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The interface method is used to derive the order-disorder critical temperature of the two-
dimensional Ising model on a rectangular lattice with ferromagnetic interactions in the x direction

and antiferromagnetic interactions in the y direction.

Employing this approximation in two

different ways gives different critical temperatures T. for nonzero uniform magnetic fields H.
However, both of the phase boundaries 7.(H) reduce to the exact results available at # =0 and

T =0.

I. THE MODEL AND ITS PHASES

Two-dimensional Ising models in magnetic fields have
been used extensively to study a variety of experimental
systems.! Here I investigate this model on a rectangular
lattice when near-neighbor interactions in the two perpen-
dicular directions, J, and J,, have different signs.2 Fur-
ther-neighbor interactions are neglected. Despite its sim-
plicity, this case has received little attention.?

The Hamiltonian # may be written as

ﬂ-—JxZai.jo'i+l.j+‘]yZoi,jai.j+l_Hzai,jv (1)
4 LJ i

where i is taken to be along the x axis, j along the y axis,
and the Ising variables o; ; take on the values % 1. In the
case of interest here, both J, and J, are positive, while H
may be of either sign.

The ground-state analysis of Eq. (1) is straightforward.
Ferromagnetic states are found for |H|>2J,, cor-
responding to all o; ;=1 for H > 2J, or all o; ;= —1 for
H< —2J,. For |H| <2J,, two degenerate ground
states are possible. The one chosen here has o; ;=1 for
even j and —1 for odd j. This state may be described as
ferromagnetic chains, aligned along the x axis, coupled
antiferromagnetically (in the y direction.) Upon intro-
ducing the temperature 7, a transition is present (for
| H| < 2J,) between the low-T, “striped,” ordered (2x 1)
phase and the high-7, (1x1) ferromagnetic phase. In this
paper the phase boundary, T.(H), between the phases
with these two symmetries will be investigated.

II. PREVIOUS RESULTS

For H =0, T, solves the equation first derived by On-
sager:*

sinh[2J,/(kpT.)1sinh[2J,/(ks T )] =1.

Approximations are needed to perform the statistical
mechanics to determine 7. (H) for nonzero H.
Conventional mean-field theory,® when applied to this
case, is both qualitatively and quantitatively wrong. It
predicts a first-order transition for small® 7. However,
the actual boundary is expected’ to be second-order (of
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the Ising universality class) for all T. At high T, mean-
field theory® predicts a second-order transition, with 7.
solving

H=20,+J,)m+ }kgT.In :fz :
6))
| ks T, 1/2
m= e ——
20,+J,)

At H=0, kgT.=2(J,+J,), which disagrees significantly
with the exact result.* For example, for J,=J,=/J, Eq.
(2) gives kpT.(H =0) =4J, which is nearly a factor of 2
larger than the exact result, kg7.(H=0)=2J/
In(1++2).

It is also possible to investigate the phase diagram using
the linear-chain approximation.” In this method the
statistical-mechanics analysis is taken as exact along the
chains and in a mean-field sense between the chains. The
analysis is appropriate at low T, and a second-order tran-
sition is found.

Finally, this diagram may also be studied using the
free-fermion approximation. In this method the stringlike
low-temperature excitations of the striped phase are treat-
ed as worldlines of fermions. Although the main emphasis
of previous work?® involves other boundaries found in a
model with an additional term, results relevant to model
(1) are also included in these studies.

III. APPLICATION OF THE INTERFACE METHOD

The interface method of Miiller-Hartmann and Zit-
tartz® has often been used to estimate second-order phase
boundaries of two-dimensional models. The method,
which predicts only second-order boundaries, is appropri-
ate here because, when further-neighbor interactions are
excluded, the boundaries are expected to be second order.
The original application of this method to the square-
lattice Ising antiferromagnet was conjectured to give ex-
act results. Further analysis has shown that the method is
not exact (for H=0) in this case.!® Yet Monte Carlo
simulations often have sufficiently large error bars that
they agree with this conjecture. !!
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In applying this method, the interface free energy be-
tween the two coexisting (low-T) phases is considered.
An approximation to the interface free energy o is calcu-
lated by including solid-on-solid fluctuations of the inter-
face. For this restricted set of configurations, o can be
found exactly using transfer-matrix methods. Setting
o =0 gives the transition temperature in question. This
method is intriguing because it gives exact results for the
anisotropic near-neighbor Ising model at H =0, indepen-
dent of the signs of J, and J,,.

This method is applied to our model in two different
ways. In both cases the stripes of both coexisting phases
are aligned in the x direction. Previously'? the interface
method was applied to the striped phase which is present
in the isotropic square-lattice Ising model with both
nearest- and next-nearest-neighbor interactions. In that
work, application to the interface between domains in
which the stripes were oriented perpendicularly to each
other resulted in a phase boundary which was discarded
since it disagreed with the known ground state.

In the first case the interface is taken to be oriented
parallel to the stripes with a unit normal in the y direction.
The ground-state interface, with two adjacent o; =1
chains, has energy Eo=2NJ, —NH, where N is the num-
ber of columns. If the ith column has column height n;,
then the excess interface energy (above Ej) associated
with the configuration {ni;i=1,... N} of column heights
is given by

AE=2J. X |ni—mwn | +HEN—-(=D"]. (3)

The largest eigenvalue of the associated transfer matrix is

e
A==t BcoshK,
sinh(2K,) [coshB cos
+ (1 +sinh2B cosh2K,) 7], 4)

where B=H/(kgT) and K, ,=2J.,/(kpT). Setting o
=Eo/N —kgTIn\ equal to zero gives the following equa-
tion which T, solves:

coshB =sinhK coshK,/coshKj . (5a)
Equation (5a) may be rewritten as
sinhK, sinhK, = (1 +sinh?B cosh K, ) /2. (5b)

In the second case the interface is oriented perpendicu-
lar to the chains with a unit normal in the x direction.
The ground-state energy is now E¢=2NJ,, while the ex-
cess energy becomes

AE=2J, 3 |ni—niw | +2H X (= 1)'n;. (6
The associated eigenvalue is
sinhK,
- coshK, —coshB ’
so T, satisfies
coshB =coshK, —exp(—K,)sinhK, , (8a)

or, equivalently,

€)

sinh?B

—_— 8b
coshK), —coshB (8b)

sinhK, sinhK, =coshB+ 7

The difference in phase boundaries (5) and (8) is not
unexpected, since previous applications of this method
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FIG. 1. Phase diagrams for the anisotropic Ising model of Eq.
(1) with J, =J,=J, where J is the ferromagnetic interaction in
the x direction and J, is the antiferromagnetic interaction in the
y direction. The curve derived from mean-field theory (a) in-
correctly gives first-order boundaries (dashed curves) at low
temperatures and a 7. near H =0 which is too large by nearly a
factor of 2. The boundaries b and ¢ are found using two versions
of the interface method and are solutions of Egs. (5) and (8), re-
spectively. These boundaries are exact at H =0 and expected to
be fairly close to the exact boundaries.

also give results that depend on the interface orientation
when at least one of the phases has a striped or more com-
plicated structure. '>!?

In Fig. 1 the phase boundaries for J, =J,=J are plot-
ted using both versions of the interface method [Egs. (5)
and (8)] as well as conventional mean-field theory.’ All
three curves agree with the exact ground-state analysis,
while only the two curves based on the interface method
agree with the exact result* at #=0. For small T, Eq.
(5) becomes H =2J, —2kpTexp(—2K,), while Eq. (8)
becomes H =2J, —kgTexp(—K,). It is interesting to
note that, at low-7, the linear-chain approximation’ gives
the curve

H=2J,+ (J,k3T*4)Pexp(—2K,/3),

which bulges in the opposite direction, while the free-

fermion approximation®  predicts H =2J,—kgT
x exp(—4K,), which bulges in the same direction but
disagrees with both low-T results. Near H =0,

T (H)=T.(0)— + kH?, where x=—kgd2T./dH?|y=0.
From Eq. (5),

x =% cosh?K, (J, cothK, +J, cothK,) !,
while Eq. (8) gives
x=[2(sechK, — 1) (J cothK, +J, cothK, )] ~'.

Mean-field theory gives x=1/[4(J.+J,)]. For Fig. 1,
xJ=1/8, 1/(23/2), and 1/[4(~2—1)] for curves a, b, and

¢, respectively.
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