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It is shown that the unitary transformation used as the basis of a r/U expansion for the Hub-

bard model in an earlier Brief Report is ~j equivalent to the canonical perturbation expansion

(CPE) discussed in the preceding Comment. The CPE is valid only to leading order in t/U.
More evidence is offered in support of our suggestion that higher-order terms in the t/U expansion

tend to favor spin-liquid states over antiferromagnetically ordered states.

The Hubbard model, '

H —t g N; JC; C) +Urn;tni),
ly ~ ~ ~ y 1 0

captures the essential physics of electronic systems for
which the dominant interactions are on site (N;J is one if i
and j are neighboring sites). In the localized limit (t 0)
of this model, the spectrum of H consists of macroscopi-
cally degenerate subspaces characterized by a given num-
ber of doubly occupied sites. For a half-filled band, the
lowest-energy subspace has each site singly occupied and
the only degree of freedom is the electron's spin. Since
the discovery of high-T, superconductivity, there has
been interest in the possible existence of a novel type of
superfluidity which evolves from strongly correlated spin-
liquid ground states at half-filling (see Refs. 5-8 for dis-
cussions of some of the ideas being explored).

For small t/U the Hubbard model may be replaced by
an effective Hamiltonian which treats the hopping term
perturbatively and describes how it breaks the degeneracy
of each subspace. It has long been realized' that to lead-
ing order this expansion leads (at half-filling) to an
effective antiferromagnetic coupling between spins on
neighboring sites and, therefore, for the two-dimensional
square lattice relevant to high T„ to a spin crystal' (an-
tiferromagnetic) ground state. Superconductivity based
on spin-liquid ground states remains a possibility, howev-
er, if the antiferromagnetic coupling becomes frustrated,
for example, by the introduction of holes. " In our Brief
Report' we pointed out that beyond-leading-order terms
in the t/U expansion couple non-neighboring spins and
frustrate the antiferromagnetic states. We argued on the
basis of comparisons of the energies of the Neel state (the
prototypical antiferromagnetic state) and several va-
lence-bond states (the prototypical spin-liquid states) that
these corrections are important at realistic values of t/U
and can help to tip the delicate balance between spin-
liquid and antiferromagnetic states. (A large part of the
preceding Comment' merely repeats this calculation and
obtains the same results except as noted below. ) In
response to the Comment' we first point out some in-
correct and some misleading statements contained
therein, and then present some additional evidence in
favor of the thesis of our Brief Report.

The i/U expansion of the Hubbard model has a long
history. A summary of early work" ' is contained in

the paper of Takahashi, ' who was the first to successfully
carry out the expansion beyond leading order for the case
of two or three dimensions. The approach taken to the
I/U expansion in our Brief Report, was to seek a unitary
transformation which eliminated, order by order, terms
which couple subspaces with a different number of doubly
occupied sites. For this purpose it was useful to rewrite

Eq. (I) as

H V+ To+ Ti+ T (2)

(4)
where i~, . . . ,i~ range over the lattice sites, I labels the
distinct ways in which % sites can be linked by near-
neighbor hops, LN i(i i, . . . , iN) specifies the Ith linkage of
N sites, and Hiv i(cs;„rs;„.. . , cs;„) is a spin operator. The
linkage functions, which have an obvious graphical ana-
log, are given in Table I and the corresponding spin opera-
tors are given in Table II out to order t6/U . These re-
sults are valid for any lattice in any number of dimensions.
For the case of the 2D square lattice and the 3D simple
cubic lattice our results for the effective Hamiltonian out
to order t /U are in agreement with earlier results by
Takahashi. ' For the case of a 1D lattice our result for

where V is the interaction term and T comes from hops
which increase the number of doubly occupied sites by m.
The transformed Hamiltonian,

+ [iS,H) + [iS,liS, HI) ~
lf 2f

(3)
where the kth-order contributions of S are proportional to
U times the product of k T 's. S is determined itera-
tively'2 with the kth-order term fixed so as to eliminate
the unwanted terms of order t /U ' from H'. The ap-
proach was inspired by the Foldy-Wouthuysen transfor-
mation' of atomic physics in which a relativistic expan-
sion is obtained by eliminating terms coupling positive and
negative energy solutions of the Dirac equation. We
found that this approach was very convenient for carrying
out the expansion to high order, although other' ' '
(equivalent) approaches could have been used. At half-
filling the Hamiltonian is equivalent to a spin Hamiltoni-
an which can be expressed in the form

H g g LN i(/ i, . . . , 1N)Hiv, l(esi)~esi2~ ~ ~ ~ i Kg'~) ~
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the effective Hamiltonian out to order t /U differs from
the one obtained earlier by Klein and Seitz, ' which we
believe to be in error. We remark that, for small N, the
Hrc I can be determined to all orders in t/U by comParing
the spectrum of 0' with the spectrum of the full Hubbard
model for small clusters. For example, it follows from di-
agonalizing the Hubbard Hamiltonian for a two-site clus-
ter that

&/2-

Hg, )(cr) cr2) 1 — 1+U 16''
(1 —cr) cr2), (5)

in agreement with Table II.

TABLE I. Linkage functions appearing in the t/U expansion
out to order t /U .

Lg, i(l, . . . , N)

N]2

N ]2N23N3]
N ]2N23N34N4 [

N[2N[3N]4
N]2N]3N24
N 12N 23N 34N41N 3 ]

N ]2N23N34N4] N ] 5

N ]2N23N3[N ]4N45N5]

N]2N23N34N4sN s6N6]

i [S,U+ To] —T& —T (6)

The S defined by this equation is not the same as ours.
Equation (6) defines the transformation used by many au-
thors' to obtain the t/Uexpansion to leading order. In
order to carry the expansion to high order, S must be
specified order by order so as to eliminate unwanted terms
from the transformed Hamiltonian. This procedure is de-
scribed in detail in our Brief Report. ' With S defined by
Eq. (6) the transformed Hamiltonian has unwanted terms
appearing at third and higher order in the hopping. Fur-
ther errors are introduced because the transformed Ham-
iltonian is in the end constructed using a low-order ap-
proximation to this S [Eq. (12) of the Comment). It fol-
lows that in the CPE, terms beyond leading order are
based on uncontrolled approximations. Unlike the CPE,
our approach takes the steps necessary to carry the
unitary-transformation approach to the t/U expansion
beyond leading order. The CPE is not equivalent to the
approach used in our Brief Report.

Contrary to what is stated in the paragraph below Eq.

Our approach to the t/U expansion has some similarity
to earlier work ' which should have been cited in our Brief
Report, including that of Chao, Spakek, and Oles cited
in the preceding Comment. The approach of the latter
authors, which they call a canonical perturbation expan-
sion (CPE), is to make a unitary transformation [Eq. (9)
of the Comment] with S chosen to satisfy [Eq. (10) of the
Comment],

TABLE II. Spin operators appearing in the t/U expansion of the Hubbard model out to order t 6/U'. Here I j stands for cr; cr, and

x t 2/U~

( —x/2+2x —16x )(I —I.2)

Hw, l (cri, , crw )/U

1P

X X+9x —2x (I 2+1.3)+ —5x 2 3
2 2

x'[15 —5(l 2+I 3+2 3)]/6

x /8 —3x +(—x /8+21x /4)(l 2+I 4+2 3+3 4)+(5x~/8 —69x3/4)(l 23.4+I 42 3)
—(5x~/8 —54x3/4)l 32 4+( —x3/8+3xi/2)(l 3+2.4)

x [15—25(l 2+I 3+I 4)+27(2 3+2 4+3 4) —7(1 23 4+I 32 4+I 42 3)]/24

x [—6+5(l 2+3 4)+1.23.4 —I 42 3]/2

x3[7 —21(l 2+I ~ 4+2 3+3 4)+152 4+231'3+37(1'23 4+I'42'3) 351'32 4]/8

x [3+3(l 2+1.3+I 4) —2(2 5+3.5+4.5) —9(2 3+2 4+3 4)+11(1 23 4+I 42. 3 —1.32 4)
+10(—I 23.5+1.32 5+I 34 ~ 5 —I ~ 43 ~ 5+2.34 5 —2 ~ 43 5+2 53.4)]/4

x [I+I 2+I 3+I 4+I 5+2 3+4 5+5(2 4+2.5+3 4+3.5)
—19(1.24 5+I ~ 34.5+I 42. 3+I 52 3)+492.34.5]/8

x3[—3+3(1.2+1.3+1 4+1.5+I 6+2 3+2 4+2 5+2.6+3 4+3 5+3.6+4 5+4 6+5 6)
—7(1.23.4+1.23 5+1.23.6+I 24.5+I 24 6+ I 25.6+1.34 5+1 34 6+I 35 6+I 42 3
+1.45.6+1 52.3+1.52-4+ 1.53.4+1.62.3+1.62 4+1 62.5+1.63.4+1.63.5+1.64.5
+2.34.5+2 34.6+2 35.6+2.45 6+2 53.4+2.63 4+2 63.5+2.64 5+3 45 6+3 64.5)
+7(1.32.4+1.32.5+I ~ 32 ~ 6+1 ~ 42 ~ 5+1.42.6+I 43 5+I 43 6+I 52.6+I 53.6+1.54 6
+2.43.5+2.43.6+2.53.6+2 54.6+3 54 6)+63(1 23 45 6+1 23.64 5+I 32 54.6
+I 42 35.6+I 42.63.5+1.52 43.6+I 62 34.5+I 62 53 4) —63(l 23 54 6
+I 32.45.6+1.32 64 5+I 42 53.6+I 52.34 6+I 52 63 4+I 62.43.5)]/48
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(12) of the Comment, the eft'ective Hamiltonian does, in

general, involve hops which do not change the number of
doubly occupied sites. The fact that such terms are absent
in the CPE is a consequence of the approximation used for
their S matrix [Eq. (12) of the Comment]. In addition
the Comment suggests that odd-order terms vanish from
the t/U expansion. This is true only for the case of a
half-filled band for which it is a consequence of the
particle-hole symmetry of the full Hubbard model and not
of some property of the t/U expansion. (For example, one
can show that T )TpT(:0 at half-filling. ) Again, the
fact that such terms are absent at all band fillings in the
CPE reflects the fact that it is valid only to second order in

t. Similarly, the coefficient of t4/U3 for the expectation
value of the eff'ective Hamiltonian in the Neel state is in

error in the CPE [see Eq. (14) of the Comment]. We see
no basis for the argument following Eq. (14) that this er-
ror in the CPE in some way approximates the effects of
quantum fluctuations about the Neel state. In any event,
it is easy to include quantum fluctuations, at the level of
spin-wave theory, using the correct effective Hamiltonian.

I

Having clarified the relation between the CPE and the
unitary transformation discussed in our Brief Report, we
turn to a discussion of our suggestion that higher-order
terms in the t/U expansion favor spin-liquid states over
antiferromagnetically ordered states. We felt that the
frustrating effect of coupling to non-neighboring spins
would clearly have this effect, and illustrated the tendency
by comparing the shifts in the energies (Hamiltonian ex-
pectation values) of Neel and valence-bond states. We
felt that this was a fair comparison since the two states
may be regarded as resulting from the neglect of quantum
fluctuations in antiferromagnetic states and spin-liquid
states, respectively. While spin-wave theory can be used
to describe quantum fluctuations in the ferromagnetic
state there is no simple approximation available for spin-
liquid states. Here, we provide further evidence in support
of our expectation by showing that higher-order correc-
tions reduce the spin-wave energies of the antiferromag-
netic state.

Using the information in Tables I and II, we see that
for the 2D square lattice, the effective Hamiltonian is

E2 4H- —2N+ —, ga; cr;+„+, 3N —3/a; a;+„+—, g c;ra;+„. +2~ gai a;+„
l, t l, t) l, t2 l, t3

+ —,
' $ (a; a;+,, )(a; cr;p„) ——,

' $ (cr; cr;+,,)(a;"a;~„) +O(ts/Us).
l~t)~l l, t2

(7)

4 6U ~(2)+ ~(4)+ ~(&6)+. . .
U U5

(8a)

Here &'+ r~ denotes one of the four near neighbors of site i
which is separated from site i by a distance a, i + r2
denotes one of the four second neighbors of site i which is

separated from site i by a distance J2a, and i+ r3 denotes
one of the four third neighbors of site i which is separated
from site i by a distance 2a. (The lattice constant is a
which we now use as a length unit. ) Note that for the an-

tiferromagnetic state, sites i and i + r] are on opposite

magnetic sublattices while sites i and i+f2 and i and
i+ r3 are on the same magnetic sublattice. The primes on
the sums in the terms involving spin operators on four sites
restrict the sites to an elementary square plaquette, so that
there are two choices for i' in the fourth t /U term
whereas both i' and i'+r2 are fixed in the fifth t /U
term. Making a Holstein-Primakoff transformation
referenced to the Neel state, linearizing the resulting bo-
son Hamiltonian' and replacing the site representation
by a wave-vector representation leads to the Hamiltonian,

where

Et(")+g s(" (k)atai,

+ (aita —i;+a —iraq)
2

E —4, Ei 24, 8 (k) 8,
8 )(k) —104+4(cos2k„+ cos2k»)

—16[cos(k„+k» ) + cos(k„—k»)],

(k) 4[cos(k„)+cos(k» )],
(k) -—64[cos(k„)+cos(k»)] .

(8b)

Here the Eq" are the coeScients in the expansion of the
Ising energy. Making a Bogoliubov transformation' we
obtain

H =HI 2 Z [s(k) E(k)]+Zditd)E{k), {9)

where s(k) gk s " (k), k(k) gk A.
( " (k), and the

spin-wave energies are given by

E(k) =Vs'(k) —~'(k)

E (2)() )

8E 41 —) '(k)—
U

128v1 —
y (k)+

~
+O(t').

U3
(10)
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In Eq. (10) y(k) [cos(k )+cos(kr)]/2 and

b(k) [16[cos(k„+k„)+cos(kk —kr)]
—4[cos(2k )+ cos(2k')]]/24.

In the long-wavelength limit Eq. (10) leads to

4t 42k 14t
U

8t 8tE(k„ trk 0) 1 — +Z U2

and

E(k x/2 k tr/2) I — +SE 14/
Z s y U U2

(12)

showing that the spin-wave velocity is reduced by the t
terms. Similarly on the boundary of the magnetic Bril-
louin zone,

so that the spin-wave energies are reduced throughout the
Brillouin zone.

The reductions in excitation energy discussed above
reflect a weakening of the stability of the antiferromag-
netic state. The above calculation provides additional evi-
dence in support of the conclusion of our Brief Report,
namely that higher-order terms in the t/U expansion can
"play a role" in favoring spin-liquid states over Neel
states. Contrary to the impression left in the Comment
we did not attempt to make any conclusions concerning
what happens far from the localized limit where the t/U
expansion is very slowly convergent. We did point out
that corrections to the Heisenberg model for the half-filled
localized limit become important at values of t/U relevant
to models for high-T, superconductors. The corrections
tend to frustrate the antiferromagnetic order of the
ground state and will make it easier for the order to be
destroyed by the additional frustration introduced by
holes.

Permanent address: College of General Education, Kyushu
University, Fukuoka 810, Japan.

'P. W. Anderson, Phys. Rev. 115, 2 (1959).
2J. Hubbard, Proc. R. Soc. London, Series A 276, 238 (1963).
3M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).
sJ. G. Bednorz and K. A. Miiller, Z. Phys. B 64, 189 (1986).
SR. B. Laughlin, Science 242, 525 (1988).
sP. W. Anderson, Science 235, 1196 (1987).
7S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B

35, 8865 (1987).
Yi-Hong Chen, Frank Wilczek, Edward Witten, and Bertrand
I. Halperin, Int. J. Mod. Phys. B 3, 1001 (1989).

SF. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
~ There are by now many indications from small-system exact

diagonalization and from variational studies that the 2D
square-lattice Heisenberg model has an antiferromagnetic
ground state. See, for example, P. Horsch and W. von der
Linden, Z. Phys. B 72, 181 (1988); S. Liang, B. Doucet, and
P. W. Anderson, Phys. Rev. Lett. 61, 365 (1988); D. A. Huse
and V. Elser, ibid 60, 2531 (.1988).

"Experimentally, high-T, materials show magnetic order when
the relevant band is half-filled. See, for example, C. Chakra-
varty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B 39, 2344
(1989), and references therein. However, the introduction of
a dilute concentration of holes destroys the magnetic order.

' A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Phys. Rev.

B 37, 9735 (1988).
' Andrzej M. Oles, preceding Comment, Phys. Rev. B 41, 2562

(1990).
'4L. N. Bulaevskii LN, Zh. Eksp. Teor. Fiz. 51, 230 (1966)

[Sov. Phys. JETP 24, 154 (1967)].
~sA. B. Harris and R. V. Lange, Phys. Rev. 157, 295 (1967).

. J. Klein and W. A. Seitz, Phys. Rev. B 8, 2236 (1973);
ibid 9, 2159.(1974);ibid 10, 3217 (1.974).

'7M. Takahashi, J. Phys. C 10, 1289 (1977).
'sL. L. Foldy and S. A. Worthuysen, Phys. Rev. 78, 29 (1950).
'9T. Kato, Prog. Theor. Phys. 4, 514 (1949).
2 We list the complicated t 6/U' terms here to illustrate the utili-

ty of our approach.
2'M. Heise and R. J. Jelitto, Z. Phys. B 25, 381 (1976); V. A.

Kapustin, Fiz. Tverd. Tela (Leningrad) 16, 804 (1974) [Sov.
Phys. Solid State 16, 520 (1974)].
K. A. Chao, J. Spakek, and A. M. Oles, J. Phys. C 10, L271
(1977);Phys. Rev. B 1$, 3453 (1978).

23J. E. Hirsch, Phys. Rev. Lett. 54, 1317 (1985); C. Gros, R.
Joynt, and T. M. Rice, Phys. Rev. B 36, 381 (1987);K. Beck-
er and P. Fulde, Z. Phys. B 72, 423 (1988); C. Catellani, C.
DiCastro, D. Feinberg, and J. Ranninger, Phys. Rev. Lett. 43,
1957 (1979).

24T. Holstein and H. Primakoff, Phys. Rev. 5$, 1048 (1940).
2sSee, for example, D. C. Mattis, The Theory of Magnetism I

(Springer-Verlag, Berlin, 1988), Chap. 5.


