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Ground state of a two-dimensional charged-boson system
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The ground state of a two-dimensional charged-boson system is investigated over the range of
densities 1 ~ R, ~ 10 in the self-consistent-field approximation; R, = (a amp)

' ', where ao is the
Bohr radius and p is the number density. Starting with numerical self-consistent calculations of the
static structure factor, the elementary excitation, pair-correlation functions, pressure, and ground-
state energy are evaluated. These results are compared with those of the two-dimensional and
three-dimensional systems obtained from other methods. The ground-state energy is given as

Eo = —1.2918R, / +0.03, which improves the result from the ring-diagram approximation.

I. INTRODUCTION

Since Foldy's pioneering work' on the charged-boson
system, there has been continuing interest in this system
from the viewpoint of real physical systems. It should
be pointed out that the special characteristic shared by
the charged boson and electron gas is that the properties
of the ground state can be described by only a single di-
mensionless parameter R, =ro/ao, where ro =(harp)

' is
the mean particle distance, p is the number density, and
ao=l /me is the Bohr radius of the particle with mass
m. The electron gas has been widely investigated for its
applications to metals. However, the charged-boson sys-
tem has been largely ignored because of its nonexistence.

Concerning the ground-state energy (GSE), Foldy first
calculated the GSE and elementary excitation spectrum
of the charged-boson system in the high-density region
(R, 81), which was also later evaluated by others. In
the intermediate density region (1~R, 5100), Lee, Lee
and Ree, and Monnier evaluated the GSE through the
variationa1 method with a Jastrow tria1 wave function.
More recently Hansen and Maxighi obtained a varia-
tional upper bound to the GSE over a wide range of den-
sities (1 ~ R, ~ 200) with the use of a variational Jastrow
trial wave function, the hypernetted chain integral equa-
tion, and the Monte Carlo method, and Hipolito et al.
investigated the dielectric properties and also the two-
dimensional (2D) and three-dimensional (3D) classical
electron systems by adopting the self-consistent-field ap-
proximation (SCFA) introduced by Singwi et al. 9

Although, in the past two decades, significant progress
has been made in the study of the 2D electron systems for
the dielectric function, structure factor and pair-
correlation function, ' GSE and specific heat, " effective
mass, ' superlattice, ' quantized Hall effect, ' and other
quantities, ' there is much less information about the
properties of the elementary excitation spectrum, struc-
ture factor, pair-correlation function, and the GSE of 2D
charged-boson systems. Therefore, in this paper we

II. BASIC FORMULAS

The self-consistent-field approximation in the formal-
ism of Singwi et al. includes the decoupling of the two-
particle distribution function in the Liouville equation
into the product of two one-particle distribution func-
tions and a pair-correlation function,

f (r, p, r', p', t)=f, (r, p~t)f, (r', p'~t)g(r —r'), (2.1)

where r and p are the position and momentum of each
particle and g(r) represents the equilibrium static pair-
correlation function. The density-density response func-
tion y(q, co) in Fourier space for an interacting system be-
comes

X(q w) =so(q w)/[I —4(q)Xo(q w) l . (2.2)

In Eq. (2.2), yo(q, to) is the density-density response func-
tion for a noninteracting charged-boson system at T=O
given as

yo(q, co) =2pE(q) /[(to+ t q )' —E(q)'], (2.3)

where e(q)=trt q /2m is the free particle energy, 71 is a
positive infinitesimal quantity, and g(q) is the self-
consistent effective potential,

f(q) =P(q)[1 —G (q)] . (2.4)

evaluate the aforementioned quantities of a 2D charged-
boson system, which consists of N identical bosons with
charge e and mass m, interacting via a Coulomb potential
at T =0 over the range of densities 1 R, ~ 10. To calcu-
late the preceding quantities we adopt the SCFA given by
Singwi et al. We survey the basic formula in Sec. II, and
starting with the numerical self-consistent evaluation of
the static structure factor S (q), we obtain the elementary
excitation spectrum, correlation function, and ground-
state energy in Sec. III. Finally, in Sec. IV we present
our numerical results for the preceding quantities in com-
parison with other works in terms of graphs and tables.

259 1990 The American Physical Society



C. I. UM, W. H. KAHNG, E. S. YIM, AND T. F. GEORGE 41

Here, P(q ) = 2m e /q is the two-dimensional Fourier
transform of the Coulomb interaction e /r, and G (q) is
given by

[co(q)+ig] —s (q) —2ps(q)Q(q) =0, (3.5)

mined from the pole of the density-density response func-
tion g(q, co), which yields

G (q) = ——f [S(q—k) —1]
1 qk dk
p qk (2~)'

(2.5) and thus the excitation energy E(q)=%co(q) can also be
written as

E (q) =s(q)/S (q) .

We find the ground-state energy to be

(2.7)

In Eq. (2.5) the static structure factor S(q), which is the
Fourier transform of the pair-correlation function g(r),
can be expressed as

S(k)=1+pf d r[g(r}—1]e (2.6)

The singularities of the density-density response func-
tion represent the energies of the excited states, and the
excitation energy of the system is related to S(q) through
the Feynman expression

E(q) =[e(q)'+2ps(q)g(q)]'~' . (3.6)

S(q —k)=S(q) —
q cos8 +BS(k)

Bk

the local-field correction G (q) becomes

(3.7)

We notice that the elementary excitation spectrum in the
ring-diagram approximation' (RDA) can be obtained
under the condition g(q) =P(q), i.e., the neglection of the
local corrections in Eq. (3.6). Making use of the follow-
ing expression for the structure in the long-wavelength
approximation,

(2.8)

where E;„,(a) is the interaction energy as a function of
the coupling constant a, which is a measure of the
strength of the coupling between bosons.

and

G(q)=re

Rr= — ' f d'e[s(q) —1]
4 o

(3.8)

(3.9)

III. EXCITATION SPECTRUM, STRUCTURE
FACTOR, CORRELATION FUNCTION,

AND GROUND-STATE ENERGY

Then the excitation spectrum can be expressed as

A2q4
E(q)=RA 1 —~q+

8m 0 (3.10)

We first investigate the response of the charged-boson
system to a static impurity with charge ze located at the
origin, where the external potential is

P,„,(q, ~)= &(~) . (3.1)

The induced charged density, which characterizes the
linear response to an external potential from a fixed
charge, can be written as

5p(q, co) = —y(q, co)eP,„,(q, co) . (3.2)

Through the inverse Fourier transform of Eq. (3.2), we
obtain the induced charge density at position r as

5p(r) =- Z 00

dq
sin(qr)

2nr o G(q) —(q/A, ) —1

where A, = 8vrp/ao. The total induced charge Q is

Q= —e f d r 5p(r)

(3.3)

sin(qr)=ze d g 6 q —
q A,

—1

= —ze . (3.4)

Equation (3.4) indicates that the charged impurity is
completely screened at long distances. However, the in-
duced charge density [Eq. (3.3)] diverges at r =0. This
divergence is due to the fact that the linearized equation
of motion for the classical one-particle distribution func-
tion is invalid near the charged impurity. The divergence
can be avoided by taking quantum eft'ects into considera-
tion.

The elementary excitation spectrum E(q) is deter-

where 0=(2@pe q/m)' is the two-dimensional plasma
frequency. In the case of three dimensions the excitation
spectrum in the long-wavelength approximation is given
by

E(q) =A'co 1 ——q+
g2 4

2' co
(3.11)

where co =(4mpe /m)' is the 3D plasma frequency.
We remark that one of the authors has obtained the exci-
tation spectrum of the 2D charged-boson system through
the RDA in the long-wavelength approximation as'

R2q4
E (q) =RA 1+

2m 2g2
(3.12)

A,g(r)=1+ ' f dq qJO(qr)[S(q) —1], (3.13)

and from Eqs. (2.4), (2.7), and (3.6) the structure factor
becomes

S(q) = 1+ [1—G (q)]
8

g2 3

—1/2

(3.14)

with

The short-range correlation functions occuring in the
Coulomb interaction between the charged bosons are ex-
pressed by the pair-correlation function g(r), which
represents the probability of finding two boson particles
separated by a distance r. The inverse Fourier transform
of the structure factor yields
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2R, q oo kG(q)= f dk kE —[S(k)—1]+qf dk 1—
7T 0 q

+ — E — .[S(k)—1]
k k k

q q q
(3.15)

S(q)= 1+ (1—yq )
12

R2 4 (3.16)

where r, q, and k are expressed in units of the Bohr radius
ao and ao ', respectively, and E(x) and E(x) are the
complete elliptic integrals of the first and second kinds.
The numerical solution of Eq. (3.14} can be obtained by
the method of iteration. The 3D structure factor in the
long-wavelength approximation is given by

—1/2

EO=2' R, f da fdq[S(a, q) —1] . (3.20)
0

We note that the 3D ground-state energy per particle in
Rydbergs is given by

E0=—3' R, da qSaq —1 . 321
1T 0 0

IV. RESULTS AND DISCUSSION

with

2R,
y= — f dq[S(q) —1] . (3.17}

Comparing Eqs. (3.9) and (3.17), we find that both forms
are similar to each other, with the dependence of the spa-
tial dimensionality on the dimensionless parameter R, .

From the pair-correlation function or structure factor,
we can calculate the ground-state energy of the charged-
boson system. We may write the interaction energy as

E;„,(a)=nNp f dr P(r, a)[g(r) —1]r

or

E;„,(a)=—f "dq a[S(a,q) —1] . (3.19)

12

Expressing the wave number and the density in units of
(2npao)'~4 and R„we can write the ground-state energy
per particle in Rydbergs as

In the previous sections we have evaluated the elemen-
tary excitation spectrum, pair-correlation functions, and
the ground-state energy of the charged-boson system
from the determination of the structure factor in the
self-consistent-field approximation. Figure 1 illustrates
the elementary excitation spectrum as a function of qr0
for various values of R, . We see that the third term in
the large parentheses of Eq. (3.10} is dominant in the
high-momentum region, and thus the excitation energy is
almost identical with that of a free particle. As R, in-
creases, the excitation energy reduces more rapidly to the
free-particle case. We notice that in the low-momentum
region the 3D excitation energy obtained from the SCFA
decreases as q increases, and this reduction is quite
significant with increasing R, . This reduction does not
appear in the 2D case for the range of densities
1 ~ R, 5 10. A comparison of Eqs. (3.6} and (3.12) shows
that the results in the SCFA gives a correction to Eq.
(3.12) derived from the RDA.

In Fig. 2 we have given the numerical calculation of
Eq. (3.14) as a function of qro of various values of R, by
the iteration method. The structure factor converges
very rapidly to unity as R, increases. We have compared
the 2D structure factor to the 3D case in Fig. 3. The 2D

iO
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FIG. l. Excitation energy vs the dimensionless parameter qro
in units of the Rydberg at several values of R, . FIG. 2. Structure factor vs kro at various values of R, .
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FIG. 3. Structure factor vs kro. The solid and dashed lines
correspond to two and three dimensions for R, = 1 and 3.

FIG. 4. Pair-correlation function g(r) vs r for various values
of R, . The solid and dashed lines correspond to two and three
dimensions.

structure factor increases more slowly than the 3D struc-
ture factor in the short-wavelength region but more
quickly in the long-wavelength region as qro is varied.

With the use of the aforementioned calculations for the
structure factor, we evaluate the pair-correlation func-
tion from Eq. (3.13). The result is given and compared
with the 3D case in Fig. 4. The pair-correlation function
starts oscillating at large distances, which is not displayed
in the figures. These oscillations have very small and
broad amplitudes. This long-distance behavior is similar
to the 3D case. For Bose fluids' interacting via a soft
potential with a Lennard-Jones-type tail and pseudopo-
tential, in the RDA the pair-distribution functions be-
come negative at short distances and decrease as r at
large distances. This decrease corresponds to the ex-
istence of a phonon spectrum for small momenta. In the
RDA the pair-distribution function for the 2D charged
boson becomes negative with decreasing R, and diverges
at r ~0. Consideration of the short-range correlation of
the charged boson through the local-field correction
SCFA improves the result from the RDA, i.e., the value
of g(0) obtained in SCFA is negative, but so small that

Eo= —1.2918R, +0.03 . (4.1)

In the RDA we have obtained the ground-state energy
per particle in terms of R, as

Eo = 1.2918R (4.2)

and for the 3D charged-boson system the ground-state
energy per particle is evaluated by various methods:

Eo= —0.8030R, (RDA) (Ref. 19),
Eo= —0.80308, ~ +0.027 (VCA) (Ref. 5),
Eo= —0.8030R, +0.032 (SCFA) (Ref. 8),

(4.3)

(4.4)

(4.5)

The extra numerical terms in Eqs. (4.1), (4.4), and (4.5)
are due to the better estimation of the correlation. The
numerical data for the ground-state energies in the vari-

for the practical purposes one can consider g(0) to be
zero.

We have evaluated the ground-state energy by a nu-
merical self-consistent solution through Eqs. (3.14) and
(3.19) to give

TABLE I. Ground-state energies obtained from various methods for the two- and three-dimensional
charged-boson system.

—E0

2D
SCFA RDA' SCFAb

3D
RDA' @CA'

1

2
3
5

10

'Reference 17.
Reference 8.

'Reference 19.
Reference 5 ~

1.2617
0.7808
0.5965
0.4245
0.2670

1.2918
0.8138
0.6210
0.4418
0.2783

0.7712
0.4472
0.3231
0.2129
0.1188

0.8030
0.4475
0.3523
0.2402
0.1428

0.7767
0.4516
0.3270
0.2159
0.1209
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TABLE II. Pressure of the 2D charged-boson system ob-
tained from the SCFA and RDA.

P R, dFO

2 dR,
(4.6)

R,

1

2
3
5

10

—P/p
2D
SCFA

0.4060
0.2557
0.1961
0.1404
0.0911

RDA

0.4306
0.2713
0.2070
0.1473
0.0928

The numerical results for the pressure are listed in Table
II in comparison with the RDA results.

In conclusion, we remark that the behaviors of the ele-
mentary excitation spectrum, structure factor, and pair-
correlation functions obtained from the SCFA, which in-
cludes the short-range correlations for the 2D charged-
boson system, are very much like those of the 3D case.
The SCFA results for the ground-state energy are an im-
provement over the RDA results.

ous calculations are summarized in Table I, where we see
that the SCFA results are an improvement over the RDA
results.

Differentiating Eq. (3.20) with respect to R„we obtain
the pressure of the 2D charged-boson system:
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