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Quantum-interference magnetoconductivity in the variable-range-hopping regime
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The influence of interference effects on the low-field magnetoconductivity of disordered semicon-
ductors in the variable-range-hopping regime is considered. The contribution to the (magnetic) field

dependence of the phonon-assisted tunneling rate between two sites is calculated, which arises from
interference between the amplitude for a direct transition and that for an indirect one involving a
single third site. This process is analogous to that considered by Holstein for the hopping Hall
effect. An expression for the low-field magnetoconductivity is derived in the effective-medium ap-
proximation and is shown to be positive and linear in the field. As in the multisite model of Nguyen
et al. , the linear magnetoconductivity arises from processes with complete destructive interference
in the absence of the field. The coeScient increases with decreasing temperature. For Mott hop-

ping the temperature dependence can be approximated by a power law with an exponent close to 1.

I. INTRODUCTION

Hopping transport, i.e., carrier motion arising from
phonon-assisted tunneling of electrons between localized
states of disordered semiconductors is considered to be a
process in which the electrons lose their phase memory
after each step. ' On the other hand, it has been shown
by Holstein that interference processes are possible in

hopping transport if more than two sites are involved in a
phonon-assisted tunneling event. This can lead to a non-
vanishing Hall effect. Recently, Nguyen, Spivak, and
Shklovskii (NSS) (Refs. 5 and 6) pointed out that similar
processes may influence also the magnetoconductivity in
the hopping regime. They performed a numerical simula-
tion of the interference process that occurs during a sin-
gle hop. They demonstrated that under certain condi-
tions the interference effect can lead to an anomalously
negative magnetoresistance and to Aharonov-Bohm oscil-
lations in multiply connected samples. By means of per-
colation theory, they have shown that the magnetoresis-
tance is linear in the field and arises from those hops
which have zero amplitude in the absence of the field as a
consequence of destructive interference.

Experimental evidence for quantum interference hop-
ping magnetoconductivity has been found in n-type chan-
nels of field-effect transistors, in films of polycrystalline
semiconductors, and in impurity bands of doped crystal-
line semiconductors. Also, earlier data of doped inver-
sion layers' and recent data of amorphous Mo-Ge can be
interpreted in this fashion. " Aharonov-Bohm oscilla-
tions which have been found recently in grid-structured
amorphous PbTeO films' can possibly be explained in
terms of the above-mentioned mechanism.

NSS (Ref. 5) studied a model in which a large number
of intermediate localized states participate in the interfer-
ence process (multisite model). Similar models were also
considered by other authors. ' '

Let us estimate how many intermediate centers one can
expect in a typical variable-range hopping situation.
Consider first a doped crystalline semiconductor. For
having localized impurity states, according to Mott, one
has n,' aH &0.25, where a&= 1/a is the effective Bohr

radius, n, is the number of donors per unit area (volume),
and d is the dimensionality. The mean distance between
donors a =n,

' obeys, therefore, aa )4. In the
variable-range hopping regime phonon-assisted tunneling
occurs not between neighboring donors but rather over a
length r = ( To /T )

' ~ + "/2a. Typical experimental
values for To/T are of the order of 10, which gives
values for 2o.r of the order of 10. It is clear that r cannot
easily be increased appreciably by lowering the tempera-
ture because of its weak temperature dependence. There
will be only very few additional donors inside r. A simi-
lar reasoning holds for amorphous semiconductors: The
hopping centers are several localization lengths apart and
values of kg Tp are in the eV regime, so that also here a
typical hopping length will exceed the mean distance be-
tween centers only by a factor of 2 or 3. This means that
in situations of experimental relevance " only very few
localized states are present within the distance of a typi-
cal electron jump.

In the following we shall consider a model with only
one additional defect between the hopping sites. Apply-
ing the two-site effective-medium approximation (EMA)
of Movaghar et aI. ,

' ' it is confirmed that in the
variable-range hopping regime one has to average the
logarithm of the hopping rate over the energetical and
spatial position of the additional defect as deduced by
Shklovskii and co-workers ' ' from percolation theory.
This logarithmic averaging leads to an enormous sensi-
tivity to configurations with destructive interference in
the absence of the field and to a linear and positive mag-
netoconductivity.

II. THREE-SITE HOPPING PROBABILITIES

The following derivation of the three-site phonon-
assisted tunneling rate is analogous to that of Holstein
for the hopping Hall effect. The difference is as follows:
Holstein demonstrated that for obtaining a finite Hall
effect a process with more than one phonon is needed; the
second phonon must also be resonantly absorbed or emit-
ted in order to obtain an indirect amplitude which is out
of phase by ~/2 compared to the direct one at zero field.
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H=H, +H, h+H h,

where H, ~h is the electron-phonon interaction, treated in
deformation potential approximation and H~h is the
phonon Hamiltonian. The electron Hamiltonian is as-
sumed to be of the form

H, =g y; &s; &ip; +pip; & V; &p l, (2)

where c.; are randomly fluctuating local energies and VJ.

are overlap integrals between local Wannier states ly;)
with radius a '. The V; are assumed to be of the form

In what follows it is shown that the three-site hopping
probability relevant to the interference magnetoconduc-
tivity can be obtained by performing a (renormalized)
perturbation expansion of the wave function instead of
going to higher order in the electron-phonon interaction.

Following Ref. 4 we consider a Hamiltonian of the
form

V, = Vo(r;~)exp( —ar;~), (3)

where r, is the distance between the centers of gravity of
those states.

Vo(r) is supposed to be a weak function of the intersite
separation. This model may describe two physical situa-
tions of experimental relevance.

(i) An impurity band in a crystalline semiconductor.
The states lip; ) in this case are effective hydrogen states
calculated in effective mass approximation. The devia-
tion of the s; from the donor (or acceptor) level is caused
by compensation and by the overlap.

(ii) The region of localized states ("mobility gap") of an
amorphous semiconductor. In this case the lg, ) are de-
fect states determined by the chemical nature and the
amount of disorder in the material. The validity of (3)
can be justified a posteriori from the ubiquity of Mott's
T' law in amorphous semiconductors.

The eigenstates of (2) can be calculated by renormal-
ized perturbation theory' to be of the form

) l
)+ y l )

kl + y kn

k4i i k nWkWi i k i n

(4)

where E; are the renormalized local energies. ' To include triangular interference processes we go to second order in
the overlap integrals (for details concerning matrix elements of H, h see Ref. 4):

(l(, lH„„ly, ) =F,D„* (q, le'" lq, )+ v,,(e'" & e'"—")
i J

iq&. r .
e

E —EJ
jn ni E E E E jn ni E E E E ni jn Ei n j i j n i n j n

where F& is the deformation potential. The quantity D& is given by

Dk =+iqk ek(fi/2M¹o )'
l
l —e (6)

ficuk is the energy, fiqk the momentum, and ek the polarization of a phonon i(,. M and N are the mass and number of the
atoms, respectively and + ( —) denotes absorption (emission) of a phonon.

In the presence of an applied magnetic field B the Vi acquire a phase factor exp(ia; ), where the angle a; is given by

e
a,;= B rjXr,.

so that we have V;(8)=
VJ; (8 =0)exp(ia; )—:VJ;exp(iaj; ). The hopping probability is now obtained as

w,',"'= gl(@,lH„„ly, ) l'S(E, —E,+m, )

1 1

(E E)2 V;„V„exp(ii', „; ) (8)

I

mon phase factor. [At this stage one should note that
these approximations can become questionable if the
second term inside the bars of (8) cancels the first (des-
tructive interference). We shall come back to this point
in Sec. IV B.]

Expression (8) can be rewritten as

~(E )
y2 (n) —pr(0) (n)

E, /k~T 'J v ij v
ll —e

(9)

Here the bar denotes averaging over the phonons, and

P/„; =aj„+a„; a;J =(e/fi)B. —A „;., where A „; is the
vector area of the triangle i n —j. lD;—l is the modulus
squared of expression (6) with +Reek=E E, , averaged—
over the possible polarization directions. In deriving (8)
the first term of (5) has been dropped because it is much
smaller than the others in the limit qk. r,, » 1 (see Ref. 4).
The last term of Ref. 5 has been discarded because it can-
not interfere with the direct process since it has no com-



QUANTUM-INTERFERENCE MAGNETOCONDUCTIVITY IN THE. . . 2463

with

(n) 1 + 1

V E —E E —En j n

V,„V„V, 'exp(igj„, )

(10)
8" ' is the usual Miller-Abrahams one-phonon hopping
probability per unit time. (The prefactor vo is further
considered as a constant. ) g,~"' is the factor which arises
as a consequence of the interference process. g

"' can be
larger (constructive interference) or smaller than 1 (des-
tructive interference) depending on the sign of the prefac-
tor of the second term inside the bars. We shall see below
that the case of destructive interference is most important
for the low-field magnetoconductivity.

III. CALCULATION OF THE CONDUCTIVITY

For calculating the field-dependent hopping conduc-
tivity we utilize the effective-medium approximation
(EMA) developed by Movaghar et al. "' for hopping
transport in disordered semiconductors. In the dc and
low-temperature- density limit this method has been
shown to yield the same results as the percolation
method. ' It can, however, be also applied to the ac case
and to the whole density and temperature range.

Since the transition probabilities we are dealing with
describe an effective two-site process (from the point of
view of the hopping mechanism) leading from site i to j
we can use the two-site EMA. We have only to make
sure that in averaging over the additional sites n we ex-
clude the energy range around the Fermi level, EF which
is used by the sites i and j in the hopping process. This
range can be estimated to be E0=2arkBT above and
below EF.

Studying hopping near the Fermi level we can use the
symmetrized version of the theory, ' i.e., we put

~(p) gr(p) tj tj B
ij ji +0

where E;, = IE; E—
~ ~

is the effective barrier between i and

j and vp a prefactor of the order of a phonon frequency.
The conductivity is given as' '

"c e 1
2

o. =n, 1— R vpcT i
n, kBT 2d

(12)

Here n, is the number of sites per volume and n, is the
number of carriers per volume. R is given by

1 0'}+vp/IY;J 1/o )+vp S';J"
(13)

and o. , is the dimensionless conductivity which obeys the
self-consistent EMA equation

1o. , =a n,
1/ + /8" "' (14)

r = —ln((T ()/2a,
(n) —

1 ( (n()

(16)

(17)

We can rewrite Eq. (14) in the form

az =exp( —1) is a density renormalization which compen-
sates double counting. ( ( ) ) denotes an average
with respect to the sites i, j, and n Defi.ning ( ) to be
an average over the conditional probability for finding a
third site n if i and j are fixed we have

(( . ) )—:( fN(E,, )dE, d"r; ), (15)

where N(E) is the density of states. In the following we
restrict ourselves to the cases d =2 and d =3. Defining
now the hopping length r and the interference exponent g
by

l=er2e(d —1)(f dE~2d(E; )f dr, r;
' 1+exp '

+2rer, —2rrr+r1, '"'
B

(18)

In (18) only energies of the order 2ar kz T are relevant so
that we can put N(E; )=NF outside the integral. [At
very low temperatures N(E) becomes zero at E =E~ as a
result of correlation effects ("Coulomb gap" ) and varies
as (E —EF ) . This case is easily included within the
present formalism. For reasons of clarity we restrict our-
selves here to the "classical" Mott variable-range hop-
ping regime where NFWO. ] Furthermore, we set in (10)
1/(E, E„)+ 1/(E E„—) = 2 l(EF E„—). Perform—ing
now a partial integration we obtain

d —1
1 =4+a~ kB Ter NFd

1+(1/2a )d g("'/dr,
X dr, .r,

"
(„) . (19)

1+exp 2ur, +g',-"-' —2~r

We expand now the Fermi function
l Ie+xp[g ,

"'(2+(ar, —r)]) ' with respect to g "(which is
legitimate if typical values of q are small compared to

with

d —11=4aa kBTm.
d

f~j I~

dj
oo 1dr. .r~

0 'J '~ 1+exp[2a(r, —r)+(g")] (20)

We replace now the Fermi function in (20) by a step func-
tion. (We shall see later in the discussion of the field
dependence of the conductivity at very small fields that
this procedure must be considered in more detail. ) This
yields

I

2ar, see the Appendix of Ref. 6) and neglect the term
proportional to (gg). The term proportional to g is
multiplied by a function which becomes proportional to
5(r, r) in the —limit of large 2ar. We therefore can ap-
proximately rewrite (19) as
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r =ro+(ri) /2a .

The conductivity becomes

(24)

cr =n,

X exp

c e 1n 2

n kgT 2d
' 1/(d+1)

TO

T
(25)

with

FIG. 1. Interference triangle together with the coordinate
system fixed to the triangle which is used for evaluating the
average over the relative position of site n with respect to the
hopping sites i and j.

R =r Od ( d +1 ) /( d +2)( d +3 ) az . (26)

If we neglect all other sources of a field dependence
except that coming from the interference mechanism
the magnetoconductivity for small ( r/ )(B) —( i) ) (0)
=b (ri)z becoines

1=(T/To)(2ar —(ri) )
+' (21)

o(B)—o(0) ~( )CFg =
o(0) 9 B (27)

with

(2a)"d(d + 1)
(d —1)a NF2m.

(22)

A11 these results confirm those obtained by NSS from per-
colation theory.

Defining now ro to be the hopping length in the absence
of interference effects, we obtain Mott's law

IV. RESULTS AND DISCUSSION

A. Linear magnetoconductivity
2~@ =(T /T)'~'d+ '

and, to first order in ( ri ) /2aro

(23)
Let us now specify the averaging procedure over the

third site. (ri) is to be calculated as follows:

W(r, r„)
(ri) = —f dEN(E) I d r„ln 1—

0
exp[i/(r, r„)) (28)

Here E=E„—EF and Eo =2arkz T. The vector r„ is the
vector which points from the midpoint between sites i
and j to site n in the coordinate system defined in Fig. 1.
The energy Wis given by

W(r, r„)=2V(r, ) V(rz) V(r) (29)

Here V(r, )= V;, and r, and r2 are the legs of the in-

terference triangle defined by

r, 2=[(r/2+x) +y ]'~

P(r, r„) is e/A' times the flux through the triangle

e
P(r, r„)= B, ,'ry =P(r,y) . ——

(30)

(31)

The normalization volume O must fulfill On, =1. Since
it must have the length r, one obtains the conditions
y & 1/rn, for d =2 and y &(rn, )

'~ for d =3. Let us
compare the region where the integrand is different from
zero with Q. Similar to the findings of NSS, the region

I

1

x +iy

which is valid in the limit ~y~ ~0, we obtain

I

where the function W( r, r i, r 2 ) differs appreciably from
zero is an elliptic (or ellipsoidal in 3D) region with length
r and diameter yo =(r/a)'~ —("cigar-shaped region"~).
The present model is devised for the case where the aver-
age number of additional sites inside this region is smaller
than 1. This number can be estimated to be
c =n, r /a' (d =2) and c=n, r /a (d =3). The cor-
responding ratios of the diameter of the cigar-shaped re-
gion to that of the normalization volume are proportional
to c (d =2) and c'~ (d =3). Therefore, in evaluating the
integral over r„we will not care about the restriction

~ r„~ & 0 and push the integration boundary to infinity.
For obtaining the low-field behavior of (g) we replace

exp(iP) by 1+i/ and perform a Taylor expansion of (i) )
with respect to P. With the help of the identity

1=P ——im sgn(y)5(x), (32)

b (q)~ = —2n. I, ,

dE N(E) I d r„[~P(r,r„)W(r, r„)~5(E—W(r, r„))]+O(P ) . (33)
0 oo

This means that ( g )~ contains a term which is proportional to the modulus of the applied field.
Coinbining (27) with (33) we obtain —in agreement with NSS—a positive linear magnetoconductivity. Within the

present model it is explicitly given as
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os=2m f, dEN(E) f d r„[~P(r,r„)W(r, r„)~5(E—W(r, r„))] . (34)

It is clear from (34) that the linear magnetoconductivity
comes from those intermediate sites for which g "'=0 in
the absence of the field. In other words, the linear mag-
netoconductivity is produced by those triangular
configurations which have complete destructive interfer-
ence in the absence of the applied field. Also, this feature
agrees with the results of the NSS multisite theory.
Within this single-site model, the intermediate state must
be energetically situated below the Fermi level if V(r) &0
and above it if V(r) &0. In the case of n-doped crystal-
line semiconductors, V(0 so that the interference mag-
netoconductivity probes the states below the Fermi level.

In order to be able to evaluate the integral explicitly we
keep only the exponential dependence of V( r, ) and
V(r2), i.e., we set

e
os =m ~B& ~SqI&n, vz =2ng(r, yo)cvz, (43)

I

In comparing (36) with (41) one notes the important point
that in d =3 the effect does not depend on the direction
of B, whereas in d =2 it does. This is a consequence of
the orbital nature of the interference process and can be
utilized to experimentally identify quantum interference
e6'ects in hopping transport.

Let us now rewrite expressions (36) and (41) as follows:
If we denote the region where W( r, r i, r i ) differs appreci-
ably from zero ("cigar-shaped region", s' ' by
=yo" 'r and the area of the maximum interference tri-
angle which can be imbedded into this region by S=

—,'ryo
we can cast Eqs. (36) and (41) into the form

Vp(ri )= Vp(rz)= Vp(r/2)

In d =2 this leads to (see the Appendix)

(35)
where c=n, %'„ is the above-defined average number of
additional sites, and we have introduced the dimension-
less quantities.

with

and

P2(x) =—', +2x+x

wz= —ln~E/E, ~
.

o, = ')B,—
l

"—f —'"dEN(E)P,
2 A

' a ar
(36)

(37} and

(38)

v2= EN E P2
mm ar

~max
v&= f dE N(E)wF' P&

min af

(44a)

(44b)

Ei, V(r) &0—

min E V(r) ~ 0 (39a)

In (36) B, in the component of the field perpendicular to
the two-dimensional plane. The integration boundaries
E;„and E,„are given by

In (43) Bz=B, and B&=B.
If we assume that the temperature dependence of r is

essentially the same as that of ro as given by Eq. (22) we
obtain for the explicit temperature dependence of crz ..

' d/2 (2+d/2)/(1+d)

Sq „=-'r'—r 1 To —(d+2)
a 2 2T

with

Eo, V(r) &0—
max E V(r) ~ 0 (39b)

(45)

which gives a T ' law in d =2 and a T ~s law in d =3.
The energy integrals weakly increase with temperature so
that we can expect a T ' behavior where s is a little bit
smaller than the exponent given in Eq. (45).

n e r r
2 A a a

1/2

dEX E mE P3
min

E 3
I

with

P (x)= 1+—3 2

1/2

( —,'+2x+x ) .

E, = ~2VO(r/2) /Vo(r)
~

.

The analogous formulas for d =3 are

(40)

(41)

(42}

B. Linear versus quadratic field dependence

It has been argued by Sivan et al. ' that the logarith-
mic averaging procedure, which leads to the linear mag-
netoconductivity, is not valid in the low-field limit and
that one has, instead, a 8 dependence. Shklovskii and
Spivak admit that at exponentially small fields this is
true, but in the experimentally relevant region the loga-
rithmic averaging procedure retains its validity. We can
study this problem with the help of our EMA expression
(19). Considering only the first term in the numerator of
(19) we can evaluate the integral over r; exactly to ob-
tain
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(2a) +' J dr; r
1 1+, , exp(2ar, )

(n)

d!
CJ )

(n)
g&g &1
C7)

(n)

(
—I)"+'d )H + ln'+'d+1 (n)

glJ a&

[d+ i] (n) (n)
—2d! 1 d+) 2~ glj glJX (d + 1 2 )t

" H2d+2(1)

(46)

where H„(x)=g„",( —x)"/v" and [x] is the largest nat-
ural number smaller than x. Clearly the logarithmic
terms disappear if g,."'/cr] & 1. In the presence of an ap-
plied field g

"' has a lower bound of P(r, r„) . We expect,
therefore, a quadratic field dependence of the conductivi-
ty if the field is so small that P (r, r„)(exp( 2ar —

) holds
for typical values r„~ =yo. If P (r,yo) is larger, the loga-
rithrns appear in the self-consistent EMA expression.
For P »exp( 2ar ) —the term [1/(d +1)]In"+'(g~j"'/cr, )

becomes dominant and we recover (21) and (24). These
findings agree with those of Shklovskii and Spivak de-
rived from percolation theory. These authors, however,
mention another important point in this context: In the
limit of very small g

"' the terms neglected in deriving (8)
may be important. Their estimate leads to a crossover
field which is still exponentially small but larger than that
given by P (r,yo ) =exp( —2ar ).

C. Discussion of experimental data

The clearest evidence of the existence of the quantum
interference mechanism is obtained from experiments in
which a dimensional crossover occurs, i.e., a crossover
from an isotropic to an anisotropic magnetoconductivity.
Such experiments have been performed with n channels
in field-effect transistors and with thin films of polycrys-
talline semiconductors. In the former samples the cross-
over occurs by reducing the thickness of the channel with
the help of the gate voltage; in the latter the thickness of
the films was varied. In the transistor experiments a
huge effect of os'"-30—50%%uo is observed. The field

dependence is in all cases linear, followed by a crossover
to a negative rnagnetoconductivity caused by shrinking.
In the polycrystalline indium oxide films the effect is
very small, os'"-1%, but the evidence for the dimen-
sional crossover is clear. In this experiment the 8 depen-
dence can be described better by a 8 law than by a linear
law. The reason for this is obvious. Considering expres-
sion (43) for the magnetoconductivity and assuming cvd
to be of the order to 1 we can estimate the phase P(r, yo)
to be in the range of about 1%. Taking their reported
values of 2ar, which are in the range 5—10, we have
{I) =exp( 2ar ), which—means that one is in the crossover
region between a quadratic and linear 8 dependence. In
both experiments a real quantitative analysis cannot be
done because not all of the parameters which character-
ize the sample are known. The situation is much better
in the recent experiments of Qiu-Yi Ye et al. These au-

thors reported on extremely anisotropic negative magne-
toresistance data. The sample relevant to the present dis-
cussion consists of 5-layer superlattices with 20 succes-
sive Si-donor sheets spaced by 1000 A of nominally un-
doped single-crystalline GaAs. The width of the sheets
does not exceed that of a monatomic layer and the aver-
age distance between donors is 380 A. The Bohr radius is
os = 1/a = 100 A. Below 5 K a

o ~exp[ —(To/T)'~ ]

law is observed with TO=340 K. This gives a value of
2ar=5. 5 at T=2 K, which shows that the transport
process is just at the onset of variable-range hopping.
The observed magnetoconductivity at low fields is indeed
positive and linear in the field, followed by a high-field
negative magnetoconductivity due to the shrinking effect.

Since the sample is experimentally so well character-
ized we can try a quantitative comparison of the theory
with the experiment. Let us consider first the quantity v2
in (43) as defined by (44a). E;„=—E, = Vo(r) should be
of the order of the binding energy so that E;„lies below
the impurity band. The degree of compensation is re-
ported to be very low (K-2—5%) so that EO=EF lies
near the top of the band. Retaining only the leading term
in P2(x) in expression (37) yields essentially v2-- —,'. With
the preceding values for r, a~, and a we obtain a number
of additional sites inside the cigar-shaped region c =0.32.
For dgldB, we obtain at this temperature the value 0.37
T '. Inserting these numbers into (43) yields
dos/d8, =0.5 T '. This compares well with the ob-
served value of 0.66 T '. Also the observed temperature
dependence of do&/d8, o- T is in agreement with
the T ' law (s ~ 1) estimated from expression (45).

Another interesting feature of their data is mentioned
by Qiu-Yi Ye et al. : They measure a finite low-field nega-
tive magnetoresistance in the 8~~ configuration, i.e., with
the field parallel to the 6 planes. This could be explained
either by a finite width of the layer or by a finite back-
ground bulk impurity concentration. In the former case,
the anisotropy o.s/cr$ should increase with decreasing
temperature (as is, indeed, observed in the In-0 films of
Ref. 8); in the latter it should decrease. The observed
teinperature dependence of oJ~ ~ T ' leads to a de-
crease of the anisotropy with decreasing T and therefore
confirms that there are background bulk impurities.
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V. CONCLUDING REMARKS

In the above we have worked out a theory of quantum
interference hopping magnetotransport considering the
interference between a direct transition between two sites
and an indirect one via a single third site during a hop-
ping event. The results obtained from this model in the
effective-medium approximation are qualitatively the
same as that obtained by Nguyen et al. from a multisite
model using percolation theory: For magnetic fields
larger than those given by ig(r, yo) ~

=exp( —ar), a linear
and positive magnetoconductivity is obtained which
arises from configurations with complete destructive in-
terference in the absence of the applied magnetic field.
Thanks to the simplicity of the present model and the
symmetrized two-site EMA we have obtained formulas
for the two- and three-dimensional magnetoconductivity
which allow for a quantitative comparison with experi-
ments on well-defined systems such as 5-doping struc-
tures. It should, however, be realized that neither in the
NSS treatment nor in the present one have many-body
effects been addressed. This point is important because in
the case Vo(r)(0 the intermediate donor levels which
lead to the interference effect are occupied by electrons.
Shklovskii and Spivak have discussed this point at some
length. Both by means of a Hubbard model calculation
as well as using real Coulomb potentials they demon-
strate that the many-body resonant integral which in-
volves a third occupied site has the same sign and rough-
ly the same magnitude as that involving an empty one. It
has also been demonstrated some time ago' that the
electron-electron interaction can induce spin-dependent
hopping events which also leads to anomalies in the hop-
ping magnetoconductivity. Another point which cannot
be discussed within the present model is the simultaneous
treatment of the orbital low-field interference effect and
the high-field shrinking effect. This has been achieved by
NSS with the help of a numerical calculation. The result
is that the more impurities are inside the cigar-shaped re-

I

E
'2

Iz(E)=2m iB, i

—f du f du — r+ — —u r
e r & 1 w 2 z

a o o 4

gion the "later" (i.e., at higher magnetic fields) the
shrinking effect becomes dominant.
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APPENDIX: CALCULATION OF THE INTEGRAL
APPEARING IN EXPRESSION (34)

We only treat the case V( r ) (0. The calculation for
V(r) )0 is completely analogous.

a. d=2

For obtaining the expressions (36) and (37) from (34)
we have to evaluate the integral

Iz(E)=2m f dx f dy B,—,'ry E—,e

X5(E+E,e (A l)

(A2)

where we have rl z
=

—,'(r +w/a+ur ). Introducing anoth-
er variable u =E,exp( —w) we obtain

5(E+u)

where 8, is the field component rectangular to the plane,
Ei = ~2V0(r/2) /Vo(r)i, and w =a(r, +rz r). r, and-
r2 are the legs of the triangle in Fig. 1 defined by
r, z =[(r/2+x ) +y ]'i . Changing to the variables
v =(r& rz)/r and w w—e obtain

Iz(E)

=2m. ~B, i

—f dw e f dv E,rirz5(E+Eie ),

e r & 1=2~—IB,I—a o 4
+2r +r (I —u ) e(E+Ei )

e r 2 E E=——IB, I

——+ +
2 A

' a 3 ar ar e(E+E, ) . (A3)

2. d=3

For evaluating the spatial average in three dimensions
we consider the variable y in Fig. 1 as the radial coordi-
nate in a cylindrical coordinate system with symmetry
axis along the x direction. If a is the corresponding an-
gular variable, e the angle between 8 and the normal
vector belonging to the plane spanned by the triangle,
and P the angle between B and the x axis we have
cose=sinasinp. Since the x axis, which is fixed to the
triangle, can be any direction we have to average over

~sinp~, which gives a factor of 2/m. The integral over
isina

~
gives a factor of 4, so that we are left with

I3(E)=8—~B~r f y dy f dx E, e 5(E+E,e )
0 oo

=8—~Bi(r/a) f dw E, e
0

1

X du yr&rz5(E+E&e ),
0

(A4)
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I,(E)= —' lol —"
a

WE WE2f+ a a I du(1 —u')'"
0

where y in the vw system is given by
y =

—,
' [(2r +w /a )( w /a )( 1 —u )]' . Consequently,

1/2

Therefore,

1/2
WE

WE 1+
2ar

1/2

2

+2r +r (1—u ) 8(E+E, ) .a a

WE WE2+ +—8(E+E, ), (A6)ar ar 4

(A5) which leads to expression (41) combined with (42).
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