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An exact technique is developed for the thermodynamic functions of an Ising system on a Sierpin-
sky gasket fractal, which in the antiferromagnetic case is fully frustrated. An analytic expression is
obtained for the zero-temperature entropy per spin S(0) in the fully frustrated fractal, resulting in
S(0)=0.493006. . . (about 50% larger than the corresponding result for the frustrated triangular lat-
tice). Spin-spin correlations are also provided by the method and in the frustrated fractal always ex-
hibit extremely rapid exponential decay.

Frustration is the crucial feature in spin glasses, where
it occurs together with disorder. Perhaps the most im-
portant frustrated system is the Ising antiferromagnet on
the triangular lattic both because of its exact solution
demonstrating a finite zero-point specific entropy' and
because disorder can be added to it in order to further the
understanding of spin glasses.

In particular it has been suggested that whereas the full
frustration of the triangular lattice antiferrornagnet
makes it paramagnetic down to T=O, random removal
of some spins can reduce the huge ground-state degenera-
cy so that the system may order into a spin-glass phase,
and Monte Carlo calculations support this idea.

There is a need for secure results on nonuniform fully
frustrated systems, particularly ones with bonds removed
(holes) whether randomly or in some organized fashion,
as in certain fractals. An obvious candidate, which we
treat exactly here, is the triangular Sierpinsky gasket
fractal, which is essentially a triangular lattice with holes
on all scales. The scaling of the thermal parameter has
been given previously, from which it is known that the
ferromagnetic case is not ordered at any finite tempera-
ture. Subsequent work has emphasized the apparent
long-range order in the Ising ferromagnet on finite Sier-
pinsky gaskets and has provided a scaling of Boltzmann
probabilities.

This paper and independent work by Grillon and Bra-
dy Moreira, ' investigates the thermodynamic behavior
of the fully frustrated antiferromagnetic Ising system on

Sierpinsky gasket fractals. The conclusion is that the
ground-state degeneracy is higher in the fractal than in
the triangular lattice, which is opposite to the suggestion
referred to above for random dilution. Grillon and Brady
Moreira have obtained this result by numerically iterat-
ing renormalization-group equations for the scaling of
thermal parameter and free energy. This paper gives an
analytic method for obtaining the partition function, etc. ,
and also correlation functions, and hence derives an exact
analytic result for the ground-state entropy, etc. so the
fully frustrated fractal can be regarded as solved to the
same extent as the triangular Ising antiferromagnet. '"

The method is similar to a transfer-matrix technique,
in the sense that a partition function "tensor" is built up

by contracting corresponding tensors for subunits of the
fractal. This generates a simple and exact scaling pro-
cedure, which applies to a wide variety of fractals of vari-
ous fractal dimensions. The results for thermodynamic
quantities and correlation functions can be cast in various
forms as is convenient for discussion of scaling properties
(e.g., hyperscaling in the critical regime of the ferromag-
netic fractal) or noncritical properties (the fully frustrated
fractal is actually never critical). It is convenient to give
the zero-point entropy of the fully frustrated fractal as a
series, whose convergence is so rapid that stopping after
three terms produces an error of only O(10 ' ). A fur-
ther significant point is that the length scaling transfor-
mations produced by applying the method to the fully
frustrated fractal are not chaotic, unlike those occurring
in frustrated hierarchical Ising models with competing in-
teractions'

The body of this paper is as follows. First the general
method is developed [Eqs. (1)—(10)]. Then its application
in a scaling context is very briefly illustrated for the fer-
romagnetic Ising model on the fractal. The remainder of
the analysis [Eqs. (12)—(16)] is for the fully frustrated
fractal (antiferromagnetic case), resulting in the rapidly
convergent series (15) [see also (16)] for the zero-
ternperature entropy per spin. Selected results for spin-
spin correlations are also briefly presented, including
their extremely rapid exponential decay in the zero-
temperature frustrated fractal. A concluding discussion
then follows.

The method exploits the hierarchical character of the
fractal. The fractal is obtained as the n-infinite limit of a
sequence of generations, two successive members
(n+ l, n) of which are related as shown in Fig. l.

Z„p~ is defined to be the "constrained" partition func-
tion of the zero field, spin- —,

' Ising model on the nth gen-
eration fractal, but with the three vertex spins in arbi-
trarily specified states a, g, y respectively (with a=+1
denoting spin up or down, etc.). Then, with the "summa-
tion convention" that repeated indices (tx', P', y') are
summed over +1, we have from Fig. 1

za'p'y =zap@ zpy a zya pn+1 n n n
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provides the means to obtain the free energy per spin
F=—lim„„F„and other thermal properties, particularly
the entropy S ( T) per spin

[S(T}=F —KBF/BK],

a'

FIG. 1. Recursive construction of Sierpinsky gasket fractal,
and labeling of vertex spin states corresponding to Eq. (1) for
the "constrained" partition function.

Z„~~ for n=0 is just the Boltzmann weight for the
specified configurations (u, p, y) of a triangle of just three
spins:

Zo» =exp[(aP+Py+ya }K], (2)

where K is exchange interaction divided by k~T. The
equations imply that Z„~~ is independent of the order of
a, p, y, as is physically obvious. (1) can be used to show

by induction that

of the gasket.
We are principally interested in the ground-state de-

generacy and associated zero-temperature entropy S(0)
for the antiferromagnetic case. So we concentrate hereaf-
ter on low-temperature properties.

It is helpful to first briefly discuss the ferromagnetic
case (K )0). Here B„)1 for all n and so the scaling Eq.
(5) for the thermal parameter is monatonic increasing
with fixed points at B*=1,~. This is to be contrasted
with the antiferromagnetic case where it will be seen that
the negative initial K changes sign under a single scaling
and the only accessible fixed point is 8*=~. Equation
(5} was first derived and discussed for the ferromagnetic
case in Ref. 5, where it was shown to yield T=0 as an un-
stable fixed point (so T, =0), and to lead to the following
pathological behavior of the correlation length g

g —

exp�(

—,
' e "ln2 ),

Z„»= A„[1+B„'(aP+Py+ya)],
where

(3)
This form arises because, linearizing around the unstable
fixed point with the use of

e:—B—1-exp( 4K), —
A„+,=8A„(1+B„),
8„+) =8„—8„+1,

and [from (2)],

Ao=c (1+t ),
Bo=t —1+1/t,

(4)

(5)

(6)

where c =—coshK, t—:tanhK. Then, since the usual (un-
constrained) partion function is given by

Z„= y Z„»=8A„,
aPy

(8)

F„+)=3F„N„/N„+,+{1/N„+, )ln[(1+B„')/8] . (10)

This equation is of the form expected from standard scal-
ing approaches to free energies' and so should also be
derivable by extending the recent work of Grillon and
Brady Moreira. ' Equation (10), together with (5), (9)

[using (3)], exact solution, or iteration, of (4) and (5) using
initial conditions (6) and (7) provides the partition func-
tion.

The recurrence equations (4) and (5) are actually the
renormalization-group transformation equations for par-
tition function and thermal parameter under a scaling of
the fractal by dilation factor 2. The corresponding trans-
formation of the number of sites N„ is

N„+]=N„+3" ', )F0=3 .

It is convenient to convert (4), using (8), into an equation
for the transformation of the free energy per spin,
F„—= ( lnZ„) /N„:

e is actually marginal and so the "scaling variable" is not
a power of e but instead exp[( —1n2)/e]. This raises the
question whether hyperscaling may be valid in this anom-
alous situation in which the correlation length exponent v
is infinite. The answer provided by exploiting (10) with
(5) and (9), is that hyperscaling is satisfied, in the sense
that near the zero-temperature fixed point the singular—d
part of the total free energy N„F„scales like g f where

df =ln3/ln2 is the fractal dimension of the gasket. In ad-
dition we find that the ground-state energy per spin is —2
K, which is two thirds of the value for the ferromagnetic
triangular lat tice. '

For the rest of this letter we discuss the more impor-
tant antiferromagnetic case, where K is negative. Then,
at low temperatures

B„= +cd„5 +O(5 ), (12)

where 5 =2 exp{ —2~K ~), and the coefficients c„,d„are of
order unity. In particular, from (7), co= —3, do= —l.
The form (12) then follows from (5). c„ is the zero-
temperature limit of B„, and so also satisfies the same
equation (5).

It can be seen that the zero-temperature initial value
co = —3 is not a fixed point of (5}, so the system is not
critical at zero temperature. Further, the negative co
scales into a succession of larger and larger positive c„'s,
tending asymptotically to the paramagnetic fixed point of
the K )0 system. This means that the zero-temperature
antiferromagnetic fractal is like a ferromagnetic fractal at
finite temperature, hence explaining the macroscopic
zero-temperature entropy of the antiferromagnet.

To evaluate the low-temperature free energy (per spin)
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and hence the zero-temperature entropy S (0) for the an-
tiferromagnetic fractal, it is sufficient to use (10) in the
form

3N 1 1 1F„+ ln —1+
N„+) 8

n

n+1
n+1 C

+O(5 ),

(13)

where [using (8) and (6) with t = —(1—5)],

Fo= —,'ln6+ —,
' ~E~+O(5 ) . (14)

The resulting (exact) expression for the zero-temperature
entropy per spin of the fully frustrated antiferromagnetic
fractal is

S (0)=—', ln6+ —g —ln —1+2 1 1 1

3'
p 03~ 8 c' (15)

Then, from (5), co = —3 goes into c
~

= 13, c2 = 157, etc. so
the series in (15) converges extremely rapidly, and the er-
ror in stopping after three terms is only Q(10 ' ). The
result is

S(0)=0.493006107. . . (16)

This agrees, within the accuracy of their numerical cal-
culation, with the value obtained by Grillon and Brady
Moreira. As they have noted, it is a higher value per spin
than that occurring in the Ising antiferromagnet on the
triangular lattice' where S(0)=0.3383. . . . We con-
clude that the holes of the fractal have not relieved frus-
tration but rather have increased the degeneracy of the
ground state. This increase can be easily understood by
considering the Ising antiferrornagnetic on just the n =2
member of the sequence of generators, shown in Fig. 2.
It is trivial to see that this system has more degenerate

FIG. 2. For Ising antiferromagnetic interactions, the lattice
shown has more degenerate ground states than would occur if
sites 1, 2, and 3, were linked, as on a triangular lattice.

ground states than would occur if sites 1, 2, and 3, were
linked, as they are on a triangular lattice. So holes will

not, in general, relieve frustration (in the usual sense of
reducing the ground-state entropy). However, specific
irregular removal of bonds or sites (with all incident
bonds) from small samples of the triangular lattice can
certainly reduce S(0): so, it is possible that while on the
infinite triangular lattice regular Sierpinsky-like holes will

increase S (0), random dilution of bonds or sites may de
crease it, as suggested by the Monte Carlo work.

Comparison of (16) with the entropy per spin at infinite
temperature (ln2 =0.6931) emphasises how high the
ground-state entropy is, and the huge degeneracy
[exp(0.49. . .N)] of the ground state in the X-spin system.
It is also interesting to note that (13) and (14) lead to a
ground-state energy per spin of ——', ~K~ for the frustrated

fractal, which is one third of the ferromagnetic value; the
same factor of one third is found in the triangular lat-
tice. '

The method used here also allows the calculation of all
correlations. For example, the pair correlation function
of vertex spins at generation n, i.e., at separation 2", is
just 8„.The scaling equation (5) for B„provides this
and all zero-field correlation functions. Its use shows
that for the antiferromagnetic Ising system on the Sier-
pinsky gasket at zero temperature and field the vertex
spin-correlation function is antiferromagnetic for n =0
and ferromagnetic for all higher n, and that all correla-
tions fall off exponentially, with correlation length
g=lim„„(2"/inc„) =0.79 (in units of the smallest spac-
ing on the fractal). This extremely small correlation
length, for a system at T =0, is a quantitative microscop-
ic measure of the highly disordered state of the frustrated
system.

In conclusion, an exact analytic treatment has been
given of the "ground-state" entropy of a fully frustrated
fractal, which is like a triangular Ising antiferromagnet
with regularly disposed holes. The holes enhance the de-
generacy. Though our emphasis was on low tempera-
tures, the techniques used provide the thermodynamic
functions and correlation functions at any temperature,
and can be readily generalized to nonzero field and to
higher spin, and to the case of Potts models. The basic
method [cf Fig. 1 and (1)] is like a generalization of the
usual transfer-matrix technique for a chain with cyclic
boundary conditions. But is is more suited to scaling
considerations. It can be extended without difficulty to
such system as the Berker lattice, or the tetrahedral Sier-
pinsky gasket etc. , with an equation like (1) again apply-
ing but with more vertex labels.
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