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n z domain-growth universality class: Crossover to the n 2 class
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The kinetic domain-growth exponent is studied by Monte Carlo simulation as a function of
temperature for a nonconserved order-parameter model. In the limit of zero temperature, the
model belongs to the n & slow-growth universality class. This is indicative of a temporal pin-

ning in the domain-boundary network of mixed-, zero-, and finite-curvature boundaries. At finite
temperature the growth kinetics is found to cross over to the Allen-Cahn exponent n 2 . We ob-
tain that the pinning time of the zero-curvature boundary decreases rapidly with increasing tem-
perature.

Domain-growth kinetics is a fundamental problem in

statistical mechanics of practical relevance in metallur-

gy,
' surface science, earth sciences, and magnetism.

During the past few years, the search for universality as-
pects in growth of ordered domains as it takes place after
a thermal quench below a phase-transition temperature
has been the subject of continued work. In particular, nu-
merical computer simulations of microscopic models
have provided an important insight into the problem.

When the order parameter, describing the transition, is
a nonconserved quantity, the Allen-Cahn theory predicts
that the system reduces the excess energy contained in the
domain boundaries AF. (t) by reducing their curvature. If
scaling holds, the time evolution for the total excess ener-

gy decays as a power law. That is, ~(t ) E(t)
Er (t ~ ~)——t, where ET(t ~ ~) is the equilibrium

energy at the temperature towards which the quench has
been directed and n is an exponent with universal charac-
ter.

It is now well established ' ' that at least two univer-
sality classes, characterized by n 2 and 4, have to be
considered even for nonconserved order parameters. The
exponent n 2 corresponds to a curvature-driven process
when it proceeds under the normal conditions required in
the theory. The exponent n 4 corresponds to a singu-
lar case of the Allen-Cahn theory, namely when one of the
curvatures is zero.

The n 4 universality class was first found by numeri-
cal computer simulations of certain anisotropic models de-
scribed by continuous variables. "In spite of the exten-
sive data supplied by Mouritsen, clearly evidencing the
exponent n 4, the discovering was disputed' ' in a re-
action to the interpretation suggested by Mouritsen for
the unexpected slow-growth behavior. He proposed that it
indicated a breakdown of the basic assumptions in the
Allen-Cahn theory at zero temperature due to the pres-
ence of broad (or "soft") walls which might screen the in-
teraction between domains. This interpretation is not

correct. In two recent works, we presented extensive
Monte Carlo simulations as well as theoretical support'
that give conclusive evidence for the new class and simul-
taneously show that the Allen-Cahn assumptions are ful-
filled.

The magnetic model used was initially developed to de-
scribe a martensitic transformation. ' The boundary
structure consists of a mixture of interconnected broad,
curved, and sharp, straight boundaries. The width of the
broad boundaries is found not to be relevant. However,
they can easily curve almost without energy cost relative
to the energy involved in the generation of a kink along
the sharp boundary. This is the reason for the sharp
boundary being straight and the broad being curved. The
mixture is the cause for the slow time evolution with
n 4 because of a hierarchical movement ' of the boun-
daries, where the decrease in length of one kind of bound-
ary (the broad) depends on the other (the sharp). This
hierarchical movement of the boundaries is, in fact,
present in the models where the n 4 behavior was first
detected. 6

In this paper we extend our previous low-temperature
study of the n 4 universality class to quenches to higher
temperatures. The results clearly show that, as the tem-
perature increases, a crossover occurs to the Allen-Cahn
exponent characterized by n 2, in agreement with re-
cent results. It is found that in the temperature-range of
the crossover the mixture of stalls of zero and finite curva-
ture is still present and that the rules of the hierarchical
movement of boundaries hold. The reason for the cross-
over is that the temporal pinning of the straight boundary
rapidly disappears as the temperature increases. This al-
lows the curved boundary to decrease in length indepen-
dently.

Let us briefly summarize the model which is described
in more detail elsewhere. ' Consider a magnetic model
with continuous spin variables restricted to the upper part
of the x-z plane on a two-dimensional x-J lattice. We use
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Fig. 2 we present the best exponent obtained by fitting the
averaged excess energy to the expression ~(t) r

The extremely long time necessary to complete the optim-
ization process of the boundary widths at T 0 K makes
the determination of the exponent very difficult, at this
temperature and much larger systems are required. Nev-
ertheless, the results clearly show a crossover in the kinet-
ic exponent value from n 4 to 2 as a function of tem-
perature. This is in agreement with recent results.

Now we want to study the crossover region further. It
is found that the mixture of straight and curved boun-
daries is still present. The C boundary moves with a con-
stant velocity inversely proportional to its curvature. The
velocity increases with increasing temperature. This can
be seen in Fig. 3. We have plotted, for three different
temperatures, the velocity of the C boundary as a function
of (L,) '(-curvature). The points have been obtained
from our simulations by following examples of domain-
boundary patterns similar to the one shown in the inset.
The length L, does not change. This result evidences that
the hierarchical movement of boundaries is present in the
crossover region when the exponent increases and tends to
the n 2 exponent.

The reason for the slow growth is that the C boundary
has to wait for the S boundary to disappear before it can
start to decrease. On the other hand, as the temperature
increases, the speed of the C boundary increases and con-
sequently the S-boundary length will disappear earlier, re-
moving the pinning. To investigate this, we study the evo-
lution of barrel-shaped domains with curved boundaries of
various length L„but the same straight-boundary length
L, . The result is shown in Fig. 4. The pinning time t is
defined as the time delay after which the elimination of
the C-boundary length L, starts. In Fig. 4 we have repre-
sented t /L, versus the reduced temperature. Figure 4
shows that the pinning time decreases rapidly with in-
creasing temperature. For T) 0.25T, one finds further
that kinks are emitted onto the straight boundaries from
the corners. This then allows L, to decrease independent-
ly of the length L, . Consequently, the heirarchical move-
ment ceases.
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FIG. 4. The pinning time t of a barrel-shaped domain with

curved walls of different L„but the same length L, . The pin-

ning time decreases with increasing temperature.

We conclude that the pinning of the straight boundary
becomes irrelevant for the late time behavior at higher
temperatures, and the system develops into a case corre-
sponding to an all-curved-walls system. The scaling
theory for this case gives the Allen-Cahn exponent n

The decrease in the pinning time is consistent with the
crossover in the exponent shown in Fig. 4.

Finally, let us emphasize the fact that in order to obtain
the algebraic growth laws it is imperative that the system
has a scaling behavior. Therefore, the obtained results
from the specific model are expected to have more validity
and to shed light upon the general aspects of the new,
unexpected slow-domain-growth universality class.
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