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First-order phase transition induced by quantum fluctuations in Heisenberg he$imagnets
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We calculate the ground-state energy of an isotropic quantum Heisenberg ferromagnet on an hex-

agonal lattice with ferromagnetic exchange interactions J& and J' between nearest neighbors in the
same basal plane and adjacent basal planes and, respectively, competing interactions J2 and J3 be-

tween second- and third-nearest neighbors in the same basal plane, respectively. When the ground-
state energy of a helical state with wave vector Q is expanded for small Q as

Eo((})=Eo+E&Q'+E4Q +, then the coefficients E& and E~ can be evaluated exactly at zero
temperature, with the result that E2 is given by its classical (S~~) value, whereas E4 has quantum
corrections. At the ferromagnet-helix transition (at which E2 =0) E4 is positive for S = ~ indicat-

ing that this transition is continuous, whereas as S is nonzero, a region develops wherein the tran-
sition becomes discontinuous.

I. INTRODUCTION

Helimagnetism is a widely studied subject both experi-
mentally and theoretically. ' Very rich phase diagrams
can arise from competition between the exchange cou-
pling of a spin to a different shell of its neighbors. In par-
ticular, we consider a Heisenberg system of quantum
spins of magnitude S on a simple hexagonal lattice
governed by the Hamiltonian

H= —2+ J;, SS, ,
(l j )

where ( ) indicates that the sum is over pairs of
neighbors i,j and the exchange interactions J, between
spins on sites i and j are as follows. In a given basal plane
first-nearest neighbors (FNN's) have a ferromagnetic in-
teraction J, )0, second-nearest neighbors (SNN's), and
third-nearest neighbors (TNN's) have respective interac-
tions J2 and J1 of either sign. Nearest neighbors (NN's)
in adjacent basal planes whose separation vector lies
along the crystal c axis (recall we treat a simple hexagonal
lattice), are subject to a ferromagnetic interaction J . In
actual systems J' is usually negative. However, for
such actual systems the staggered magnetization for a
model with J'(0 behaves similarly to the uniform rnag-
netization for the simpler model considered here with
J' & 0. In the classica1 approximation, i.e., for S~~, the
phase diagram and the spin-wave excitation spectrum are
well known. The phase diagram at zero temperature in
the parameter space j2 =J2/J&, j3 =J3/J&, shown in Fig.
1, is divided into five regions each with a different ar-
rangement of spins in a given basal plane. (We will often
use lower-case variables to represent the dimensionless or
"reduced*' version of the corresponding upper-case vari-
ables. } Within our model all spins along a line parallel to
the crystal c axis are parallel to one another, since inter-

j2 = —1, F-AF, (2a)

j 1
= —

( I+4js)/3, F-H, or F-H, , (2b)

j3 = —1, F-120', (2c)

j2=1—4j3, AF H& (2d)

j,=2j, , H, -H, ,

J3 J2/( I —2J2), Hp-120' .

(2e)

(2

The multicritical points (A and C in Fig. 1) where, re-
spectively, the F—AF —H and F—H —120' phases coexist
are given by

j2 = —1, j3 =—', F-AF-H, (2g)

j,=1, j,= —1, F-H-120' . (211)

These phases may be characterized by a wave vector Q,
such that Q (r, —r ) is the angle between the expectation
value of the spin vectors at r; and r:

plane coupling is ferromagnetic and only along this axis.
The different types of ordering indicated in Fig. 1 are fer-
romagnetic (F), antiferromagnetic (AF) with antiparallel
rows of FNN spins, helical (H) with either rows of paral-
lel FNN spins (H, } or rows of parallel SNN spins (H2),
and a three sublattice configuration (120') in which there
are three sublattices with spin directions separated by
120'. In the classical approximation the phase transitions
are discontinuous except for the F-H transitions which
are the object of the present investigation and the AF-H
transition which will be discussed elsewhere. The phase
boundaries are given by

41 2449 1990 The American Physical Society



2450 E. RASTELLI AND A. B. HARRIS 41

Q(F) =(0,0,0),
Q( AF) =(2m/(a v'3 },0,0),
Q(H, ) =(2 cos [—(1+j2 )/(2j2+4j 3 )]/(a &3),0,0},

2i3 —3iz —[(2is+3i»' —gi31'"
Q(H2 ) = 0,2 cos

8j3

Q( 120')=(0,4rr/( 3a ),0),

a, O

(3a)

(3b)

(3c)

(3d}

(3e)

where a is the nearest-neighbor separation in the basal
plane and the x axis is taken to lie along an SNN direc-
tion, as shown in Fig. 2. The nature of the phase bound-
ary separating the two helical phases has been studied,
but we shall postpone our discussion of it to a later paper.

The situation when quantum corrections are taken into
account is more subtle. A previous analysis of such
corrections to the classical ground-state energy to first or-
der in 1/S found substantial effects, namely a significant
increase in the domain of existence of the AF phase at
the expense of the F and H phases, but no change in the
location of the F-8 boundary. This treatment was sub-
ject to some uncertainty, however. First, it was not clear
what the effect of terms of higher order in 1/S might be,
and second, since the AF is actually stable in regimes
where harmonic spin waves in the AF are unstable, a
convenient starting point for perturbation theory in
powers of 1/S does not exist. Recently we presented a
method of analysis in which these difficulties could in
part, at least, be overcome. There, for a hexagonal lattice
and S = Oo, one can write the ground-state energy EG as
a function of Q for small Q as

Ea(Q)=Eo+E2Q +E4Q + +E«Q cos(68&),

where e& is the angle between Q and x, where we intro-

duce an orthogonal set of unit vectors, (x, y, z), fixed
with respect to the crystal such that z lies along the crys-
tal c axis, and x, lies along a SNN direction. Note that
due to the hexa onal symmetry, the anisotropy first

enters at order Q . The sign of the sixth-order anisotro-

py determines which of the two helical phases occur; for

E6s &0, Qlx so that phase H2 occurs, whereas for

Es 6 &0, Q~~x, so that phase H, is stable. At the mul-

ticritical point B in Fig. 1, E6 6 vanishes.

For a classical spin system, where exact calculations of
Ea(Q) can be performed, it is convenient, but not abso-
lutely essential, to use the expansion of Eq. (4). The ad-
vantage of this formulation is that one readily identifies
the parameters E2, E4, and E& &

which determine in large
part the nature of the phase diagram. Thus the study of
the phase diagram is reduced to an analysis of how these
parameters depend on the J,J.. In contrast, for quantum
systems an expansion in powers of Q appears to be an
essential simplification, for instance, when one calculates
how QG, the ground-state value of Q, depends on the ex-

change parameters in the H phase near the F-H phase
boundary where E2~0. From Eq. (4) one sees that in

that case, assuming E4 to be positive, one has

Qa = E2/(2E4). —This result incorporates correctly all

quantum corrections in the limit E2~0. Although we

will not pursue this point further here, it is clear that a

AF

120

FIG. 1. Classical phase diagram of the Heisenberg system of
Eq. (1) on a simple hexagonal lattice at zero temperature. The
various phases are described in the text. Quantum corrections
cause the F-H transition to become discontinuous for regions
near the multicritical points A and C.

FIG. 2. Labeling of neighbors of a central spin (labeled 0) in

a given basal plane. Neighbor no. 10 (not shown) lies in an adja-
cent basal plane at r = (0,0,c).
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direct calculation of Qa is more intricate than one based
on Eq. (4).

We will return in future papers to discuss the H&-H2
and H, -AF transitions. Here we consider the effects of
quantum fluctuations on the F-H transition line. To this
end we note that the expansion in Eq. (4) determines the
nature of the phase transition. As a preliminary, we note
that at temperature T =0, the spin magnitude in a helical
state at zero temperature is close if not equal to S. Con-
sequently, for the F-H transition to be continuous, it
must be that Q in the H phase tends to zero as the phase
boundary is approached. If Q is discontinuous, the tran-
sition is discontinuous. Now we apply a Landau-type ar-
gument to Eq. (4). If the transition is continuous, then
E4 in Eq. (4) must be positive at the phase boundary. In
this case, the location of the phase boundary ABC in Fig.
1 is determined by the condition E2 =0. If, on the other
hand, E4 is negative when E2~0, then the transition is
surely discontinuous. Thus, a definitive discussion of the
F-H phase boundary requires at least a calculation of the
dependence of E2 and E& on the exchange parameters J;, .
[It is possible that E~ could be positive, but that higher-
order terms in the expansion of Eq. (4) could still drive
the transition discontinuous. We do not consider this
possibility. ] Previously, we reported in brief form a cal-
culation of this type for a set of parameters (j2=0,
j3 = —

—,') suitable to describe approximately NiBrz, where
a first-order transition occurs at T =22. 8 K between a
low-temperature H2 phase and an in-plane (F) phase at
higher temperature. For that case we found that for the
isotropic Heisenberg model the transition at zero temper-
ature was continuous. However, in most helical systems
the plane in which the spins lie is determined by some
easy-plane anisotropy. At least for the classical model,
the inclusion of such easy-plane anisotropy does not
affect the analysis. Of course, within the easy plane there
must be residual anisotropy which leads to a small num-
ber of crystallographically equivalent orientations which
minimize this anisotropy energy, E~. Previously, we
found that inclusion of E„causes the transition to be-
come discontinuous leading to a jump in ~Q~ proportional
to E„as the F Hphase bounda-ry is crossed.

In the present paper we extend the analysis to treat the
entire F-H phase boundary ABC of Fig. 1 and give a de-
tailed description of the method. An important new con-
clusion of the present work is that E4 becomes negative,
i.e., the F-H transition is discontinuous, for a range of pa-
rameters near the multicritical point labeled A in Fig. 1.
The size of the first-order region becomes smaller as ei-
ther J' or S is increased, but even for J'=J and S =—', the
first-order region is quite significant, occurring for
j3 &0.36. This work points out a possible advantage in
studying quantum corrections in a controlled situation.
Here these effects are governed by the expansion parame-
ter, Q, which is arbitrarily small at the transition.

Briefly, this paper is organized as follows. In Sec. II
we give details of the ladder approximation whereby the
coefficient E4 is evaluated exactly at T =0. The
coefficient F2 is shown to be given by its classical (S= ~ )

value. In Sec. III the details of the evaluation for the

hexagonal lattice we study are given. The range over
which the transition is a first-order one is given as a func-
tion of the exchange constants. Finally, our conclusions
and a discussion of possible experiments on relevant com-
pounds are given in Sec. IV. A brief report of these re-
sults has been given previously. '

II. EXACT GROUND-STATE ENERGY
OF A HELICAL HEISENBERG SPIN SYSTEM

IN THE SMALL g LIMIT

S;"=—sin(Q r, )S;"+cos(Q r;)S~, (sa)

S~=cos( Q r, )SP+ sin( Q r; )S&, (5b)

(Sc)

The transformation to bosons" ' is then

S,.+:Sf+iS;"=—&2S [1—a,. a, l(2S)]a, , (6a)

S, :—S;~ —iSP =&2Sa; (6b)

S~=S—a, a, , (6c)

where [a;,a~ ]=6; ~. , in terms of the Kronecker delta. We
introduce the spatial Fourier transforms by

a„=X '~ +exp(ik r, )a,

and the conjugate expression for a&, where N is the total
number of spins. Using these relations the Hamiltonian
of Eq. (1) then becomes

We treat the model of Eq. (1) assuming the ground
state to be a helical state of wave vector Q. Since this
model is isotropic, the orientations of the spins are not
subject to an overall constraint. Therefore we arbitrarily
take the spins to lie in the basal plane. Also, since J' cou-
ples a spin ferrornagnetically to a unique neighbor in an
adjacent basal plane, Q, which modulates the spin direc-
tion, must also lie in a basal plane. Of course, in the F
state, Ea(Q) will be greater than Ea(0). However, this
calculation will tell us whether or not the phase transition
is continuous. Accordingly, we use the Dyson-
Maleev"' transformation to boson operators when spin
components are taken with respect to local axes g', ri, g),
defined so that the expectation value of S, in the boson
vacuum state lies along the local g; axis. Thus,
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1H=Ep(Q)+ g Akakak+ X Bk( k —k+ k —k ) g —,'(Cz+ C3 )5(1—2 —3)(a [aza3+a z~a 3ta [ )+2NS

1 t t[f345( 1 +2 —3 —4)a ia za 3a4 — g —,
' (Bz +B3 +Bz )5( 1 —2 —3 —4)a iaz a 3a&

1,2, 3,4 2NS 1234
3/2

1

2WS

2

35(1+2—3 —4 —5)a,a za3a~a~
1,2, 3,4, 5

1
—,'Bi s 65(1+2—3 —4 —5 —6)a [a za3a4a~a6,

1,2, 3,4, 5, 6
(8)

where a, =ak, a, =a„, etc. , and Ep(Q) is the classical

value of the energy of the spin state with modulation vec-
tor Q and is given by

Ep(Q)= —g J NS g cosQ. 5 2J'NS— (9)

Also

A k
= g 2J S g [cosQ 5 —

—,'cosk 5 (1+cosQ 5 )]

+2J'S g (1—cosk 5')
Ql

Bk= —gJ Sgcosk 5 (1—cosQ 5 )
a 5

(10)

Ck =+2J SgsinQ 5 sink 5 (12)

V[$34 E[2(A [+Ai) —D, 3 D, 4
—Di—q D~ 4] i—

(13)

where H'=H —Ho is the perturbation and the subscript
c means that only connected diagrams are to be included
in the sum.

The statement that Eq. (8) is a Hamiltonian from
which we will obtain the ground state associated with a
given value of Q may at first sight seem paradoxical. For
a finite system the transformations in Eqs. (5) and (6)
merely amount to a specific choice of a representation
within which the calculations are carried out. The eigen-
value spectrum, and in particular the ground-state ener-

gy, will be independent of the choice of representation,
i.e., of the choice of Q. Thus for a finite system, what we
call Ea(Q} is in fact simply the ground-state energy and
is independent of Q.

What then is the meaning of our calculation? We are
considering an infinite system. Whereas, for the finite
system, the value of Q initially chosen does not matter,
for the infinite system, one finds no change in Q to any
order of perturbation theory. Thus we believe that di-
agonalizing the Hamiltonian of Eq. (8) amounts to
minimizing

where 5 is a nearest-neighbor vector in the a shell of
neighbors with corresponding exchange integral J and
Dk = A k

—8k. We take the unperturbed Hamiltonian to
be

&qlal~&i&~l~& (16)

Hp=Ep(Q)+ g Akakak .
k

(14)

(15)

I

Then the ground-state energy is given by the perturbation
expansion'

Eg(Q E ([Q +0( [H' 0x [[ED(Q[—Ho] 'H'[" 0), ,
n=0

not over all [p's (that would give the exact ground state),
but rather over all 4's in the subspace of wave functions
associated with wave vector Q. In this regard the parain-
eter Q functions like the lattice constant in a phonon cal-
culation for an infinite lattice. There one imposes a lat-
tice constant and in the end minimizes the energy with
respect to this parameter.

We now consider the contributions from Eq. (15) to the
coeScients Ez and E~ of Eq. (4). For this purpose we uti-
lize the expansions for small wave vector:

Ep(Q)= —g J NS'g [1—
—,'(Q.5 )'+ —,', (Q 5 )'+ . ]—2J'NS' (17)

Ak= $2J S $ [1—cosk.5 —
—,'(Q 5 ) (1—

—,'cosk 5 )+ . . ]+2J'S $ (1—cosk.5'), (18)

Bk= —g J Sg —,'(Q 5 ) cask 5 + (19)

Ck= $ 2J S g (Q.5 )sink 5 + . (20)

D„=+ 2J S g ( 1 —cosk 5 )[ 1 —
—,
'

( Q 5 } +.. . ]+2J'S g ( 1 —cosk 5' ) . (21)
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First we note that the unperturbed ground state is the
vacuum state containing no particles. Thus, of all the
perturbation terms in Eq. (15) only those involving a l,a
give a nonzero result when acting on the ground state.
Similarly, the only terms in the perturbation which lead
to a nonzero result for (OlH' are those involving al, a
Each of these terms carries with it a factor of Bk, which
by Eq. (19) is of order Q . Thus we conclude that there
are no quantum corrections of order Q, i.e., E2 is given
correctly by its classical value. To order Q, i.e., to cal-
culate E4 completely, we may work to order Bk and set
Q=O in all the other perturbations. For Q=O the per-
turbation reduces to that treated by Dyson" and
Maleev' (DM) for the ferromagnet, i.e.,

(b)

B„ V

gr
+ V V + ~ ~ ~

+ V

H'(Q =0)= (2NS) ' g V|2345(1+2 —3 —4)
1,2, 3,4

X a1a 2a3a4, (22a)

(c)

Bk+ B B„

(0 H'[Eo(Q) —Ho] 'H'l0), = —
—,
' g B~ /Aq

1

(OlH'[[Eo(Q) —Ho] 'H')'lO),

(23a)

=(8NS) ' g B~ Vl, 1, Bq /(Ak Al, ), (23b)
1' 2

where Vk k. = Vk k k k. . The series consisting of arbi-
trary order iteration of diagrams of the type in Fig. 3(c)
leads to the result

EG(Q ) =Eo(Q) —
—,
' g B„/A „

k

where

1234 4 1 3 / 4 2 3+ A2 4
—2A, —2A2)

(22b)

where frotn now on we set Q=O in Eq. (18) for Al, . Ac-
cordingly, to calculate E4 we only need to consider the
perturbation of Eq. (22a), which is represented in Fig.
3(a} by a four-point vertex with two incoming and two
outgoing lines, and the perturbation involving Bk, which
is represented in Fig. 3(a) by vertices with either two in-
coming lines or two outgoing lines. Thus the complete
perturbation series for E4 reduces to that shown di-
agrammatically in Fig. 3(c). Because of momentum con-
servation, each rung of the ladder must consist of two
legs having equal and opposite momentum. Thus we
have

-k «q -k

FIG. 3. Diagrammatic evaluation of the perturbation series.
Shown are the diagrammatic representations of (a) the quadratic
perturbations proportional to Bk and the quartic interaction
H'( Q =0) of Eq. (22a), (b) Eq. (25), and (c) Eq. (24).

give correctly all terms in the ground-state energy of or-
der g'.

III. APPLICATION TO THE HEXAGONAL
HELIMAGNET

—
—,'(1+3j2+4j3 )(ag)

+ —,', (1+9j2+ 16j3)(ag}"]

6J, NS eo(Q)—, (26)

where j2 =J2/J1 j3 =J3/J1 and j'=J'/J, . Thus if one
writes E2 =6J,XS e2 and E4 =6J]NS e4, then for
S=~ onehas

e2(S= co ) = —,'(1+3j2+4j3)a

e4(S = co )= —
—,', (I+9j2+16j3)a

(27a)

(27b}

Let us consider a hexagonal Heisenberg helimagnet
with the following in-plane interactions: FNN J, )0,
SNN J2, TNN J3, and an interaction J') 0 between out-
of-plane NN's. Then the classical ground-state energy of
Eq. (17) reduces to

Eo(Q)= 6J, NS [1+j—2+j3+ ,'j'—

where

+(8NS) ' gBqB Tq /(AqA ),
k, q

(24)

We now implement the perturbative scheme outlined
above to find the quantum corrections to e4 for finite S.
[As noted above, there are no such corrections to e2, so
Eq. (27a} gives e~(S}exactly for all S.] We set

Tk q Vl, q
—(2NS) ' Q Vl, |,. T&. q/Al,

k'
(25) Ak =12J]SE

where

(28)

is the zero-momentum t matrix, "' ' shown schemati-
cally in Fig. 3(b). We should emphasize that Eqs. (24)
and (25) hold for more general lattice structures. They

10

g j (1—cosk ), rn =1,2, . . . , 10,
m=1

(29)
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with

J1=J2=J3

J4=Js=J6

(30a)

(30b)

and k =k 5 . The numbering of the neighbor vectors
5 for Eq. (29) and below is shown in Fig. 2. Also

Bk = —12J,S[—,'bk' (ag, )

J7 J8 J9

J 10=J

(30c)

where
I

+-.'bk" (aQ, )'+ ,'n—ka'Q.g, ] (31)

bk = 4cosk2+ 4cosk3+J2(4cosk4+ 4cosk6+cosk5)+J3(cosks+cosk9),

bk ' =
—,'cask, + —,', cosk2+ ,', co—sk3+,'j2(—cosk4+cosk6)+ ,'J3(—4cosk7+cosk,+cosk9)

2)k
—(3/3/12)[cosk2 —cosk3+3J2(cosk4 cosk6)+4J3(cosks —cosk9)] .

Substituting Eqs. (28) and (31) into (23a) we find that

(O~H'[Eo(Q) —Ho] 'H'~0), = 6J, NS—[IO(aQ„) +I»0(ag ) +2I() (a Q, Q ) ]/32,

(32a)

(32b)

(32c)

(33)

where

Ix y [b(1)]2/1

k
(34a)

Ea(Q) =ED(Q) —
—,', J,NSI(, (ag)

+(8NS) +BkBqtq k/(12J)SEkeq)
q, k

(39)

Io =—X [bk ']'/&k
1

k

I »= y [bk b +2' ]/e
1

k

(34b) where we have used Eq. (35) and

tq k=Vq k
—(2NS) ' g uq k tk k/sk .

kl
(34c)

We may write the solution to Eq. (40) as

(40)

For the symmetry of the hexagonal lattice, it is clear
frotn Eq. (33) that we must have ID=I»0=ID»: Io, so-
that

10

tq k
= —

—,
' g j (1—cosq )( A ') „(1—cosk„), (41)

m, n =1

where the matrix A is

(O~H'[Eo(Q) —Ho] 'H'~0), = —6J,NSIO(ag) l32 .

(35) with

A „=5 „jD „/(2S)—, (42)

Now we turn to the evaluation of the contributions in-
volving the t matrix, which we only need for zero total
momentum and for Q=O. Thus we write

D „=(3N) ' g (1 —cosk )(1—cosk„)/ek .
k

(43)

The D „are calculated explicitly in Appendix A. Substi-
tution of Eq. (41) into Eq. (39) gives

qk 1 qk &

where

qk2(sqk+eq+

(36)

(37)

EG(Q) = Eo(Q) —
—,',J,NSI()(ag)

+6J,N[I) (ag, ) +I»(ag» )

+2I(»a Q2Q2]/64,
To take full advantage of the symmetry of the interac-
tion, we introduce the following quantity

uq, k 2(eq —k+eq+k) Eq Ek

where

10

( A
—1) I(1)I(1)

m, n =1
(45a)

10

g j (1—cosq )(1—cosk )
m=1

(38a) 10

g J (A-') „I"'I")
m, n =1

(45b)

=Uq, k (38b)

Because of the relations gk Bk =0 and
N ' g uq k

= —
Ek, we may replace u by u in the pertur-

bation series of Eq. (24). Thus we rewrite Eqs. (24) and
(25) as

10

I) = —
—,
' g j (A ')

m, n =1

X [ ( (I(1)I(2)+I(2)I(1))+2IgIg]
with

(45c)
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1.0 I I I I"=—g bi{,"(1—cosk )Ie„, i =1,2,()
k

I"=—g t)i,(1 —cosk ) IE& .
1

k

(46a)

(46b)

0.5

e4

0

The explicit calculation of I"and I" is given in Appen-
dix A. Consistent with the symmetry of the hexagonal
lattice we have I

&
=I, =I

&
=—I&, so that in all we have

EG(Q}=Eo(Q)—6J{NS[Io I{I—(2S)](aQ) /32 (47)

correct to order Q . The reduced ground-state energy,
e(Q) —=EG(Q) l(6J, NS ) along the F-H boundary line is

e(Q) =eo+e4(ag) (48)
-0.5

-1.0 0
Jp

1.0 where

3 lj lj~ (49a}

1.0

Io I)e4=-' -+-j2 + (49b)

0.5

e4

In Fig. 4 we show the coefficient e4 of the Q contribu-
tion versus j2 for j'=0,0. 1, 1, and for selected values of
the spin S.

As one can see, for each finite value of S two intervals
on the F-H phase boundary where E4 is negative appear
near the terminal points A (jz = —1, j3 =

—,') and C (j2 = 1,

x

-0.5
-1.0 1.0

1.0 (b) e(Q)-e(O)

-2

0.5

e4 120

0

-0.5
-1.0 0 1.0

FIG. 4. e4 as a function of j2 along the F-H line (a) for j'=0,
(b) for j'=0. 1, and (c) for j'=1, for selected values of spin S.

FIG. 5. {a) Q, =0 plane of the Brillouin zone in the notation
of Koster (Ref. 16). The I point corresponds to the F phase, I
to the AF phase, and K to the 120 phase. (b) Spin-wave energy
vs wave vector in the basal plane showing the minimum at
Q =0, the saddle point at M and the maximum at It. These
curves are for a system on the H-F phase boundary near the F-
H-AF multicritical point. Exactly at that multicritical point the
spin-wave energy vanishes along the entire X line.
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j3=—I). Thus, in these intervals, the line Ez=0 defines
not the phase boundary, but the limit of local stability of
the F phase with respect to long-wavelength modulations.
The actual phase transition is expected to be discontinu-
ous and to occur for larger values of j2 than on the line
ABC of Fig. 1. One can see that these first-order regions
become larger as (I) S is decreased, i.e., as we get further
from the classical limit, and (2) j' is decreased (so that
spin-wave fiuctuations are enhanced). Also, the quantum
effect on E4 is more dramatic near the point A where the
AF, H, and F phases coexist than near the point C where
the 120', H, and F phases coexist. This result can be un-
derstood by consideration of the nature of the spin-wave
spectra at points A and C. At point A the spin waves
have zero energy for all wave vectors along the line X in
Fig. 5(a), corresponding to the instability associated with
uniformly rotating a suitable line of spins. In Fig. 5(b) we
show the spin-wave energy for wave vectors as indicated
in Fig. 5(a) for a point on the F Hphase-boundary near
point A. As point A is approached the instability along
the entire line X develops. Thus one has a "soft direc-

tion" which leads to a divergence in E4 as the point A is
approached. In contrast, the spin-wave spectrum at
point C develops only a "pointwise" instability. At C the
spin-wave energy vanishes at those wave vectors
equivalent to the point K in Fig. 5(a), but there is no un-
stable line of spin waves as at point A.

The above discussion implicitly assumes that when
quantum fluctuations are taken into account, the points
(which we denote A

' and C') where E4 passes through
zero actually remain in the regime of the F-H transition.
This possibility is the first of the two scenarios shown in
Fig. 6. This possibility will occur if the shift in the mul-
ticritical point (A or C) due to quantum Iluctuations is
smaller than the region (extending from A to A

' or from
C to C') over which E4 is calculated to be negative. As
we discuss in Appendix B, this is believed to be the case
for the multicritical point A, so that the scenario in Fig.
6(a) is what we believe happens except for S=—,

' and for
very small values of j'. Typical results for A

' and A" are
shown in Fig. 7. On the other hand, for point C, where
the interval C-C' is very small, this seems not to be the

(a) O .D'

1

AF I

E I
~ + ~ I

I

~A
El

Jp 05—

Ht
A'0-A'0

-0.5

10 (b

(b)

IE oo ~

:D

I

AF
l
I

--qA

AF

-0.5

FIG. 6. Two scenarios (a) and (b) for the modification of the
phase diagram for the classical model by the presence of quan-
tum fluctuations. The classical phase boundaries (as in Fig. 1)
are shown by dashed lines. The F-H phase transition is continu-
ous except in the interval A'-A& where quantum fluctuations
cause it to be discontinuous. The point A" is defined as the the
point ~here the extrapolated F-AF phase boundary intersects
the classical F-0 transition line. In scenario (a) A' lies outside
the interval A-A ". In scenario (b) A' (not shown) lies in the in-

terval A-A".

FIG. 7. Estimated locations of the points A' and A" (see
Fig. 6) to order 1/S, as obtained in Appendix B, for various
values of J' and for (a) S = 1 and (b) S =

—,
'. Here the solid lines

represent the AF-F phase boundary calculated to first order in
1/S according to Eq. (B9). For j, (0.5 this calculation is not
defined, and we use the extrapolation indicated by dashed lines.
Also shown are the values of A' (to order 1/S) on the F-H
phase boundary where e4=0. In (a) the subscripts on A' and
A" indicate the values of j'=—J'/J, . In both panels the A' and
A" points are indicated by open circles for j'= 1, crosses for
j'=0. 1 and solid circles for j'=0.
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case. Thus we expect that the nature of the phase dia-

gram near point C is not qualitatively modified by quan-
tum fluctuations and one has a scenario analogous to that
of Fig. 6(b). At present we are analyzing the H, H2-and
H, - AF phase boundaries more carefully to see what the
effects of quantum fluctuations for them are.

IV. EXPERIMENTAL POSSIBILITIES
AND CONCLUSIONS

We now discuss possible systems on which experiments
might establish the existence of the "quantum helix" we
have found in this paper. The best candidates are transi-
tion metal halide insulators like NiBr2, NiI2, and CoI&
which have helical spin ground states. In the nickel
halides the effective spin is S = 1, while in cobalt halides
the effective spin is S =

—,
' so that quantum effects could

play an important role. To experimentally verify that
quantum fluctuations have driven the H-F transition
discontinuous one needs a system that (a) has an H-F
transition at low temperature and (b) has exchange pa-
rameters near the point A in Fig. 1 so that quantum fluc-
tuations are strong.

First consider NiBr2. This compound is a widely stud-
ied one on which both elastic ' and inelastic neutron
scattering' ' have been performed. Also magnetization
and susceptibility measurements of NiBr2 under pressure
have been performed. ' At low temperature (0—23 K)
NiBr2 is a Hz-type helimagnet with a Q wave vector such
that the turn angle between spins belonging to adjacent
next-nearest-neighbor lines varies from 9.7' at T =0 to
3' at TH F =23 K where a "weak" first-order phase
transition is observed to a collinear phase. Long-range or-
der disappears at T =44 K. The transition temperature
TH F is severely reduced under pressure' ' so that
NiBr2 under pressure can be made to satisfy condition (a),
above. The values of the reduced exchange couplings in
the low-temperature H2 phase are inferred' to be j2=0,
j3 = —0.28. As one can see this point falls in the vicinity
of the F-H line of Fig. 1 in the region where H2 phase is
stable and quantum effects do not change the order of the
phase transition. The small discontinuity of the Q wave
vector observed experimentally at T =23 K can be ex-
plained in terms of a very small lattice anisotropy, so
that condition (b) is not satisfied. However, by suitable
doping with Fe we may satisfy this condition. In NiBr2

with Fe-neutron scattering ' shows that although the
helix wave vector for pure NiBr2 corresponds to an Hz
phase for concentrations in the range 2 —5.4% the orien-
tation of Q changes to that corresponding to the H,
phase. Note that this concentration of Fe is low enough
to treat the randomly diluted system as a pure one with
effective exchange couplings. The obvious conclusion is
that Fe doping drives the system towards the desired
point A in Fig. 1, and thus by doping we may satisfy con-
dition (b) above.

Next we consider NiI2 and CoI2. For these systems it
may be easier to satisfy condition (b) but harder to satisfy
condition (a). Elastic neutron scattering on NiI2 shows
that it is a H&-type helimagnet at low temperature and
becomes a paramagnet at T =75 K. The turn angle be-
tween spins on adjacent NN lines is 49.8'. Since no inelas-
tic neutron scattering measurements have been per-
formed on this compound, all that one can do is to lo-
cate NiI2 along a straight line in Fig. 1 going from the tri-
ple point A to a point (jz= —0.28, j3=—0. 14) on the
H&-H2 transition line not far from point B. The same
considerations hold for CoI2, a H& helimagnet with a
turn angle of 45' that becomes a paramagnet at T =8 K.
In any event, these systems are closer to point A than is
NiBr2. As in the case of NiBrz one might study Fe dop-
ing to see if such doped systems would be closer to point
A, thus satisfying condition (b). As for condition (a), in
neither NiI2 nor CoI2 has an H-F transition been seen.
Thus the temperature, TH F at which the helix becomes
unstable relative to the ferromagnetic phase must be
higher than T„ the temperature of the helix to paramag-
net transition. However, if NiBr2 is a guide, we expect
that TH F will decrease strongly with applied pressure,
so that under suitable pressure an H-F transition will
occur and, hopefully, can be driven close to zero temper-
ature to satisfy condition (a).

In attributing a first-order transition to quantum fluc-
tuations one should note the following. The H-F transi-
tion should be continuous on the basis of the classical ap-
proximation, but it has to be first order on the basis of
our results, if the exchange parameters j2 and j3 are not
too far from point A of Fig. 1 [see point A' of Fig. 6(a)
and Table I for j'=0. 1]. Notice that in Nil& and Col&
the magnitude of the Q wave vector is much larger than
that of NiBrz so that if this strong discontinuity should
persist at the H-F transition, it could not be explained

TABLE I. Value of A
' to all orders in 1/S for various values of j'=—J'/J and spin S.

j'=0 j'=0. 1

—0.641
—0.695
—0.729
—0.755

a
0.231
0.271

0.297
0.316

1

—0.557
—0.659
—0.711
—0.744
—0.769

0.168
0.244
0.283
0.308
0.327

—0.613
—0.711
—0.762
—0.795
—0.817

0.210
0.283
0.321
0.346
0.363

I

'For this set of J„'s we do not give a value for A' since this point lies inside the interval A-A" and
hence does not correspond to a thermodynamical phase transition.
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with a very small lattice anisotropy as in NiBr2.
The following conclusions emerge from our results.
(1) We have given an exact calculation at zero temper-

ature of the coeScients Eo, E2, and E4 in the expansion
of the ground-state energy in powers of the helix wave
vector Q: EG(Q}=Eo+E2Q +Ezg +. . . Near the
ferromagnet-helix-antiferromagnet multicritical point we
find that E4(0 from which we conclude that the F-H
phase transition becomes discontinuous near that mul-
ticritical point.

(2) The scheme we use is potentially of use in other
contexts. First, one might make analogous, but perhaps
less controlled, calculations for wave vectors close to that
of the AF phase to determine whether quantum Auctua-
tions can also cause that transition to become discontinu-
ous. Secondly, the limit Q~O provides a way of "turn-
ing on, " i.e., gradually introducing quantum effects.

D4, 1o =Ds, 1o =D6, 1o

7 10 8 10 9 10

(A14)

(A15)

D, , +2D, 2+j,(2D, 4+D, s)

+js(D( 7+2D(,s)+j'», (o =1 (A16a)

D, s+2D( 4+J'2(2Dq, s+Ds, s )

+J's(Ds, 7+2Ds s)+J'Ds, 0= 1, (A16b)

D] 7+2D( g+J2(D5 7+2Ds s)

+J3(D7 7 +2D7 s )+j 'D7 (o
= 1 (A16c)

Thus only the D „appearing on the leftmost sides of the
preceding equations are distinct. One notes also the sum
rules
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APPENDIX A: NUMERICAL CALCULATIONS

In this appendix we show the explicit calculation of the
integrals D „, Io, and I'", given, respectively, in Eqs.
(43), (34), and (46a). Due to the symmetry of the three-
fold axis we have the relations

In order to perform numerical calculations we manipu-
late sums over the Brillouin zone into the form

s„=e(x,y ) +j'( 1 —cosz )/3,
where

(A18)

e(x,y) = 1 —(cos2y+2 cosxcosy )/3

+j2[1—(cos2x+2 cosxcos3y )/3]

+js[1—(cos4y+2 cos2xcos2y )/3] . (A19)

The numerators of D „are independent of z, so that the
integration over that variable can be done first:

g f(k)=(2n. )
' f" f f dx dy dz f (x,y, z),

k

(A17)

where x =&3ak„/2, y =ak /2, and z =ck, . In terms of
these variables we have

D1 1=D2 2 =D3 3

D, 2=D13=D23,

D14=D]6—D24 —D2 s D3 5 D3

(Al)

(A3)

(2m) ' f e(, 'dz=D(x y)

where

D(x,y) = [e(x,y)[E(x,y)+2j'/3]) '~2 .

(A20)

(A21)

D1 5=D2 6
—D3 4,

Dl 7=D2 8=D3 9

D 8=D 9 D27 D29 D37=D38

(A4)

(A5)

(A6)

We use this relation to construct the D „. Furthermore,
the D 10 can be determined in terms of the other D „
via the sum rules of Eq. (A16}.

By use of Eqs. (A20) we obtain

D44=D5 5=D66,

4, 5 =D4, 6 s, 6

D4, 7 4, 8 5, 8 D5, 9 D6, 7 D6,

(A7)
z f f dx dy[b, (x,y)]2/D(x, y),

4~ o o

(A8)
where

(A9)
b, (x,y) =cosxcosy+ j2(cosxcos3y+2cos2x )

(A22)

D49= 57=DAB

D7 7 =D8 8 =D9 9

D78 D79 D89

D1, ]o=D2, 1o=D3, 1o ~

(A10)

(A11)
and

(A12)

(A13)

+4j3cos2x cos2y

10

( A
—() 1(1)l(((

m, n =1

(A23a)

(A23b)
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where

I',"= f f dx dy b, (x,y)(1 —cos2y )/D (x,y),
2K p p

(A24a)

b =
—,
'

JEST,

k

(82)

where E,~(Q) is the classical ground-state energy given

by Eq. (9) and

I'z" =I3"= f f dx dy b, (x,y)
2m'

X ( 1 —cosx cosy ) /D (x,y ),

where Ek is the spin-wave excitation energy,

E„—(/SgDg, (83)

f f dxdyb, (xy)4

(A24b) with

Sz= +2J Sg(cosQ 5 —cosk 5 )

X (1 —cosxcos3y )/D (x,y),

(A24c)

I5"= xdyb, xy 1 —cos2x D xy
2m

(A24d)

+2J'S g (1—cosk 5'),
Qt

Dz = g 2J S g cosQ.5 (1—cosk 5 ),

+2J'S g (1—cosk 5') .

(84a)

(84b)

I7"= f f dx dy b, (x,y)(1 —cos4y)/D(x, y),
2m'

(A24e)

(1) (1)

2m

We notice that b in Eq. (82) is of order 1/S with respect
to the classical ground-state energy of Eq. (9). We also
notice that quantum effects vanish in the ferromagnetic
region F of Fig. I, where Q=O, so

X(1—cos2xcos2y)!D(x, y) .
EF =E,((0) . (85)

For j'&0 one can obtain I',0' by the sum rule

I',"+2I2 '+j z(2Ig' +Is )

+ ' (I'"+2I'")+j I =0.

(A24fl

(A25)

On the contrary, quantum effects lower the classical
ground-state energy of the antiferromagnetic (AF) and
120' phases. This fact causes a shift of the classical tran-
sition lines AF-F and 120'-F in both cases reducing the
region of stability of the Fphase.

The ground-state energies of the AF and 120' phases
are obtained from Eq. (Bl) by putting

APPENDIX 8: ZERO-POINT CORRECTIONS
TO THK AF-F-0 MULTICRITICAL POINT and

Q „~= (2m /( &3a ),0) (86a)

The first-order result in 1/S reads

E (Q) =E,i(Q) [1+(1/S) ]+b, ,

eF= 1-J2- J3- —,'J'

(81)
I

Q~20=(0, 4m'/(3a)) .

The reduced energies [e =E(Q)/6J, &Sz] are

(86b)

(87a)

"~=l( +i2 3i3 i') 1+——+ —' ' f f f dxdydz(szzd„, )'~2,
S 3S ~3 p p p

(87b)

1 1/2e»o = ( —' jr+ —'I'3 —'j') 1+—+
3S ~3 p p p

dx dy dz(sizod12o) (87c)

where

qz = —( I+cos2y+2 cosxcosy ) —jz(1+cos2x+ 2 cosxcos3y )j3(3—cos4y —2 cos2xcos2y )+j'(1—cosz),

= —(1+cos2y —2 cosxcosy ) —j (1+cos2x —2 cosxcos3y)+ j (3—cos4y —2 cos2xcos2y )+j'(1—cosz),
s ~20= —

—,
' —(cos2y+2 cosx cosy )+jz(3 —cos2x —2 cosxcos3y )

j3( ~ +cos4y +2 cos2xcos2y )+j'( 1 —cosz),

(BSa)

(BSb)

(BSc)

&&0= —
—,'(3 —cos2y —

2cosxcosy )+j2(3—cos2x —2 cosxcos3y) —
—,
' j3(3—cos4y —2 cos2xcos2y )+j'(1—cosz ) . (BSd)
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3J3 j'
4S 4S

f"f"f dxdy dz(s~~dqp)' '
4S~' j = —1

2

The zero-point motion is well defined only if the argu-
ment of the square roots appearing in Eqs. (B8) are non-

negative. This occurs only inside the regions of stability
of the corresponding classical phases AF or 120' in Fig.
1.

However, we expect that the shift of the "classical"
transition line F AF-in Eq. (2a) and F-120 in Eq. (2c) is
of order 1/S, so that we may correctly give the "quan-
tum" transition lines to order 1/S by evaluating the 1/S
contribution along the "classical" transition lines. The
new transition lines are then obtained by comparing Eqs.
(B7a) and (B7b) for the F-AF transition and Eqs. (B7a)
and (B7c) for the F-120' transition. Thus the F AF-
"quantum" transition line is given by

matrix calculation for the point A' where E4 vanishes.
For S =

—,
' the existence of a first-order phase transition

between the H& and F phase seems well established, be-
cause all the A ' fall well outside the intervals A-A ". The
same could be expected for S =1 and J'%0. Instead, in
the extreme quantum limit, S =

—,
' and J'~0, the AF

phase seems to prevent the first-order phase transition be-
tween the H, and F phases. The two possible scenarios
for the structure of the phase diagram near the F-H-AF
multicritical point are shown in Fig. 6.

Now we consider analogously the triple point C. The
"quantum" F-120' transition line is given by

2J2 2j
3S 9S

f"f f d xdydz( 1$20d120)
9Sm

(B10)

for j3 &
—,'. This result is shown in Fig. 7(a) for S =1 and

in Fig. 7(b) for S =
—,
' for selected values of the interplane

coupling J'. As one can see, the quantum effects are re-

duced by increasing either the spin S or the interplane

coupling J'. The extrapolated triple points A ", for
j'=0,0. 1, and 1 are also shown in Fig. 7, where they can
be compared to the first order result in 1/S from the t-

for j2 ~ 1. We used this equation to determine the F-120'
phase boundary for j2 & 1. This phase boundary was then
extrapolated to find the point A" where it intersects the
classical F-H phase boundary. In all cases we found to
order 1/S that the point A' on the F Hphase b-oundary
where quantum effects cause e4 to pass through zero was
inside the interval A-A". Accordingly, the F-H transi-
tion remains continuous even near the F-H-120' mul-
ticritical point.
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