con-
clusions.
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