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Linear spin waves in a frustrated Heisenberg model
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A Heisenberg model, which has the property that its classical ground state shows a continuous

transition from the Neel to an incommensurate spiral state, is investigated. It is shown that even

for arbitrarily large spin these states are not stable with respect to quantum spin fluctuations in a

finite region of the parameter space. Outside this region the order of the classical ground state is

not destroyed. Thus, the results of linear spin-wave theory suggest the existence of a quantum-

spin-liquid state between the Neel and an ordered incommensurate spiral phase.

There is experimental and theoretical evidence that for
small doping the ground state of a two-dimensional spin-

Heisenberg antiferromagnet with only nearest-neigh-
bor coupling has incommensurate antiferromagnetic or-
der. ' In an undoped Heisenberg model with next- and
additional third-nearest-neighbor antiferromagnetic cou-
plings along the two coordinate axis the classical ground
state shows a continuous transition from Neel to incom-
mensurate spiral order as the ratio of the two coupling
constants Ji, J3 is changed. The following questions arise:
Are the incommensurate spiral and the Neel state stable
with respect to quantum spin fluctuations at zero tempera-
ture or is there a new disordered quantum phase arising,
and if yes, what are the properties of this new state and of
the phase transition?

In the following I am interested in the ground-state
properties of the Hamiltonian

0 2 g(JiS('S(+i(+J3S('Sl+2b)
l, 8

(where Ji,J&~0, b is a vector between nearest neigh-
bors), as a function of the frustration parameter a Js/Ji.

The model is investigated by conventional linear spin-
wave theory. Classically, or equivalently in the limit
S ee (S is the spin quantum number), the ground state
has (for arbitrary couplings J( between site I and m) a
spiral spin structure which can be characterized by a wave
vector Q:

S( -Ssin(Q r(),
Sf -Scos(Q r() .

Q satisfies the minimal energy condition

with the solution corresponding to minimal classical ener-
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For a —,
' + e the wave vector Q departs ec Je from ((r, (r)

for small t. & 0. Therefore, the classical ground state has
Neel order for a ~ 4, which goes over to an incommensu-

rate phase for a & 4, finally reaching the state of two

decoupled Neel sublattices for very large a. The classical
spin structure for Q 2(r/3 (corresponding to a 0.5) is
shown in Fig. 1.

A similar model has been studied by Chandra and
Doucot and by Chakravarty, Halperin, and Nelson, but
with frustration originating from next-nearest-neighbor
coupling J2 instead of J3. In contrast to the present model
the classical spin structure changes discontinuously at
a' Jq/Ji —,

' between the Neel state (Q (r) and two

decoupled Neel sublattices (Q-(r/2). At this critical
value of frustration, every state with total spin equal to
zero for an elementary square is a ground state. Hence,
classically there is a large degeneracy, including many
states with no long-range order. It is not surprising then
that the ground state is found to be a disordered spin-
liquid state in a finite region of the (a,S) parameter space
upon including quantum spin fluctuations. It is shown in

this paper that the J~,J3 model also contains a quantum-

Jq~ Jg, Vk, (2)

where J|, is the Fourier transform of the coupling con-
stants JI

(if. (r, —r ) (3)

In my case, Eq. (2) leads to Q Q(1, 1), where Q satisfies

Ji sinQ+2J3sin(2Q) 0, (4)
FIG. 1. Classical ground-state spin configuration for J3/J(
O. S corresponding to Q 2(r/3.
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spin-liquid phase. The results of Chandra and Doucot,
who also used linear spin-wave theory, have been support-
ed by exact numerical calculations on small clusters,
where it has been found that the lowest excited states are
singlets rather than triplets in a critical region of the pa-
rameter space, indicating the existence of a new phase in

the thermodynamic limit.
In the classical ground state the full lattice translation

and rotation symmetry of the Hamiltonian (1) is broken
to a subgroup of combined translation rotations TR, (r is
a lattice vector),

(TR,S)(r; ) (R,S)(r;+ r) .

In this equation, R, is a rotation by an angle (} r. When
the spin operators are written in a (locally defined)
primed reference system
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FIG. 2. Spin-wave dispersion relation E(k) along the (1,1)
direction for given values a 0, 0.15, 0.25, corresponding to a
Neel ground state (Q x).

+i(Jk JQ)l 2 (Jk+Q+ Jk-Q) JQ~i (5)

where Jk is given by Eq. (3). There are two types of zeros
in the dispersion,

Jk —JQ 0 for k Q(+' 1, +' 1),
and

(Jk+Q+ Jk-Q) —JQ 0 for k 0 .

Considering the Taylor expansions around these zeros, it
is easy to see that the dispersion is linear, unless

J ~ cosQ+4J3cos(2Q) 0.
In this case the linear term vanishes. The above relation
and Eq. (4) are simultaneously satisfied only for a
with the solution Q x, corresponding to a softened spin-
wave mode with quadratic dispersion. This coincides with
the value of a, where Q starts to move away from (x,x)
towards incommensurate values x/2 & Q & x. The disper-
sion relation (5) is shown for a 0, 0.15, and 0.25 in Fig.
2 and for a 0.309, 0.5, and 0.653 in Fig. 3.

The ground-state energy per spin Eo and the staggered
magnetization M are given by the following expressions:

Ep (H)p p 5 JQ ——QE(k)vk,

M S——QVk,
1

N

TR, formally acts as the full lattice translation group on
the primed spin operators,

(TR,S')(r;) S'(r;+r) .

Starting from the classical ground state, the application of
a Holstein-PrimakoA' transformation yields a Hamiltoni-
an which has the full lattice translation symmetry. Ne-
glecting higher-order terms it can be diagonalized by
Fourier and subsequent Bogoliubov transformation. The
noninteracting spin waves can be classified by a wave vec-
tor k with values in the first Brillouin zone of the given
lattice and no description within a reduced Brillouin zone
is needed. I obtain the following spin-wave dispersion re-
lation:

where

and
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FIG. 3. Spin-wave dispersion relation E(k) along the (1,1)
direction for given values a 0.309, 0.5, 0.653 corresponding to
Q 4z/5, 2n/3, Sx/8.

Pk ~ Jk JQ+—
4 (Jk+Q+Jk Q). -

N is the total number of spins. In the thermodynamic lim-
it the staggered magnetization is given by the integral:

1 1
t+ ll' t+ ft PkM S+—— dk

2 2x'"'«Ek
The integrand diverges for k 0 and k Q, since E(k)
vanishes, but pk remains finite for these values. As the
dispersion is linear near the zeros for a& 4, the integral
converges for dimensions D ~ 2 and the contribution to
the staggered magnetization due to the spin Auctuations is
finite. However, near the critical value a 4, where the
dispersion becomes quadratic, the spin fluctuations are ar-
bitrarily large due to soft modes contributing to the ampli-
tude of the zero-point motion, melting any ordered state
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FIG. 4. Phase diagram of the considered Ji,J3 model. The
two lines, along which the staggered magnetization M is vanish-

ing within linear spin-wave theory are shown (QSL is the quan-
tum spin liquid). The range of physical spin values is indicated
by a dashed line.

D ~ 2. The two lines along which the staggered magneti-
zation vanishes as shown in Fig. 4. Within the linear
theory there is a quantum-spin-liquid phase between.

In conclusion I have presented evidence that the classi-
cal spiral states considered above are unstable, even at
zero temperature and for large spin, as quantum fluctua-
tions become arbitrarily large in a narrow region around a
critical value of frustration which determines the onset of
incommensurability. In this region a disordered state usu-
ally called quantum spin liquid is stabilized as a result of a
softened spin-wave mode. It cannot be ruled out, howev-
er, that classes of ordered states other than the classical
spiral one are stable with respect to quantum spin fluctua-
tions for all values of frustration (and large enough spin).
An investigation with other analytical (e.g. , including
spin-wave interactions) or numerical methods would be
necessary to characterize the correlation functions of the
disordered quantum spin liquid. For larger values of a an
incommensurate spiral phase, and for small enough a, the
Neel state are stable.

for arbitrary large spin S in dimensions D 2. As the
linear spin-wave theory becomes exact in the limit S
and the fluctuations become larger for decreasing S, I
conclude that the exact ground state is also disordered in
some region of the parameter space (a,S) for dimensions
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