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Transport in networks with a power-law distribution of conductances:
The ladder and the Sierpinski gasket
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We study the transport properties of two types of resistor networks: the ladder and the Sierpinski
gasket (SG), where all their bonds obey a power-law distribution of conductances: P(cr)-a
a (1, 0. 1. We argue that for the ladder there exists a critical value of a, a, =

—,', that separates
normal (a (a, ) and anomalous transport (a )a, ), whereas for the SG the transport is normal for all
a. Extensive numerical simulations, based on triangle-star transformations, support our predic-
tions. The difterence between the two structures is discussed.

1, for a(a, (normal transport),

1
for a) a, (anomalous transport) .n(l —a) '

(2)

This result is in agreement with Straley s earlier predic-
tion. According to Straley,

1(=max go,'v 1 —a) (3)

where go is the normal resistance exponent, and v is the
correlation length exponent. One can show that for n
connected parallel chains v=n. If the probability of a
horizontal bond to be conducting is p =1—e, then the
probability of a connected chain of L links is

P =[1—(1—p)"]—:e

where g is the correlation length. From Eq. (4) follows

' = —ln( 1 —e'" ) =e",
which is the universal relation for g, except that v is re-
placed by n Hence Eq. (.3) (with v=n) and Eq. (2) are
identical, indicating a continuous transition at a, .

Various physical systems can be mapped onto the
problem of transport on networks with a power-law dis-
tribution of conductances. ' It was shown that when
the bond conductivities are distributed according to

P(o )-o, a(1, o. &1,
the transport exponents g and d depend on a. Recently,
Havlin et al. have studied transport on a quasi-one-
dimensional (quasi-1D) system —a strip consisting of n

connected parallel chains of length L, where the conduc-
tances of the horizontal bonds follow the distribution (1).
The vertical bonds are taken to be perfect conductors.
They found that there exists a critical value of a,
a, = 1 —1/n, so that the resistance exponent g is

The values in Eq. (2) represent rigorous lower bounds if
the transverse bonds are not perfect conductors, but have
the same power-law distribution. The diffusion exponent
d is obtained from (2) via the relation d =dI+g.

In this work we argue that (2) is also correct when all
bonds, vertical and horizontal, have the distribution (1).
We present numerical simulations for n =2 (hereafter re-
ferred to as a "ladder" ) to support this claim.

Next, we study the transport exponents for the same
distribution on the Sierpinski gasket (SG), ' ' which is
"marginal" between one dimension (1D) and higher
dimensionalities. The SG is considered as quasi-1D due
to its finite order of ramification. Yet, it is an interesting
object, since it was proposed as a model for the backbone
of percolation. We argue that for the SG a, =1, i.e., the
transport is normal for all a. Extensive numerical simu-
lations substantiate this conjecture.

Our numerical simulations, for both the ladder and the
SG, are based on the use of triangle-star transformations,
in calculating the conductance of the system. These
transformations were recently used for several other
problems, " ' and were found to be very efficient.

We discuss the reason for the different result between
the ladder and the SG, which is related to the concentra-
tion of singly connected bonds in each structure. This
leads to different probability of low conducting
configurations, which dominate the transport properties.

Consider first the case of strips (n X ~ ) where the vert-
ical bonds are perfect conductors. It was shown that the
dominant contribution to the system resistance comes
from a configuration in which all horizontal bonds in one
column of n bonds have low conductivities. Since the
probability of this low-conducting configuration de-
creases as n increases, a sensitive dependence on n is ob-
tained [Eq. (2)].

When the vertical perfect conductors are replaced by
conductors with the same distribution (1), the total con-
ductance is still determined primarily by the low horizon-
tal conductors in one column. Other low-conducting
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configurations, including also low-conducting vertical
bonds, involve more than n low-conducting bonds and
therefore are less probable. Thus, we expect that for the
case of power-law distribution of both vertical and hor-
izontal bonds, the transport exponents in Eq. (2) remain
unchanged.

We test this conjecture numerically. For simplicity we
perform the simulations for the case n =2. The total
resistance or conductance is calculated in a technique us-
ing triangle-star transformations, as shown in Fig. 1. The
two bonds on the first column of the chain are held in the
same potential. Thus, together with the first vertical
bond they form a triangle, which is transformed into a
star according to the formulas

f2f3R1=
f1+f2+f3

f1f3R2=
f1+f2+f3

where f, and R; are the resistances in the triangle and the
star, respectively.

In this way, a new triangle is formed, built of R2, R3,
and of the bonds in the next column f1, f2, and f3. This
procedure is repeated iteratively, using the following for-
mulas:

Ri+] 3 2 2 3
+1 )(RI + I+))

R' +R' +f'+'+f'+'+f'+'
2 3 1 2 3

i +1(Ri + i+)
)Ri+1 f1 2 f3

Ri +Ri + i+1+ i+1+ i+1
2 3 1 2 3

i+1(R i + i+1
)f2

R' +R' +f'+'+f'+'+f'+'
2 3 1 2 3

where the superscripts denote the column index.
After the whole ladder is converted into a simple one-

dimensional chain, the total resistance is given by the
sum

R3=
f1+f2+f3

L
R= gR') . (8)

A statistical ensemble of ladders has been generated, with
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FIG. 1. The first steps of the transformation from a ladder to
a linear chain. The resistance is calculated according to Eqs.
(6)-(8).

FIG. 2. The ladder. (a) Results for the averaged conductance
X as a function of the length L, for various values of a. (b) Plot
of the local slope —g=d(logIOX)/d(logiIIL) as a function of
1/logIOL, for the same values as in (a). The solid lines in the
asymptotic region I.~ ~ represent the values of g as predicted
by Eq. (2). Above a, =0.5, anomalous transport is obtained.
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FIG. 3. The transformation of the SG into an effective network, using triangle-star transformations.

bonds having resistances

—1/(1 —a j (9)

where g is a pseudorandom number, chosen from a uni-
form distribution (0 ~ rl ~ 1). Equation (9) corresponds to
the conductivity distribution (1}. The total resistance was
calculated according to Eqs. (6)—(8), then converted into
conductance. The results for the averaged conductance
X are shown in Fig. 2(a) for various values of a. Accord-
ing to the definition of g, X-L ~, the slopes in Fig. 2(a)
represent g for each a. In Fig. 2(b) we plot the local slope
d(log)oX)/d(log, oL) as a function of I/log)oL. The
correct values of the g's are obtained from the asymptotic
region L ~ oo. The values of g agree with those predict-
ed by Eq. (2), for normal and anomalous transport
(a, =-,').

A related result has recently been derived by Schnorer
and Blumen' for transient transport in a hopping model
with a power-law distribution of transition rates.

Next, we consider the Sierpinski gasket. For this
structure the low-conducting configurations are connect-
ed with quadruply connected bonds, since the minimum
number of bonds one has to cut in order to stop the fiow-
ing current is four. Hence, comparing the SG with a
strip of n =4, a rigorous lower bound for a, is obtained
when substituting n =4 in Eq. (2), i.e., a, ~

—,'. However,
since the number of these bonds scales as 1ogL, we expect
that these quadruply connected bonds will not dominate
the transport behavior. Thus we argue that for the SG
a, =1, and both g and d should accept the same values
as for uniform bond conductivities, i.e.,
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for all values of the distribution exponent a in (1).
We test this conjecture using extensive numerical simu-

lations. The end-to-end conductance is calculated in a
technique we recently used elsewhere. ' We transform
the gasket into an effective equivalent network, passing
through triangle-star transformations (see Fig. 3). The
first step is similar to that of Eq. (6} above. After getting
a gasket of stars only, we replace every three connected
stars by an equivalent star of three resistors, using the fol-
lowing formulas:

FIG. 4. The Sierpinski gasket. (a) Results for the averaged
conductance X as a function of n, the order of the gasket, for
various values of a. (b) Plot of the local slope—g=d(logIOX)/d(logIIIL) as a function of )/logIIIL, for the
same values as in (a), where L =2". The solid line represents the
value of the normal resistance exponent as given by Eq. (10).
One can see that in the asymptotic region L ~ oo, all slopes con-
verge to this value, which is an exact lower bound for g. (For
a&0.9, the same qualitative results were obtained, but much
larger gaskets are required to gain full convergence. )
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where superscripts denote the three original triangles.
This last procedure is repeated iteratively until covering
the entire gasket. The single star obtained as a final re-
sult is transformed back into an effective triangle, using
the inverse of the transformation (6). Then the end-to-
end resistance (or conductance) is simply obtained.

The simulations were performed for finite gaskets of
order n (length I, =2", containing 3"+' bonds), where n

takes the values n =2,3, . . . , 16. The largest gasket we
studied contained 3' =129,140, 163 bonds. The resis-
tance of each bond was determined according to Eq. (9).
The larger the gasket, the fewer ensembles needed to
achieve convergence, because of the self-averaging in the
larger systems. Due to the huge gaskets we considered,
the total computational effort in terms of CPU time was
250 h on IBM 3081.

The results are shown in Fig. 4(a). It can be seen that
as n gets larger, all slopes converge to the same value of
g, which is the value given by Eq. (10), as shown in Fig.
4(b). Thus we conclude that transport on an infinite gas-
ket with bond conductivity distribution (1) is equivalent
to transport on an ordered gasket, where all bonds have
the same conductivity.

This result also agrees with Straley's relation (3). It is
known ' ' that for the SG 1/v=0 or v= ~. Hence
the resistance exponent in (3) remains normal for all
a&1.

In summary, the ladder and the SG, both possessing
1D features, were shown to behave differently when all
their bonds follow the distribution (1). The ladder has an
effective critical a, a, =

—,', whereas the SCs has not. The
basic difference between these two structures is the prob-
ability of low-conducting configurations. These
configurations, which dominate the transport properties,
are related to the number of singly connected bonds. The
number of doubly connected bonds in the same column of
the ladder scales as L, the length, while the quadruply
connected bonds or any other multiply connected bonds
in the SG scale as logL. This fact causes a region of
anomalous transport for the ladder, but not for the gas-
ket. It is interesting to compare these results to more
complicated random systems, such as percolation, where
the number of singly connected bonds scale as a power of
L. This may explain why the transport on percolation is
affected by the distribution (1) for large values of a
(a )a, ), ' while for the SG, where the number of singly
connected bonds scale only as logL, the transport is nor-
mal for all a.
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