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The size distribution of circular clusters resulting from a computer simulation of the late stages
of phase separation in two dimensions was recently reported by Rogers and Desai [Phys. Rev. B
39, 11956 (1989)]. The distribution that evolved was considerably broader than that predicted

by an analytical version of the Lifshitz-Slyozov theory of late-stage coarsening in two dimensions.
The results of the numerical analysis are compared with an older version of the two-dimensional

theory which includes the effect of diffusive correlations among nearest-neighbor clusters; the
correlations are related to the volume (area) fraction of clusters. The size distribution predicted

by the older theory is in much better agreement with the numerical data. The implications of
this agreement for the late-stage coarsening of three-dimensional clusters are discussed.

Rogers and Desai' recently published the results of a
numerical study of the kinetics of phase separation in two
dimensions. Several off-critical compositions were investi-

gated in a system with a symmetrical phase diagram. The
focal point of their work was domain growth and scaling
behavior in the late stages of decomposition. Scaling was
best satisfied for the initial composition Co farthest from
the critical composition C, ( 0.5). Under these cir-
cumstances the growth rate of the circular clusters,
characterized by an average radius (R,), increased with

time t according to (R,) cs: t", while the average number of
clusters per unit area, N, decreased with t according to
N o:t ", with n —P.29.

Rogers and Desai compared this late-stage coarsening
I

behavior with that predicted by a two-dimensional version
of the Lifshitz-Slyozov (LS) theory of coarsening. Since
the classical LS theory was formulated for a three-
dimensional array of clusters, Rogers and Desai were ob-
liged to derive the corresponding equations for the two-
dimensional problem. This requires an analytical solution
to the problem of steady-state diffusion to a circular clus-
ter in the center of an infinite plane, and it is easy to show
that the flux at the interface of such a cluster is zero. To
circumvent this difficulty, Rogers and Desai employed an
asymptotic analysis of the diffusion equation, from which
they proceeded to show that the LS theory in two dimen-
sions predicts n —,', with a scaled, time-independent,
cluster size distribution given by
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where x R/R, R is the radius of an individual cluster,
R R*(t) is a cluster of critical size which is neither
growing nor shrinking at time t, and e is a normalization
constant.

One important result of their computer simulation was
that the normalized cluster probability function produced
by the numerical analysis was considerably broader than
that predicted by Eq. (1). They attributed the discrepan-
cy to correlations among neighboring clusters.

Many years ago I analyzed the problem of two-
dimensional coarsening with the intent of predicting the
average growth rate of cylindrical fibers in directionally
solidified eutectic alloys. My solutions to the two-

I

dimensional coarsening problem included "correlations"
among clusters, and in this sense were more comprehen-
sive than the solution of Rogers and Desai. The principal
purpose of this Comment is to compare the distribution
obtained from their computer simulation with the predic-
tions of my model.

Diffusive correlations arise through the effect of the
cluster volume fraction (or area fraction) and the manner
in which this influences the diffusion fields around indivi-
dual clusters. I chose a particularly simple model of the
diffusion geometry; i.e., that of steady-state diffusion be-
tween concentric cylinders of radii R and R'. The radius
R' of the outer cylinder was taken as R+(l)/2, where (l)
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dC CR —CR

dr, ~ R ln(R'/R)
(2)

where r is a spatial coordinate and Cg and Cg are the
concentrations at R and R', respectively.

The volume fraction Q enters the problem through the
geometrical relationship between R, R', and (I). Using an
expression for (1) derived by Bansal and Ardell the ratio
R'/R becomes

(3)

where

(4)

and
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The calculation of Bansal and Ardell is accurate to
Q-0.5, which covers most physically realistic dispersions.
The difficulty in the limit of zero area fraction is that
R' ee as Q 0, so that (2) is always zero.

Through the use of the Gibbs-Thomson equation, the
development of the two-dimensional LS theory is straight-
forward. The significant results in the context of this dis-
cussion are that the normalized distribution of cluster
sizes takes the general scaling form

2x " 2u duf(x)-, exp
dx3/dr "o du /dr

where

is the mean free distance between a cluster and its nearest
neighbors. So long as R' is finite, steady-state solutions to
the diffusion problem are well behaved and predict
nonzero fluxes at the interface of the inner cylinder. The
flux is proportional to the concentration gradient, given by

which for x & x becomes
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Equations (10) and (1) appear to differ in the argument
of the exponential function, but they are in fact identical,
with c (-', ) e ~. We note that Eq. (10) is obtained
without recourse to special mathematical approximations.
Interestingly, however, it applies to a physically meaning-
less static dispersion because g ee, hence the rate of
cluster growth becomes zero. Nevertheless, for any physi-
cally meaningful nonzero value of Q the solutions are per-
fectly well behaved. For example, for Q 0.001, which is
a very dilute dispersion, (-15.

We now turn to the distribution measured numerically
by Rogers and Desai for the "composition" yo 0.4.
Since yp (C Cp)/(C, —C, ), where C, is theequilibri-
um concentration (the concentration at the coexistence
curve), and Q (Co —C, )/(1 —2C, ), we have Q (1
—yo)/2 in general, so that Q 0.3 for yo 0.4. Equation
(6) was evaluated numerically for Q ~0.3 for comparison
with the results of Rogers and Desai; the function f(x)
was transformed to fo(x') for this purpose (in general
x' x/(x), and for Q 0.3(x) 1.023, cf. (x) 1.0665 for
Q 0), and the results for the longest time investigated by
Rogers and Desai (a dimensionless time of 5000 ) are
shown in Fig. 1. The numerical distribution is some~hat
narrower and more sharply peaked than the theoretical
distribution, although the differences are not really evi-
dent except in the vicinity of the peak. It is important to
note, however, that the experimental distribution is still
evolving towards its eventual scaling form, broadening
with increasing time. Therefore, the agreement between
theory and experiment in Fig. 1 can only be expected to
improve for simulations run to yet later stages.

The implications of the favorable comparison in Fig. 1
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The theory also predicts that R a: (t/g)", with n —,', for
all values of Q.

In the limit Q 0, the case treated by Rogers and
Desai, tl 0, x —', from (9), g ~ from (8), and the
ratio g/ln(1+ I/rlx) 2( —', ) . Equation (7) is thus
simplified, enabling the straightforward integration of (6),

31nR*, and
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where x~ is the maximum allowed value of x [Eq. (6) is
valid only for x & x ]. The cutoff particle size x
satisfies the equation
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F1G. l. Comparison of the distribution of sizes of circular
clusters obtained numerically after a reduced time of 5000
(open circles), with the distribution predicted by the theory of
two-dimensional late-stage coarsening for a cluster volume frac-
tion of 0.3.
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are quite significant because my model emphasizes the
role of local diffusive correlations. The growth of an indi-
vidual cluster in this model is determined only by the way
its nearest neighbors influence the composition in its im-
mediate vicinity. More distant neighbors, which influence
the diffusion fields in other theories of two-dimensional '

and three-dimensional coarsening, ' are assumed here to
have no effect. The comparison in Fig. 1 suggests that
models which include far-field diffusion may be inap-
propriate, no matter how rigorously they are formulated.
Some newly reported experimental results" provide addi-
tional support for this idea.

It is potentially of interest to compare the results of
Rogers and Desai with the predictions of two other recent
theories of two-dimensional coarsening. Unfortunately,
such a comparison is not warranted for the theory of
Zheng and Gunton because the authors themselves doubt
its applicability for values of Q exceeding 0.01. The pre-
dictions of the theory of Marqusee, s on the other hand,
are more relevant. A comparison of my distribution func-
tion with his for Q 0.4 shows fair agreement, and it is
likely that this is also the case for Q ~0.3. The fair agree-
ment at these rather large values of Q must be fortuitous,
however, because for Q 0.1 and 0.01 in his Fig. 1 it is
evident that the distributions are already much narrower
than those of my theory. In fact, Marqusee's distribution
for Q 0.01 is much more sharply peaked than that pre-
dicted by Eqs. (1) and (10) for Q 0. This is no doubt re-
lated to the small values of the particle-size cutoffs in

Marqusee's theory, which fall below the theoretical limit
of x/(x) 1.5/1.0665 1.4065 for Q 0 at a finite area
fraction of -0.14 (see his Fig. 2). Marqusee's theory is

therefore inconsistent with Eqs. (1) and (10) in the limit

Q 0; no attempt has been made to uncover the reasons
for this discrepancy.

There is no example of the late-stage coarsening behav-
ior of precipitates (three-dimensional clusters) in alloys
that agrees with a11 the predictions of the various theories
of this phenomenon. This is partly because precipitates in

solids are often surrounded by strain fields which some-
times cause them to interact elastically, and partly be-
cause their shapes are not always spherical. However,
Cu-Co alloys containing spherical Co-rich precipitates
and Al-Li alloys containing spherical A13Li precipitates
are possible exceptions. Co precipitates have a relatively
large elastic misfit with the bulk matrix, but their volume
fraction is quite small (Q rarely exceeds 0.04) so that elas-
tic interactions are very weak. The volume fraction of
A13Li precipitates can be quite large (up to Q-0.5), but
the precipitates are nearly misfit-free, and therefore pro-
vide perhaps the most ideal cluster for testing the various
theories of coarsening in three dimensions.

My two-dimensional model was a straightforward ex-
tension of an earlier theory, '2 formulated for three-
dimensional behavior, which is generally disfavored be-
cause of its ad hoc introduction of an outer cutoff' limit in
the diffusion geometry. However, if the two-dimensional
model provides an accurate description of late-stage coar-
sening, as implied by the agreement in Fig. 1, the original
theory could be equally valid for describing late-stage
coarsening behavior in three dimensions. This has been
shown' to be the case for the best data available on the
kinetics of particle growth and particle size distributions
in Cu-Co alloys. It is also true for the growth kinetics in
the more concentrated Al-Li alloys, but for this alloy the
particle size distributions are in better agreement with a
theory derived by Davies, Nash, and Stevens, ' which in-
cludes the effect of physical encounters among nearest-
neighbor clusters.

I am grateful to R. C. Desai for bringing his recent
work to my attention and for a stimulating discussion
which eventually led me to dredge up the memory of my
old work; it had been essentially forgotten not only by the
world at large, but also by me. I also thank him for alert-
ing me to the existence of the theories of Marqusee, and
Zheng and Gunton. Thanks are due to J. Zhang for help-
ing with the calculations.
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