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Landau theory of the magnetic phase diagram of CsMnSr3
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The magnetic-field-temperature phase diagram of CsMnBr3 determined by recent neutron-

scattering results is explained here by an investigation of a previously developed nonlocal Landau-

type free energy. The degeneracy of helically and linearly polarized spin configurations at the
Neel temperature is broken by a magnetic field and is shown to be responsible for the novel type
of multicritical point observed at T TN, H 0. The theory also accounts for the spin structures
of the observed ordered phases as well as the temperature dependences of the phase boundaries.
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FIG. 1. Magnetic phase diagram of CsMnBr3 where H&c
and phases 1, 4, 5, and 7 refer to paramagnetic, helical, linear,
and elliptical, respectively. The lines are the results of fitting ex-
pressions (8) and (9) to the data of Ref. 5 (circles).

Recent neutron diffraction results' suggest that the
low-temperature antiferromagnetic order in CsMn Br3
(T~ =-8.3 K) is an example of the new V-Z2X S~ univer-

sality class exposed by Kawamura. The spin ordering of
this hexagonal (P63/mme) insulator is referred to as the
120' structure where the moments lie perpendicular to
the c axis with a period-3 basal-plane modulation. In ad-
dition, there is a simple antiferromagnetic (period-2)
configuration along the c axis. The basal-plane modula-
tion can be viewed as a helically polarized spin density
where both the polarization vector S and wave vector Q
lie perpendicular to the c axis. Kawamura has demon-
strated that the two chirality states (left- and right-
handed helicity, i.e., Q) associated with helically polar-
ized systems give rise to an Ising-like (Z2) character in

addition to the usual xy (S~) symmetry of a single-
helicity system. The critical exponents, for example, asso-
ciated with this new universality class differ considerably
from those previously calculated for helical spin systems.

A magnetic field applied in the basal plane of CsMnBr3
has very recently been shown by the neutron-scattering re-
sults of Gaulin et al. to reveal an unusual type of mul-
ticritical point at H 0, T T~ in the magnetic phase di-
agram (see Fig. 1). A similar feature in the magnetic
phase diagram of Ho is suggested by the thermal expan-

sion data of Steinitz, Kahrizi, and Tindall, where a tran-
sition to an incommensurate helical spin state (with
QJ S) occurs at T~ =132 K in zero field. The existence
of a multicritical point of this type was anticipated for
120' spin structures by Lee et al. and in the case of in-
commensurate helical spin ordering by Schaub and Mu-
kamel. It is of interest to note that Lee et al. also recog-
nized the importance of chirality in helical spin systems
and suggested that the multicritical point may be associat-
ed with a new universality class. This point was pursued
further by symmetry and Monte Carlo analyses of a two-
dimensional triangular lattice. Although the results of
that work are not directly applicable to three-dimensional
systems, they appear to contain some features related to
the ideas of Kawamura and this suggests that the mul-
ticritical point observed in the magnetic phase diagram of
CsMnBr3 may indeed be related to the new Z2xS&
universality class.

In this work, we demonstrate that the experimentally
determined magnetic phase diagram of CsMnBr3 is ex-
plained by the analysis of a Landau-type free energy. The
principal effects of a magnetic field on the spin structure
in materials with hexagonal symmetry like CsMnBr3 and
Ho have been examined in a previous work by us ' on the
magnetic phase diagrams of axial and planar antiferro-
magnetics. That study, however, was primarily devoted to
the case of weak planar anisotropy. In CsMn Br3, this an-
isotropy is known to be relatively strong (see, e.g. , Ref.
11) and an appropriate free energy is investigated here.
We make clear later the regime of applicability of the re-
sults in Ref. 10 to the present case. The structure of the
free energy shows that the degeneracy of linearly polar-
ized (phase 5 in Fig. 1) and helically polarized (phase 4)
configurations at the Neel temperature is broken by the
application of a magnetic field in the basal plane and that
this is responsible for the unusual type of multicritical
point at H 0, T TN. The linearly polarized and ellipti-
cally polarized (phase 7) magnetic states predicted by the
analysis to be stabilized by the magnetic field are con-
sistent with observed results. We also obtain a good fit of
analytic expressions for the temperature dependences of
the phase boundaries to the data (see Fig. 1). Effects due
to critical fluctuations are not accounted for in the present
mean-field treatment. This work does, however, provide a
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framework for a renormalization-group study of, for ex-
ample, crossover phenomena, which is of particular in-

terest in relation to the Z2xS~ universality class. ' The
present study also serves to complement and extend ear-
lier work on the molecular-field theory of helical spin
structures.

A general nonlocal Landau-type free energy functional
of the spin density was formulated in Ref. 14 and used
there to investigate the magnetic ordering in CsNiF3.
This formalism has also been shown to successfully de-
scribe the novel multicritical point in the magnetic phase
diagram of CsNiCls (Ref. 15) and is the basis for the
theory of Ref. 10 as well as the present work. The spin
density is expressed in the general form

s(r) (V/N) gp(r)b(r —R),
R

p(r) m+ Se'~'+ S e (2)

where R is summed over Mn2+ sites (which form a simple
hexagonal lattice), m is the uniform magnetization in-

duced by an applied field H, and S and Q characterize the
long-range magnetic order. For systems with hexagonal
crystal symmetry, there are axial anisotropy terms in the
Landau free energy expansion' ' of the form —A, s, ,
etc. , where z is parallel to the hexagonal c axis. A
configuration of the spin density with ski is thus pre-
ferred if A, &0. It is assumed here that (A, ( is suffi-

ciently large in CsMnBr3 to maintain this basal-plane
alignment, even though there are competing exchange
terms in the free energy if a magnetic field is present. '

From the results of Refs. 10 and 15 it is then clear that
the free energy, expanded to fourth order in s (with s J.i),
relevant to the present study is given by (following the no-
tation' of Ref. 10)

where Tg & 0, To & 0, and all fourth-order coefficients are
assumed to be independent of temperature. As em-
phasized in Ref. 14, in a nonlocal formulation of the free
energy (also a feature of earlier theories's) all of the
coefficients 8; are a priori independent of each other.
This form of Landau free energy thus stabilizes a long-
range magnetically ordered phase (SWO) at T Tg= Tz-
in zero applied field. Note that the free energy is mini-
mized by a configuration of the uniform magnetization
mllH.

The origin of the multicritical point of the phase dia-
gram shown in Fig. 1 is immediately clear from a qualita-
tive analysis of the free energy. ' The structure of the or-
dered phase at T Tz is determined by terms that are
second order in S. In zero field, linear and helical polar-
izations of the spin density are thus degenerate in energy
at the Neel temperature since both configurations make
the same contribution AgS (also noted by Kaplan' ).
This degeneracy at T TJv is broken by a magnetic field
H J z through the term 84 (m S ( which favors a linear
polarization with SJ m if 84&0. (The degeneracy can
also be broken by axial anisotropy in zero field. ' ' ) The
helical polarization (where S S 0) characterizing the
120' spin structure of CsMnBr3 at 0 0 is stabilized at
temperatures T & TN by the fourth-order term 82 ( S S (

if 82 & 0 (see Refs. 10 and 18). At temperatures T & Tv
and fields 0)0, there is a competition between these two
terms and the elliptically polarized state may be stabilized
so that the phase diagram of Fig. 1 is realized. Note that
the structure of the phase diagram has features in com-
mon with tetracritical behavior usually associated with
magnetic anisotropy. '

A detailed analysis of the free energy confirms the
above qualitative arguments. The spin polarization vector
is taken to be of the form

F AgS + —,
'

Aom +8 iS + —,
'

Bp ( S S ( S-(S,+iS,)e'~, (5)
+ —,

' Bsm +284(m S( +Bsm2S —m H, (3)

where S S S and all terms are due to isotropic ex-
change effects. Temperature dependence enters through
the second-order coefficients in the usual way as

where p represents the phase factor, ' ' and S~ and S2 are
real vectors given by'

S~ ScosPp~, S2 SsinBp2,

Ag a(T —Tg), Ao a(T —To), (4)
I

where p~J p2J. i. Using these expressions in (3), with

Hllp~, gives a free energy

F(S,P, m) AgS + —,
'

Aom + 2 BS + —,
'

Bsm "+Bsm S —mH+2(84m 82S )S co—s P+282S cos P, (7)

where 8-28~+82. Note that there is no p dependence
in this expression, which is a consequence of truncating
the free energy expansion at s . The dominant sixth-order
term that determines the equilibrium value of the phase
angle is discussed below. In addition to the paramagnetic
state S 0 (phase 1), there are three ordered states (S
&0) which minimize the free energy (7), characterized by
the value of P: P tt/4 (at H 0), which describes the
helically polarized state (phase 4), p tt/2, which de-
scribes the linearly polarized state with SJ H (phase 5),
and cos p 2

—84m /282S, which characterizes the el-
liptically polarized state (phase 7). Transitions between
the phases are all second order. The boundaries between
phases 1 and 5 and between phases 5 and 7 in the magnet-

ic phase diagram are determined by
'

H )s = ( —Ag/Bs) ' [6'+ (1 —83/85)AQ],

Hs7 ( —Ag/Bi2) ' [5'+(1 8i3/Bi2)Ag], —
(8)

where d, '=Ao —Ag a(Tg —To), 8F2=884/82+Bs,
and 8 ~ s 8s+ 2848 sl82.

The case of stronger anisotropy (large ( A, ( ) was con-
sidered in Ref. 10 and the resulting phase diagram ap-
pears in Fig. 5(a) of that work where an additional ellipti-
cal phase 3 is stabilized at high fields and low tempera-
tures. %'ith respect to CsMnBr3, this other phase occurs
at a theoretically negative value of the temperature pa-
rameter T and only the right-hand side of that phase dia-
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gram is applicable.
A magnetic field applied parallel to the c axis (H~~) does

not distort the helical phase 4 and there is a second-order
transition to the paramagnetic phase where S 0. ' The
full (H~~, H~, T) phase diagram is shown schematically in

Fig. 2 and demonstrates that the 1-4 phase boundary ac-
tually represents a line of multicritical points where
phases 1, 4, 5, and 7 intersect.

A numerical fit of expressions (8) and (9) to the data of
Ref. 5 was performed as follows, where results are ex-
pressed in cgs units (with the magnetization given in elec-
tromagnetic units per gram). The susceptibility in the
paramagnetic phase associated with a field H~c is given

by (Xo) ' a(T —To) and may be compared with corre-
sponding data to obtain the estimates a=-82 and To~ —250 K so that d, '~2. 1X10 (using Tg 8.3 K). This
leaves two parameters for each phase boundary curve to
be fit to the data: B3 and 85 for HIS, and 8~2 and B~3 for
H57. Using the data at 6, 7, 8.6, and 8.9 K yields the esti-
mates B3=-1350, B5=- —22, B~2=-21, and 8~3= —345.
These results are consistent with having B~, 82, and
B4 & 0 and are the same order of magnitude as found in

the case of CsNiC13. ' Note that since B5 & 0, the critical
temperature of the 1-5 phase boundary is enhanced by the
magnetic field. ' The lines drawn in Fig. 1 are the result
of the above fitting procedure and demonstrate that the
theory presented here is, in the very least, consistent with
the experimental data. Expressions (8) and (9) are strict-
ly valid only in a regime where S and m are small (F is ex-
panded only to fourth order in s, i.e., it is assumed that
CS «BS ) so that discrepancy between theory and ex-
periment may be expected at low temperatures or high
field values.

Further analysis of the free energy reveals additional
information on the structure of the spin density in the or-
dered phases. The wave vector Q, which minimizes F for
hexagonal systems like CsMnBr3, was shown in Ref. 14 to
be Q-+ (4x/3a)a+(x/c)c as a result of antiferromag-
netic interchain and intrachain exchange-type interac-
tions. This result may also be expressed as Q —,

'
G&

+ —,
'

G~~, where G is a reciprocal lattice vector and II and J
refer to parallel and perpendicular to the c axis. This

FIG. 2. Schematic magnetic phase diagram where H[illc and

H~Lc. Phases 1, 5, and 7 exist in the three-dimensional space
(HII, H&, T), whereas phase 4 is stabilized only in the 0& 0
plane. The 1-4 phase boundary represents a line of multicritical
points.

shows explicitly the period-3 basal-plane and period-2 c-
axis modulations. Note that these results refer to the sim-
ple hexagonal lattice of Mn ions where the c axis is one-
half the length of the corresponding e axis of the crystallo-
graphic unit cell, which contains two chemical formula
units.

Expressions for the three sublattice magnetizations s„
sb, and s, in the basal plane at sites R& 0, a, and 2a, re-
spectively, can then be obtained from the spin density (1)
written as

s m+2S[cosPcos(p+Q R)pi
—sinPsin(p+Q R)p21, (10)

where (2), (5), and (6) have been used. The dominant
term in the free energy which determines the phase angle
III is sixth order in s and is due to exchange effects: '

F„-C,[(S S)'+(S' S*)'].

Using expressions (5) and (6) for S then gives the result

F, i 2CiS cos 2Pcos6&. (12)

For the helical state at H 0 where P x/4, F, ~ 0, and
the phase angle is determined by small sixth-order planar
anisotropy effects. ' For the elliptical phase where
m/4 & P & m/2 and for the linear phase where P x/2, p is
determined by the sign of C~ where C& & 0 gives p mm/3

and C~ & 0 gives p (2m+1)m/6. Consider, for example,
the contribution to the spin structure of the linear phase 5
due to long-range order (proportional to S) as determined
by (10). For the case p x/6, the three sublattice mag-
netizations are given by s, —Sp2, sb 2Sp2, and
s, —Sp2, which are consistent with a preliminary inter-
pretation of the neutron-diffraction data by Gaulin et al.
The other possibility, p 0, yields s, 0, sb 3'/ Sp2, and
s, —3' Sp2 so that one-third of the Mn + chains do
not participate in the long-range order. It is of interest to
note that a harmonic of the fundamental modulation with
a wave vector Q2 & G~~ is also predicted by Landau
theory' ' where, for p x/2, S2-S sin3IIIp2. (Addition-
al harmonics are induced by anisotropy effects. ' ' ) Ex-
perimental detection of this component of the spin density
in phase 5 would provide convincing evidence that the
phase angle is given by p x/6. The effect of adding this
Fourier component to (2) is under investigation.

The symmetry analysis presented here and in Ref. 15
has provided the basis for a recent scaling theory and
renormalization-group study' of the novel multicritical
behavior of CsMnBr3 and CsNiC13. That work demon-
strates the important role of chiral degeneracy and shows
that the multicritical points observed in these two systems
have critical behavior associated with n =2 and n =3 (re-
spectively) chiral fixed points, in contrast with usual bi-
critical and tetracritical points. ' ' '

In conclusion, this work has demonstrated that the
magnetic phase diagram of CsMnBr3 recently determined
by the neutron diffraction results of Gaulin et al. can be
explained by the analysis of a nonlocal Landau-type free
energy' and has provided the framework for a more de-
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tailed analysis' to account for effects due to critical fluc-
tuations. The novel multicritical point at 0 0, T TN
was shown to be a consequence of an applied magnetic
field breaking the degeneracy of helically and linearly po-
larized states at the Neel temperature. The results of this
work are relevant for all materials with hexagonal crystal
symmetry that exhibit helical magnetic order (such as
Ho, Dy, Tb, and VX2, CsVX3 where X Cl, Br, I). It is

of interest to determine the magnetic phase diagrams
close to the Neel temperature of these related systems.
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