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The temperature dependences of the dielectric properties at different fixed pressures, and the anti-

ferroelectric phase transitions of squaric acid H2C404 and its deuterated form D2C404 have been in-

vestigated. Using the four-sublattice pseudospin cluster Hamiltonian, together with a pseudospin-

phonon interaction term, the statistical Green s-function technique has been applied to explain phe-

nomenologically the isotope effect, dome-shaped temperature-dependent dielectric constant near the

transition temperature T, and the "crossover" behavior (first order to second order) in H2C404 crys-

tals. The elongation of the 0—H 0 bonds alone, contrary to the implication of Samara and

Semmingsen [J. Chem. Phys. 71, 1401 (1979)], is not sufficient to explain the isotope effect and other
peculiar features of phase transitions in squaric acid. The model parameters, obtained by fitting the

experimental electrical susceptibility data, have also been used to calculate heat capacity
(C = A 8/BT[Tg( T)]) and reproduces a maximum value of C at =7.0 K above T, for the H, C404,
which agrees with the corresponding experimental value. From our theoretical observation a
unified character of the antiferroelectric transition in H2C404 and the antiferromagnetic transitions

in some two-dimensional Ising systems is well exposed.

I. INTRODUCTION

Squaric acid (H2C404, hereafter referred to as HSQ) is
a moderately strong organic compound first synthesized
by Cohen et al. ' Since the discovery of a structural phase
transition in this quasi-two-dimensional crystal by Sem-
mingsen and Feder, many experimental techniques have
been used to study the nature of this phase transition.
Several review articles on the structural and physical
properties of HSQ have already been published.

Both HSQ and its deuterated form (denoted by DSQ)
undergo structural phase transitions (SPT) from mono-
clinic space group P2, ~ (C,„) to tetragonal ' space
group I4/m, respectively, at T,H=374 K (for HSQ) and
T D

= 5 16 K (fot DSQ). Although the large isotope effect
on the transition temperature T, (where by T, we mean
both T,H and T,D) suggests an importance of tunneling in

HSQ via its similarity with the KHzPO4 (KDP) type H-
bonded crystals, recent dielectric studies under pressure
by Samara and Semmingsen did not, however, attribute
much importance to the tunneling effect. In particular,
using the pure-pseudospin model, viz. ,
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(Fig. 1) in HSQ is RQ Q 2. 554 A, which is quite large
for a hydrogen bond, and the distance between the two
states of proton equilibrium RH =0.486 A (is fully 38%
larger in KDP).

Yasuda et al. , however, found that the value of
d lnT, H/dp (where p is the pressure) for HSQ is about
—3.5% /kbar and is comparable with the values of
d lnT, H/dp = —3.78%/kbar and —4.4%/kbar, respec-
tively, for the H-bonded NH4H2PO4 (ADP) and

(where 0 is the tunneling frequency, J is the exchange in-
tegral, and X, , Z;, etc. are the x, z, etc. components of
the pseudospin variable S), the large isotope effect on T,
was considered by them to be due to the large difference
in the hydrogen-bond distances between the HSQ and
DSQ samples. The hydrogen-bond (0—H 0) length

FIG. 1. Bond length (in A) and angles in squaric acid (HSQ)
(Refs. 6 and 9).
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RbHzPO4 (RDP). In all the above crystals the tunneling
term was considered to be an important parameter.
Again the ratio T,z, /T, ~ (= 1.38) for HSQ is also compa-
rable with those of KDP (T,o/T, &=1.81) and ADP
(T,r /T, z = 1.59) crystals. Similar to the KDP crystal a
marked expansion of about 0.03 A of the 0—H 0
bond length on deuteration was also observed for the
HSQ crystal. Thus HSQ- and the KDP-type H-bonded
crystals behave almost similarly.

In their theoretical models Eatsushita et al. ' and
Zinenko" emphasized the tunneling term to study the
dielectric properties of HSQ and DSQ. On the other
hand, Schneider and Tornau' investigated the transition
in HSQ by considering a five-particle cluster approxima-
tion without paying much attention to the tunneling
motion of protons. However, all of these proposed pseu-
dospin models, together with that given by Eq. (1) (or its
modifications' '

), which have been applied for the ex-
planation of the higher phase transition temperature in
the deuterated HSQ crystal, we believe to be incomplete.
This is because of the fact that the pseudospin-phonon
contribution, neglected in the above models, has been re-
ported' ' to be very important for understanding most
of the salient features of structural phase transitions in
H-bonded crystals.

It was also pointed out earlier by several authors
that HSQ is a two- or quasi-two-dimensional hydrogen-
bonded (H-bonded) compound generally believed to un-
dergo a continuous phase transition. The ' C NMR spec-
tra obtained by Mehring and Suwelack' ' showed clus-
ter phenomena and a discontinuous jump in the order pa-
rameter at T,~. They assumed' ' that the phase transi-
tion in HSQ might be of first order in nature. Kuhn et
al. subsequently concluded from their birefringence
data that the transition could be described by the Landau
theory of first-order phase transitions. Thus evidence for
both first- and second-order nature of SPT in HSQ is
found from the current literature survey. Meanwhile an
interesting "crossover" from first- to second-order transi-
tion induced by a symmetry-breaking field for the n =2
model has been proposed recently by Kerszberg and Mu-
kamel ' (where n is the effective number of components
of the order parameter). Observation of the crossover
phenomenon in HSQ further demands critical theoretical
analysis of the transition mechanism in this crystal.

Another interesting unexplained behavior of this HSQ
salt is the appearance of the antiferromagnetic (AFM)
type dome-shaped dielectric constant e,'(T) curve with a
maximum at 7.5 K above T,„and 5.0 K above T,o (Ref.
7). Other examples for which a maximum in e,'(T)
(dielectric constant along the a axis} above T, has also
been observed in the transverse dielectric constant in-
clude KDP, the 1D antiferrolectric Jahn-Teller PrC13,
and the 186 K displacive antiferrodistortive transition in
KMnF3, etc. To throw more light on the unified char-
acter of the above phase transition in these crystals along
with HSQ is also one of the motivations of our present
theoretical investigation with the pseudospin-lattice
coupled-mode Hamiltonian of the form already discussed
by us. ' ' An attempt has also been made to study the
anomalous dielectric behavior of HSQ with the hydro-

static pressure dependences of the dielectric constants
(e,' } along the a axis. ' The values of E,

' increase mono-
tonically with increasing pressure. The value of
(de', /dp) becomes a maximum at p=p, „. After that,
e,' displays a broad flat rnaximurn and decreases gradual-
ly with pressure. Such a behavior of e,' with pressure is
quite analogous ' to that of e,' with temperature (see also
Fig. 5 of this paper). Thus the phases at p (p,„and
p &p,„might be compared with those phases at
T(T,„and T) T,„, respectively. Therefore we may
regard p,„as a transition pressure. We further assumed
that the same type of model could be used for the study
of both pressure and temperature dependences of the
dielectric properties of HSQ with different sets of model
parameters.

The above-mentioned pseudospin model used by us for
the study of the phase transition in HSQ is a four-
sublattice pseudospin cluster Harniltonian coupled with
phonon-phonon interaction terms. We shall show that
with such a model Hamiltonian the crossover behavior,
dome-shaped electrical susceptibility (g, ) above T„and
very close similarly in the behavior of the electrical sus-
ceptibility of HSQ with that of the magnetic susceptibili-
ty of some two-dimensional Ising antiferromagnetic ma-
terials can be phenomenologically explained from the
common standpoint.

For a better understanding of the mechanism of phase
transition in HSQ and also for developing the
pseudospin-phonon coupled Hamiltonian we discuss
below the crystal structure and the hydrogen-bond ar-
rangernents of HSQ in some detail.

Room-temperature (T=300 K and below) x-ray and
neutron-diffraction ' studies show that the HSQ crystal
is monoclinic with a structure built up from pseudosym-
metric hydrogen-bonded layers (Fig. 1). Consequently
for T& T,z, the hydrogen atoms are asymmetrically
disposed in the 0—H 0 bonds. The HSQ molecules
are joined together to form infinite sheets by means of or-
dered asymmetric H bonds in the crystallographic mirror
plane with lattice constants a =6.143 A, b=3.286 A,
c=6.148 A, P=89.96', and Z=2. As shown in Fig. 2
the rnolecules in one layer are related to those above and
below by the twofold screw axis. The individual layers
thus constitute ferroelectrically ordered sublattices which
are antiferroelectrically stacked in a pseudotetragonal
body-centered fashion. The coupling between the layers
(separated by b/2=2. 636 A), i.e., the interlayer cou-
pling, is weak, whereas strong interaction between the
different hydrogen bonds is transmitted via the C404
skeleton by a movable double bond within each layer.
This two-dimensional structure is therefore expected to
play a dominant role in the mechanism of SPT as ob-
served by Semmingsen and Semmingsen and Feder
from the neutron scattering and optical birefringence ex-
periments.

The high-temperature structure (T) T,u) of HSQ is
indeed very similar to the low-temperature (T & T,~)
monoclinic phase. The HSQ molecules are joined by H
bonds running along [101] to form planar layers perpen-
dicular to the b axis. The H-bond arrangement within a
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FIG. 2. One layer of squaric acid (HSQ) with the vector sum

of 2-hydrogen displacements indicated at the center of the C404
unit to which they belong (Refs. 6 and 9).

layer is relatively open; however, the neighboring layers
related to body centering of the lattice are fitted into the
open areas to produce a very dense stacking along the b
axis. The protons are thus distributed equally over both
sites in the H bonds. The individual layers, therefore,
carry no spontaneous polarization, P, . This situation
seems to be very similar to the case of the quasi-one-
dimensional PbHPO4 crystal where the pseudospin-
lattice coupled-mode (PLCM) model was previously ap-
plied by us. '

Our organization of the paper is as follows. In Sec. II
we set up the four-sublattice cluster Hamiltonian in ac-
cordance with the H-bond structure of HSQ. Calcula-
tions of electrical susceptibility and transition tempera-
ture have been made in Sec. III. In Sec. IV the derived
theoretical expressions have been fitted with the available
experimental data of dielectric constants. Analysis of
various salient features of HSQ as discussed in Sec. I has
also been made in this section. Finally, the paper ends
with a short summary and conclusion suggesting the ex-
istence of a "crossover" phenomenon in this crystal and
the unified character of the PLCM model for the explana-
tion of SPT in the H-bonded HSQ and in other systems.

II. THE PSEUDOSPIN MODEL

In Fig. 3 the four unit cells of HSQ projected on the
(010) is shown. The H bond is surrounded by six
nearest-neighbor bonds. Four of these bonds are in the
ac plane including the given bond, while each of the other
two bonds is in the plane just above and below the given
bond. Following Yasuda et al. each bond along the a
axis may be distinguished from each other by assuming
the presence of +a and —a bonds. There is an antifer-
roelectric arrangement of the +a and —a bonds within
the ac plane, consequently the bond interaction parame-
ter between the ac plane (say, K ) is expected to be weaker
than that within the ac plane (say, J). Similarly, along

F-c

FIG. 3. The structure of squaric acid at room temperature.
The unique axis is vertical. Two molecular layers are shown.
Large circles: oxygen; intermediate circles: carbon; and small
circles: hydrogen. The hydrogen bonds are indicated by dotted
lines (Refs. 6 and 9).

and (2)

respectively, where Z™is the component of the pseu-

the c axis each bond is distinguished from each other as
the +c and —c ) bonds as shown in Fig. 2.

From the consideration of the H-bond arrangements
(Fig. 2) it also appears that a theoretical treatment of an-
tiferroelectric HSQ based on a pseudospin model Hamil-
tonian should incorporate both the transverse long-range
dipole-dipole antiferroelectric interaction and the interac-
tion between the transverse dipole and an external field.
In order to include transverse properties we take into ac-
count the changes in transverse dipole moments induced
by the field acting on the protonic displacements along
the H bonds. Thus one could distinguish between two
kinds of hydrogen bonds in HSQ. The bond labeled plus
(or minus) contributes positively (or negatively) to polar-
ization along the a(b) or c direction. This concept has
also been used by Yasuda et al. to explain the pressure-
dependent dielectric constant of HSQ. They also con-
cluded that the model used for the explanation of antifer-
roelectric (AFE) character of ADP crystal might also be
applicable to squaric acid crystal. However, there are
also differences in the arrangements of H bonds in the lat-
tices of ADP and HSQ which are quite evident from the
structural differences between these two crystals.

Considering the above picture of the H-bond arrange-
ments in HSQ, the polarizations along the a(b) and (c)
directions may be written as

Pb~ gZ, +' —gZ,
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dospin operator with a plus or minus bond aligned in the
m direction (where m is either a or c ). The bonds along
each direction are divided again into two sublattices
designated by (1) and (2), so that alternating layers belong
to different sublattices as shown in Fig. 2. %e also in-

elude in this Hamiltonian an antiferroelectric long-range
interaction (A. ) between the dipoles of the two different
sublattices in each direction. Thus the proposed pseudos-
pin Hamiltonian in the four-sublattice-cluster approxima-
tion" can be written as

H, = —OQX ——'gJ; Z Z, —(p, E, +K(Z))y Z,

m =a, b

m =a, c

[p E —
—,'A, (Z (2)—Z (2))] gZ, + (1)—gZ, (1)

[p, E —
—,'A, (Z ™(1)—Z ™(1)) ] g Z,+ (2)—g Z;™(2) (3)

The first part of this Hamiltonian represents the effective
short-range proton-proton interaction and is the same as
the usual Blinc-de Gennes Hamiltonian [Eq. (1)] for the
KDP-type crystals with 0 as the effective tunneling fre-
quency. The second part represents the interaction of the
spins with an external field (E, ) along the c direction and
their interaction with the average longitudinal polariza-
tion (Z ) via the long-range dipole interaction (K). The
last part is the long-range antiferroelectric interaction
term. The dipole moment along the m axis is denoted by
p (m =a, b, c).

Since the solution of th pseudospin model for both the
KDP-and ADP-type crystals with a four-sublattice-
cluster approximation adequately describes most of the
static properties of these crystals, " ' we apply this ap-
proximation to the Hainiltonian in Eq. (1) for HSQ.

Now if one defines quantities like Z, and Z3 as the Is-
ing pseudospins representing the minus and plus H bonds
along the a direction (pseudospin at y= —,'), and Z2 are
those for the b direction (pseudospin at y =

—,') as shown

in Fig. 2, the one-particle Hamiltonian for the plus and
minus bonds aligned along the a direction is given by
(neglecting, for the time being, the tunneling term)

H+'(1)=[@,E, +K(Z)+p, +p,E,
—

—,'A, ( Z, (2)—Z, (2) ) +p, ]Z,(1),
H '(1)= —[p,E, +K(Z ) +p, p2E, —

(4)

+ —,'A (Z3(2) —Z, (2) ) —p, ]Zi (1) . (5)

Similarly one can write the one-particle Hamiltonian for
the bonds along the c direction. The parameters p„pb,
and p, are, respectively, the energies due to the effective
fields along the a, b, and c directions, produced by the
adjacent bonds outside the cluster. p, and p2 are the di-
pole moments along the a(b ) and c directions, respective-
ly.

The Hamiltonian for the pseudospins belonging to the
second sublattice, viz. , H —'(2) has also the same form as
described by Eqs. (2) and (3). The effective cluster fields

p„pb, and p, follow the cluster equilibrium condition,
viz. ,

r)F BF dF

~pa dpi' r)pc

where F is the approximate Helmholtz free energy given
by

F= — lnZ4(1)+lnZ4(2) —
—,
' g lnZ+ (n)+lnZ ™(n)+K(Z)

2P n =1,2
m =a, b

+-,'& g (Z™(1)—Z ™(1)) (Z+ (2)—Z ™(2)),
m =a, b

where P=1/ks T (ks is Boltzmann's constant and T is the absolute temperature) and Z4(n ) is the partition function of
the four-particle Hamiltonian. The four- and one-particle Hamiltonian H4(n ) and H (n ), respectively, descr—ibing the
energy of four pseudospins associated with four hydrogen bonds in which all the pseudospins belong to sublattice (1),
can be written as

H4(1)= V[Zi(1)Z~(1)+Z2(1)Z3(1)+Z3(1)Z~(1)+Z4(1)Zi(1)] U[Zi(1)Z3(1)+Z2(1)Z4(1)]
4—(p,E, +K(Z)+ —,'p, ) g Z„(1)—[p,E, ——,'k(Z '(2) —Z '(2))+ —,'p, ][Z3(1)—Z, (l)]

n =1

—[p2E„——,'A, (Z+"(2)—Z "(2))+—,'pi, ][Z2(l)—Z4(1)]—0 g X„(l),
n=1
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where U and V are the short-range interaction energies
related to the Slater- Takagi parameters c. , and c.o
(4U= —2c, , +2eo and 4V=2E, —co). Similar expression
as in Eq. (8) also hold for the Hamiltonian H4(2). The
three-proton configuration energy c.

1 appears to be very
large for HSQ as there is a large discontinuity in the X,
versus T curve at the transition temperature. Therefore
the transition temperature T, is calculated from the free
energy F using the standard procedure and then one ob-
tains

exp( —
A, Ikey T, ) =a/[2+exp(EO/ks T, )],

where a is a numerical constant factor to be evaluated
from fitting of the experimental data. Equation (9) is also
true for the antiferroelectric ADP-type crystals.

III. THEORY

A. Green's-function method

It should be mentioned here that the pure pseudospin
Hamiltonian containing the tunneling term considered in
our subsequent calculations with Green's-function tech-
nique ' ' has the general form

B. Calculation of electrical susceptibility

To calculate the static electrical susceptibility along a
and c directions, we use the generalized Hamiltonian (10).
It has already been mentioned in our earlier papers'
that the double time-temperature —dependent Green's
function has the generalized form

G+ "(c c')—= &(S, "(r )~S, "(r') &&, (13)

where S=X, Y,Z are the components of the pseudospin
variables. The Fourier transform of Eq. (13) has the form

e((S; '"~S '"))=(2m) '([S; '",S '"])

+ (( [Sm, h H ]~Sm, h )) (14)

(S;~„~ ~S ~„~ ) =i lim f —R de,i(n) g(n) (15)

where ( ) denotes as before the statistical average of the
enclosed pseudospin operators. By using the Green's-
function theory, as used, one has calculated first the
correlation function from which the required physical pa-
rameters could be calculated. The corresponding correla-
tion functions' of the two operators, viz. (S™hS~™~)
necessary to evaluate for our calculations are obtained
from the spectral theorem, viz. ,

H2= —2Q gX;+
m=a, b n=1, 2

J~Z,™(n)Z,™(n)

(10)

where

N=((S;— (n)~S +— (n))),+;s—((S,— (n )~S~
— (n))),

It has also been mentioned in Sec. I that for the HSQ
crystal the proton lattice interaction is expected to be
quite large and therefore we also introduce a linear
pseudospin-phonon coupling term which in its simplest
form can be written as

H, =N-'" y V„Q,Z,
I, g

N' g —g g V;qz;™(n) Z;™(—n )Q
m =a, b n =1,2 i, g

+ —,
' g (PqP q+co QqQ ) .

& Q& & =Q exp(iqoR, ) =+Q

Qq =Q,,+&Q,
(12)

In the paraelectric phase (PE) Q =0 and 5Q=Q (say)
denotes the fluctuations around the average value.

For the overdamped system like HSQ one may re-
place g co Qq Q q by a complex frequency coq

=(co i lqq)Q
—

Q q
(where qq is the relaxation time). In

Eq. (11) V, is the usual spin-phonon coupling term, Q
and P are, respectively, the normal coordinates and con-
jugate momenta. To simplify our calculations we further
assume that V,

+— = V;, Q™=Q,and P™=Pand
hence the present model could be treated as a modified
Kobayashi model.

For the antiferroelectric transition in HSQ, where the
instability is assumed to occur at the zone boundary, the
order parameter (Q ) =0; and one has

and L = [exp(Pe) —1] and R =e '"' ' '. For different
components of S, Eq. (14) gives nine different coupled
equation like ((X,™(n) Y,™(n)(Z,— (n ) )), etc. To cal-
culate the individual two-particle Green's-function from
these coupled Green's functions we linearize the higher-
order Green's functions using the random-phase approxi-
mation (RPA) of Bogolyubov and Tyablikov. ' ' ' For ex-
ample, three of the total nine such linearized equations of
motion obtained from Eq. (14) can be written in the form

E IVO 1OO G' "(XX)
W E 0 0 1 0 G™(YX)
0 0 E 0 0 1 G+m h(ZX)

l

2'
—Z+ (n)
Z+m( )

(16)

where G '"(XX)=((X; (n)~X (n))) and so on,

8'=i A,
' —i p, E, ,

A.
' =A, [ ( Z ™(n )

—Z ™(n ) ) ] .
G+ '"(XX), G+ '"( YX), G+ '"(ZX), etc. are the
Green's functions, like that represented by Eq. (13). Solv-
ing Eq. (16) for all the Green's function like G™n(ZZ)'
and then using Eq. (15) we get the required correlation
functions like (Z™(n)Z™(n)),etc. Next we assume
that all the correlation functions are finite and obey the
identity of the form

(X2) + ( Y )+ (Z ) =S(S+1)=const=@ . (17)
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This constant has to be obtained from fitting of the exper-
irnental data.

Using Eq. (16) and the correlation functions
&Z — (n)Z™(n) & we find (following the procedure of
our earlier paper' ) for sublattice (1) and sublattice (2) in
the +a direction

(A,
' p,—E, )

& Z —'(1) &
= +4 tanhP

2

(A,
" p, E—, )

& Z +—'(2) &
= +4 tanhP

2

(17a)

(17b)

where I,"=A[&Z+'(n =1)&
—&Z '(n =1)&]. The sub-

lattice polarization along the a(c ) direction is given by

P. =
&
z+ (1)&+ & z+'(2) &

—
& z -'(1)

&
—

& z -'(2)
& .

(18)

for the AFE phase transition in HSQ we get

X,p, 1 —tanh
24 2 2 A,

8 B
(21)

Equation (21) can be used to study the electrical field
dependence of electrical susceptibility and hence dielec-
tric constant (e, =1+4m', ). This is the general relation
to calculate the static dielectric constant without consid-
ering the pseudospin-phonon interaction which we con-
sider to be important. This equation cannot, however, be
used to show the dome-shaped dielectric constant above
Tc'

To consider the effect of pseudospin-lattice interaction
one has to deal with the generalized Hamiltonian of the
form

From (18) the electrical susceptibility y, comes out to be H—:H)+H2+H3 (22)

P,
Ng pgc}E, E =o

2 — tanh + tanh
B B B

(19)

Again calculating all the required Green's functions like
G+ "(SS)=«S+— (n )~S™(n) &&, etc. and applying the
procedure discussed above we find the susceptibility
along the a axis

Now putting

&Z' (1)&—&Z™(1)&=&Z'(2)& —&Z™(2)&=2
x.(e =o)= aP.

E =O

2N, p,
k T [x.l

B
(23)

(20) where

I

g2 g2
+ +

(8, +4Q ) (82+4Q )

tanh[ —'P(8 +4Q )' ]

(8, +4Q )

80 k~T
82tanh [ i P( 82+ 4Q2 )

1/2
](8 +4Q )'~

tanh[-,'p(8', +4Q')'"] gQ'ks T+
(82+4Q ) (82+4Q )

—82tanh[ —,'p(82+4Q )'~ ] (24)

where 8~=A, ' —Vo, 82=A,"—Vo, and Vo= V &Q &. The corresponding electrical susceptibility along the c axis has
qo qo

the form

where

aE
NCPC

2' T c
B

8' tanh[-, 'P(8'+4Q')' "]
+

(8', +4Q ) (8', +4Q )

80k T —8' tanh[ —,'P(8' +4Q )' ]
(8", +4Q )

where

8'i =(Jo+y+ Vo)&Z &

and

J'=gJ, , &Z&= g (Z;) .
J i=1

(25)

has been defined as P, =N, p, & Z &. Here we have for the
ferroelectric phase Z=1 and for the antiferroelectric
phase Eq. (20) is valid. The expressions for y, and y, ap-
pear to be identical with those derived for the ADP-type
crystals. This is evident from the similar nature of the
model Hamiltonians used for ADP and HSG.

IV. RESULTS AND DISCUSSION

This Eq. (25) is also valid for the KDP-type crystal for y
along the polarization axis. The longitudinal polarization

As mentioned in Sec. I, one of the purposes of our
present investigation is to describe the anomalous
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TABLE I. The pseudospin-lattice coupled-mode (PLCM) model parameters for HSQ obtained from best fitting of the experimental

data of dielectric constant at different temperature and fixed pressure. The value of a [Eq. (9)] is taken to be 2 for HSQ.

Sample

HSQ

Pressure
(GPa)

0.60
0.45
0.15
0.00

0
(cm ')

14
15
20
18

A, /kq T

300.80
338.75
387.50
438.50

~o/ka T.

67.58
98.05

100.80
85.80

8Np
(esu)

2820
2680
2580
2600

0.012
0.021
0.022
0.020

(cm ')

530
550
580
611

T,
(K)

310
326
360
374

co/k~

368.00
422.40
486.00
510.00

thermal and pressure dependencies of dielectric constants
of both HSQ and DSQ using Eq. (21) for the electrical
susceptibility along the a axis. It is well known that the
standard relation for the transition temperature has the
general form

the experimental dielectric constant e,' versus tempera-
ture curves with different pressures are shown in Table II.
While fitting the experimental data (both for HSQ and
DSQ) in the low-temperature region (below T, ) we used
the relation

tanh( 0/ks T, ) =0/J", (26) (28)

where J* is the effective exchange interaction. Equation
(26) is also qualitatively valid for squaric acid. An esti-
mate of the approximate values of the model parameters
0 and J' is obtained first from this equation. By putting
the approximate values of Vo, J', and g, in the expres-
sion for y„ the experimental (y, —T) curves for different
pressure parameters p =0, 0. 15, 0.45, and 0.60 Gpa are
fitted (by a trial and error method). The model parame-
ters for the best fitting are shown in Table I. The in-
crease of dielectric constant with temperature in the
paraelectric phase is explained by assuming that the rno-
ment Np, has two parts: (a) a temperature-independent
part and (b) a temperature-dependent part, i.e., by writing

Np, =[I+8(T T, )], — (27)

This is assumed because of the fact that with increase of
temperature the effective separation between the charges
of the dipoles increases, resulting in an increase in Np,
values. The parameter "8"is treated as a new parameter
(shown in Table I). It is also found that the number of di-
pole moments N increases by 0.3%/kbar because the
volume compressibility is d lnV/dp =0.3%/kbar. Since
0 is very small, the effect of pressure on 0 is neglected.
The AFE interaction between the bonds (A, ) is found to
decrease with pressure (see Table I). The value of
d 1np/dp = —2%/kbar is much larger than the value of
the linear compressibility. Therefore it is expected that
the value of A, should decrease with pressure.

The model parameters calculated for DSQ from fitting

as given by the neutron scattering theory. '

It is observed both from Tables I and II that the values
of A, and Vo are very much sensitive to pressure (0 is as-
sumed to be zero for the deuterated DSQ salt). The ap-
preciable magnitude of Vo indicates the importance of
proton-lattice interaction in squaric acid which was, how-
ever, neglected in the calculations of previous au-
thors. ' ' ' The e,' versus T curves (both theoretical
and experimental) at different pressure as shown in Figs.
4 and 5 indicate reasonably good agreement.

Using Eq. (9) and the parameters from Tables I and II,
the values of so/ks come out to be of the order of 486,
422, and 368 K, respectively, at 0.15, 0.45, and 0.60 Gpa
for HSQ. The corresponding values of (so/kii) for DSQ
are 530, 474, 452, and 440 K, respectively, for 0.20, 0.60,
1.20, and 1.80 Gpa. Therefore the values of Slater energy
co decreases with pressure which is similar to the varia-
tion of long-range antiferroelectric interaction parameter

It is found that the round-shaped dielectric constant
around T, cannot be clearly explained without changing
the model parameters as shown in Tables I and II. This
might be due to critical fluctuations around T, . Howev-
er, changing the values of the parameters k, Vo, and 0 by
about 5—10% the round nature of the (e,' —T) curve
around T, can be fitted with the present pseudospin-
lattice coupled-mode model. This change of the model
parameters might also be justified from the fact that the
critical region is a fluctuating region. For a similar varia-
tion ( —10%) of the model parameters for fitting the

TABLE II. The pseudospin-lattice coupled-mode (PLCM) model parameters for DSQ obtained from best fitting of the experimen-
tal data of dielectric constant at different temperature and fixed pressure. The value of a [Eq. (9}]is taken to be 2 for DSQ.

Sample
Pressure

(GPa) (cm ') A, /k~ T Vo/k~ T,
8'
(esu) (cm ') &o/ka

DSQ 1.80
1.20
0.60
0.40
0.20

60
50
40
50
50

358.55
379.80
390.00
409.50
448.00

150.00
158.90
165.80
169.00
180.50

3512
3655
3855
4005
4136

0.017
0.018
0.020
0.022
0.022

518
555
580
610
660

385
415
460
482
505

432.47
440. 10
451.60
473.81
530.00
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(1.02 and 1.013, respectively) obtained experimentally.
The round-shaped susceptibility curve around T, of

HSQ resembles that of the KDP crystal observed along
the transverse axis. Similar behavior is also observed
for the antiferroelectric phase transition in ADP crystal.
It therefore appears that the dielectric properties of all
these crystals could be studied with a single unified Ham-
iltonian. It is most probable that this type of pseudospin
model could be applied even for the case of 1D antifer-
roelectrics, Jahn-Teller crystals like PrC13, and antifer-
roelectric KMnF3 (Ref. 7) showing similar maxima in the
(e,' —T) curve above T, . This features also resembles the
behavior of antiferromagnetic susceptibility. To find if
Fisher's explanation ' of the above maximum (in case
of an antiferromagnet) is even applicable to the present
AFE case, we calculate the mean value of specific heat C
from the relation

C(T)= A [Tg, (T)] .c}
(29)

Q I I I I I I I I I I I I I I I I I I

350 400 &50 500
TEMPERATURE (K)

FIG. 4. Thermal variations of dielectric constants of squaric
acid (HSQ) at different fixed pressures: (I) 0.66 GPa, (2) 0.45
GPa, and (3) 0.15 GPa [0, experimental (Ref. 7) points;
———,theoretical curve].

transverse susceptibility of the KDP crystal we find

T,„/T, =1.09 which agrees with the values shown by
Samara and Semmingsen. For this variation of the mod-
el parameters the ratio T,„/T, does not exceed 1.03 for
HSQ and 1.015 for DSQ which agrees with the values

J
30

Oo
O PQ
I—
O

LLI

O

10

Q I I I I I I I I I I I I I I I I I I

350 400 450 500
TEMPERATURE ( K)

FIG. 5. Thermal variations of dielectric constants of deu-
terated squaric acid {DSQ) at different fixed pressures: (1) 0.20
GPa, (2) 0.40 GPa, (3) 0.60 GPa, (4) 1.20 GPa, (5) 1.80 GPa [o,
experimental (Ref. 7) points; 6,~, theoretical points].

The expression for the susceptibility y, (T) is
differentiated with respect to T and the values of C(T)
are calculated from the values of the model parameters
obtained from fitting the experimental dielectric-constant
curves (see Tables I and II). Though the parameter A is
a merely temperature-dependent term, we consider it to
be constant. Our interest is to find whether a A.-type
anomaly in specific heat versus temperature curve should
be exhibited by HSQ as was pointed out by Feder. Us-
ing Eq. (29) a k-type anomaly in C is actually found in the
C versus T curve near the antiferroelectric transition
when Bg, /BT ac at T, . Figure 7 shows C/3 versus T
curve calculated for HSQ by using the model parameters
from Table I for 0.15 GPa. From Fig. 6 we find that the
maximum peak for HSQ appears at about 7 K above T,H

which is very close to the value -7.5 K observed by
Samara and Semmingsen. The heat-capacity anomaly
also appears to be of the A, type. This finding definitely
supports our theoretical calculations with pseudospin-
lattice coupled-mode model applied for HSQ and DSQ.

The maximum in e,' above T, then follows from the re-
quirement that e,' ultimately tends to zero at high tem-
perature because of the loss of pseudospin correlations.
This is a very interesting result in the case of an antifer-
roelectric material like HSQ showing good analogy with
antiferromagnets, and more generally it is expected that
the arguments made by Fisher for AFM are physically
significant. Equation (29) should therefore be qualitative-
ly valid even for the AFE squaric acid earlier suggested
by Feder.

Another feature of equal importance which needs fur-
ther clarification is the crossover between first- and
second-order transition recently concluded from the
chemical shift measurement by Mehring and Becker.
To make a test of this interesting feature we made the fol-
lowing phenomenological approach.

It is observed from the studies of the experimental data
of specific heat (hC), ' optical birefringence (bnb, ),
chemical shift (60.), ' and the temperature dependence
of the elastic constant (C, i), that these parameters
behave similarly near the phase transition. That is, one
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FIG. 7. Thermal variation of birefringence of squaric acid
(HSQ) (Ref. 20).

FIG. 6. Calculated specific heat of HSQ using the model pa-
rameters (for p =0) from Table I.

such parameter could be mapped into the other by a con-
stant scaling factor. To see whether the transition is first
or second order, critical analysis of any of these parame-
ters would be interesting. We have tried to study the
refractive-index change (bnb, of HSQ in the light of our
theoretical model. From the variation of Anb, the order
of the transition could be detected in the following
manner.

The free-energy density for squaric acid can be ex-
pressed as

F= —,'a'(T —To)Q + ,'bQ + —'cQ— (30)

where To is the temperature of the stability limit for the
prototype phase. Here we assume a linear variation of
hnb, with Q (square of the order parameter). The tem-
perature dependence of the elastic function C, ~

as de-
rived from the velocity measurement also supports this
assumption.

If we consider that birefringence is a direct measure of
the spontaneous strain (e') through an "internal" elasto-
optic effect, a linear relationship between An&, and
spontaneous strain is expected. This implies that bnb,
should also be proportional to Q, and so measurement of
Anb, as a function of T can prove the behavior of the or-
der parameter. A good set of experimental data of
birefringence is expected to give a more accurate impres-
sion for the order-parameter behavior than other experi-
mental data which directly give either e' or Q.

Since bnb, CC Q, the observed linear dependence of
(b, nb, ) on T implies that the critical exponent P in the
expression Q ~ ( To —T) has a value ( -0.25 for T (366
K). This indicates that below 366 K the behavior is
determined by a tricritical fixed point, ' ' where b =0 in
Eq. (30). At the transition temperature T„however, a
first-order behavior (b (0) is expected and Fig. 5 sug-
gests a crossover from a tricritical region to a first-order
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90 92
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FIG. 8. Thermal variation of (Anb, )' of squaric acid (HSQ)
showing the anomaly at To & T, (theoretical curve).

region at about 366 K, the first-order region being in a re-
duced temperature range of -0.05. Similar behavior has
also been revealed from the linear separation (b,o ) in the
high-resolution' C NMR spectra' ' (chemical-shift mea-
surement), and also from birefringence measurements.
The evidence of a crossover phenomenon in HSQ is,
therefore, quite strong and demands further new experi-
mental results.

The high-pressure studies of the dielectric properties
by Samara and Semmingsen and others, ' however, did
not mention the tricritical nature of the transition in
HSQ. The application of high pressure to squaric acid
may decrease the first-order regime so that a true tricriti-
cal point becomes hard to detect.

Let us now consider the first-order region between 360
K and T, in more detail. If the system is described
within the mean-field approximation, the order parame-
ter should have the following temperature dependence.

1/2
3 T To

Q (T)=—'(bQo) I+ I ——
0 4 T, —To

where b, Qo is the jump in the order parameter at the
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first-order transition occurring at temperature T, . Since
Anb, -Q, the same temperature variation is to be ex-
pected for An&„such that one could ~rite

1/2 '

3 T TQ
n (T)=—'(b.n ) 1+ 1 ——

bC 3 bC 4 T —Tc Q

(32)

Using (31) a least-squares fit of the data points between
366 and 375 K gives the solid curve shown in Fig. 7 and
8. In this least-squares refinement T, was kept fixed at
the experimentally observed value of 375 K and the two
parameters, viz. , TQ and nb„were fitted to several data
points. The best fit was obtained for To=373.49(+2) K
and n b=(1.50+0.05)X10 also obtained by Kuhn et
aI. Though the transition temperature T, is sensitive to
the pressure and the presence of impurities, the difference
T, —To = (373.49 K —366 K) =7.49 K obtained from our
calculations is comparable to the value of 7 K obtained
by Samara and Semmingsen.

V. SUMMARY AND CONCLUSION

Squaric acid is an interesting quasi-two-dimensional
antiferroelectric crystal. A four-sublattice-cluster Hamil-
tonian has been found to be suitable for investigating the
first-order nature of the transition observed in this crys-
tal. Using the pseudospin-lattice coupled-mode model we
have shown that the tunneling term is extremely small for
this salt compared to the other H-bonded KDP crystals.
But its contribution cannot be neglected. The
pseudospin-phonon interaction is also quite important for
the HSQ crystal as observed from the values of the
pseudospin-phonon interaction parameter VQ. This is
also supported from the very high value of ks T, in HSQ
(indicating the importance of phonons in the transition
mechanism).

The cluster pseudospin Hamiltonian used in this paper
is found to be adequate to explain most of the salient
features of the antiferroelectric first-order transition in
HSQ and DSQ. There is very close similarity between
the model Hamiltonian used for HSQ and that used for
ADP crystal which was also pointed out by Yasuda et

a/. This means that basically the pseudospin models
describing the transverse dielectric constant of KDP, and
the antiferroelectric behavior of ADP, and HSQ are simi-
lar in their forms. That is, a unified PLCM-type model
could be used for the studies of various physical proper-
ties of these crystals with different sets of model parame-
ters varying from crystal to crystal.

The rounding of the e,' —T curve about T, which is a
characteristic feature of HSQ salt is actually found to be
due to a large order-parameter fluctuation as also sug-
gested by Petersson and Maier. It is also pointed out
from our calculations that the dome-shaped nature of the
e,' —T curve above T, could be fitted with the theory con-
sidering small Auctuations of the pseudospin model pa-
rameters which are also related to the order-parameter
fluctuations. Here it might also be concluded that all the
large isotope effect along with other salient features of
phase transitions in HSQ as discussed above cannot be
completely explained with a simple tunneling model [Eq.
(1)] and considering elongation of the hydrogen bonds in

DSQ as suggested by Samara and Semmingsen. The ac-
tual mechanism of transition in HSQ is far more compli-
cated.

Finally, we also conclude from the results of our
theoretical investigations that there is a strong evidence
of the crossover phenomenon in squaric acid which is
also supported from the ' C NMR studies made by
Mehring and Meeker. A crossover from first order to
continuous phase transition induced by a symmetry-
breaking field for a 2D model has also recently been pro-
posed by Kerszberg and Mukamel. ' Our theoretical re-
sults definitely provide strong support to the data of
Kerszberg and Mukamel. ' However, further experimen-
tal observation to confirm the crossover behavior in HSQ
would definitely be interesting.
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