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Dynamics of one hole in the f-J model
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%'e calculated the spectral function of a hole in the t-J model using a numerical method on a
4x4 lattice. A sharp quasiparticle peak is observed with an energy that is well approximated by
hE —3.17+2.83J' (for 0.1&J&1.0 t 1) with a 0.73+0.02. This result suggests that the
picture of a hole attached to the origin by a string may be valid in the Heisenberg model. The
rest of the spectrum is not completely incoherent but it has a nontrivial structure, stemming from

the excited states of the string. The bandwidth of the quasiparticle is discussed. Results for the
Ising model are also presented.

The discovery of the new high-T, superconductors'
have renewed the interest in the study of two-dimensional
(2D) Hubbard-like models. Recently, it has been found
that the undoped materials can be understood very well

using the 2D spin-2 Heisenberg model. However, not
much is known about these models when holes are intro-
duced in the system. As a first step it is important to un-
derstand the behavior of one hole in an antiferromagnet
using the t Jmod-el. Some of its properties are already
known: For example, static quantities such as ground-
state energies and dispersion relations have been evalu-
ated using variational spin-wave approximations and nu-
merical techniques. 5 6

What do we know about the dynamical properties of
one hole in a Mott insulator? Previous studies are based
on self-consistent diagrammatic approaches or moment
expansion methods. Brinkman and Rice showed that at
U ~ in the Hubbard model the spectral function of a
hole is incoherent. For finite U this situation may change
as indeed happens in one dimension. In 2D much pro-
gress has been made recently in the context of the t-J
model, where it was shown that a quasiparticle peak exists
in the spectral function of a hole for finite J. Beyond that
peak the rest of the spectrum is conjectured to be in-
coherent.

Although these calculations are appealing, it is impor-
tant to check their main predictions against numerical re-
sults. In principle there is no obvious small parameter
controlling the convergence of the self-consistent method
used in Ref. 9. However, a numerical calculation of spec-
tral functions is very difficult. To measure properties of a
system in real time using Monte Carlo methods, high ac-
curacy in imaginary time observables is needed. A better
way to proceed is by using Lanczos methods. In this case
complex numbers can be easily handled and a calculation
in real time is possible. Even more, spectral functions can
be obtained' ' as mean values of appropriately chosen
operators in the ground state of the system. Then there is
no need to calculate the complete spectrum of the Hamil-
tonian.

In this Rapid Communication we present the first nu-

S(k, to) —(I/tr) lm[G(k, to+ Ep+ le)],
where

G(k, x) -(tltp i c1,(x —H) 'ct, I yp)

and

c1™/exp(iki)c; .

(2)

We consider hole operators with spin up (the spin index is
dropped from now on). The state ( tltp) is the ground state
of the Heisenberg model in the absence of holes (with en-
ergy Ep) that we obtained using a modified Lanczos
method. ' e is a small parameter that gives a finite width
to the b functions appearing at each pole of G. All possi-
ble states of the one-hole subspace having a nonzero pro-
jection over the state

~
1) ct, ~ 1trp) will contribute to the

spectral function. G admits a continued fraction expan-
sion since it has poles only on the real axis. The
coefficients a,b of this expansion can be obtained from
powers of H in the state of one hole ( 1) which are evalu-
ated numerically for increasing m until convergence is ob-
served. ' As a check of our program we reproduced the
ground-state hole energies previously obtained by Lanczos
methods and we also satisfied the standard sum rule com-
ing from the integration over m of the spectral function.

Our main results are the following: In Fig. 1 we show

merical study of the spectral function of one hole in the t-
Jmodel in 2D. This model is defined by the Hamiltonian

H JgS; S;+;—tg (c|,g;+; +H.c.),
i8 iie

where the first term corresponds to a Heisenberg interac-
tion among the spins while the second is an electron-
hopping term acting with the constraint of no double oc-
cupancy (hole hopping). The notation is standard. We
work on a two-dimensional square lattice with periodic
boundary conditions. The operators c; correspond to
hole operators. We consider t 1 in the rest of the paper.

To obtain information about the dynamics of this prob-
lem we introduce the spectral function of one hole with

energy to and momentum k, defined as'2
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the spectral function of one hole at different values of J
and for k (x/2, tr/2). ' At J 0 there are no clear dom-
inant peaks, although there is some structure superim-
posed on the incoherent background predicted in Ref. 7.
Note the strong depletion near tu 0 where there are
states present but with very small spectral weight (pseu-
dogap). Its existence produces two well-defined bands in
the problem. In fact, the spectral function at J 0 and
k (Ir/2, tr/2) is symmetric under ru —m. This symme-
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FIG. 1. Spectral function of one hole for diA'erent values of J
on a 4X4 lattice Ir I, e 0.1, and k (x/2, x/2}].

try comes from a change in the sign of t when a ( —1) is
absorbed in the fermionic operators at even sites. The first
pole at J 0 [Fig. 1(a)] is located at = —3.40 which is
close to the result —3.34 given by Jo nt' and also to the
result of Brinkman and Rice —2 3= —3.46. It is im-
portant to note that the state

~
1) has total spin —,

' so states
with higher spin will not appear in our spectral function'
(the "band tails" of Ref. 7).

At J 0.2 [Fig. 1(b)] the results have already changed
drastically. Now a clear peak is present at the bottom of
the spectrum corresponding to a quasiparticle. This peak
is separated by a small gap from a band which shows some
modulation. A pseudogap still separates this structure
from a second band also presenting peaks on top of an in-
coherent spectrum. This additional band comes from the
tu )0 sector of the spectrum at J 0 and is a direct conse-
quence of the pseudogap near tu 0 that exists in that lim-
it. Increasing J, three

well-defined

structures

surviv. For
example, at J 0.7 [Fig. 1(c)] the two broad bands
(found after the quasiparticle peak at small J), have ap-
preciably reduced their width. At J 2.0 [Fig. 1(d)] only
two small peaks can be observed besides the quasiparticle.
However, note that although the total width of the spec-
trum seems to be = 8t, in fact there are many more poles
at high energies (with very small spctral weight) than
those that can be observed in Fig. l. '

To understand our results we studied the energy of the
quasiparticle versus J. This energy AF. can be fitted with
high accuracy by a power law as ~ —3.17+2.83J',
where a 0.73+'0.02 for intermediate values of J(0.1

~ J~ 1.0) (for very large J all the levels scales as J as
expected). In addition, we also found (in the same inter-
val of J) that the energy of the second peak [denoted by II
in Fig. 1(b)] is also well approximated by AF. —3.13
+5.36J' where a 0.70 ~ 0.04. '9

These results can be understood as follows, by analogy
to the Ising case. ~ A local wave function for the hole,
analogous to a Wannier function in a single-particle
tight-binding model, can be constructed by allowing the
hole to move on its string away from a central site. We
find a linear potential equal to 2( —dI+di)Jl =1.1Jl
where dI and di are the first- and second-neighbor spin-
correlation functions of I yo), and I is the length of the
string. The theoretical prediction for the energy of the
lowest-hole state is ~ —3.34+2.93J /, in good agree-
ment with our numerical results and also with the results
in the Ising limit ~ —3.46+2.74J . The subsidi-
ary peaks can be identified as excited states of the hole on
the string by the J dependence of their energies. The spin
fluctuations are not fast enough to destroy the string
which lasts for a time —1/J. By comparing this time to
the time needed for a hole to reach its classical turning
point in the linear potential, one finds two bound states of
the string for J 0.2. This qualitative argument tells us to
expect some additional structure in the low-energy spec-
trum, as observed. The number of bound states predicted
by this argument is —1/J as J~ 0.

As a further test of these ideas, note that for very small
J all the levels of the string should converge to the same
value. This is in excellent agreement with the behavior of
the first and second peaks extrapolated to J 0 ( —3.17
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and —3.13, respectively) (see Fig. 2). The intensity of
the other peaks quickly diminishes with J. The fact that
numerically at J 0 there still exist peaks in our results
can be attributed to the finite size of the lattice. In fact,
this effect can also be understood from the string picture
where we find that the average length of the string
behaves as 1.43/J'/, which is equal to 4 (the size of our
lattice) for J=0.05. So although in principle our calcu-
lations on a 4X4 lattice may be affected by finite-size
effects, the analysis of the size of the ground state and its
energy show that they are not very important.

In addition to the main peaks there are many other
peaks of lower intensity. Those are probably due to spin-
wave excitations. For the Heisenberg model without holes
we found (for a 4X4 lattice) that the spin-wave energy
(with respect to the ground state) ranges from 0.58J at
k (x, ir) to 2.71J at k (x/2, ir/2). These energies are of
the correct order of magnitude to explain part of the spec-
trum shown in Fig. 1. Note also that the second broad
band observed in Fig. 1(b) cannot be accommodated in

the string picture (only the first few levels admit such an

interpretation because the rest are unstable as was shown

above). It would be very interesting to understand analyt-
ically the origin of this new band.

What is the dispersion relation of the quasiparticle?
We evaluate it by calculating the position of the dominant

peak for different values of k. The bandwidth is defined as
the difference in energy between the quasiparticle states
with maximum and minimum energy. ' We found that
the state with highest energy corresponds to k (0,0)
while the minimum is at k (Ir/2, tr/2) as expected. For
0.2» J» 0.6 we can fit the state of minimum energy in

the sector of k (0,0) as &R'= —3.5+4.7Jo (similar
results were found for all the possible values of k). Com-
bining the results for k (0,0) and k (Ir/2, x/2) we con-
clude that the bandwidth in this region behaves approxi-
mately as Jo7. (A calculation is in progress to check if
this result is also in agreement with the string picture or
not. ) Then, although we fully agree with Ref. 9 that there
is a drastic reduction in the bandwidth from I to J', we do
not agree in the exponent, at least for 0.2 &J &0.6. They
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our numerical results suggest a =0.7. (Recently a strong
nonlinearity in a new Green's-function approach was
found suggesting that spectral weights do not scale as J
for J)0.01.) We also found analytically and numerical-

ly that for J» I, the bandwidth is proportional to I rather
than I /J as in the Ising model.

In Fig. 3 we show results for the t-J, model (Ising lim-

it) at two values of J and k (n/2, x/2). In this case the
ground state for zero holes is the Neel state. The result
for J 0 fFig. 3(a)l does not have the depletion at ro 0
observed in Fig. 1(a). The reason is that in the Ising limit
the total spin is no longer a good quantum number (only
S, is conserved). So the spectral function will contain
more peaks than in the Heisenberg limit (where we stud-
ied only the S 2 sector). In particular there will be
states that correspond to the S, 2 component of states
of high spin in the Heisenberg model (this idea has been
verified on a 2x2 lattice). Thus we conjecture that the
peak at tn 0 in Fig. 3(a) is due to ferromagnetic states,
since this is where the free-particle pole would lie.

At J, 0.4 [Fig. 3(b)] there is already a clear quasipar-
ticle peak in the spectrum of the Ising model. Recently,
using lattices of up to SII8 sites, it has been found that
its energy scales like —3.66+2.96J; with II 0.66+.0.02
for 0.2~ J, ~ 1.0 in excellent agreement with the string
picture. (It is also remarkable that the results for the 4&4
lattice were already in close agreement with the final re-
sults of the 8&8 lattice showing that indeed the finite-size
effects of our calculation are small). At J, ~ 2.0 we

found a result similar to that of Fig. 1(d) for the Heisen-
berg model. For the Ising limit we can do a good quanti-
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FIG. 3. Spectral function of one hole for the Ising model at
J 0.0 and 0.4 on a 4 & 4 lattice [I 1, e 0.1, and
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tative analysis and we found that the quasiparticle peak
corresponds to the hole (static) at a given site while the
first peak is the hole moving one lattice spacing in any
direction (in fact, many other low intensity peaks were
identified in the Ising limit). We believe that a similar sit-
uation occurs for the Heisenberg model and that the first
two levels found in Fig. 1(d) (presumably with a string of
length 0 and I, respectively) are smoothly connected to
the first two levels of the 1D confining problem described
above for small J. We also remark that the position of the
quasiparticle peak in the Ising limit is not k independent,
perhaps due to the high-order processes mentioned by
Trugman. However, the bandwidth is very small show-

ing that the influence of these processes can be safely
neglected.

Additional details will be presented elsewhere. A study
of larger lattices is in preparation (preliminary results for

an 18 site lattice do not show drastic changes in our re-
sults). U n completion of this work we learned that
Trugman is also calculating S(k, to) usin a different
technique. We also know that other groups ' are work-
ing along similar lines.
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