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In the standard theory of the equilibrium shape of a crystal (Wulff construction), thermal fluctua-
tions are neglected. In the present work their effect is investigated in the simple case of a bar with
four symmetric facets. The edges of the facets are found to undergo fluctuations with a correlation
length proportional to the width 2R of the facets, which is itself proportional to the diameter of the
bar. The amplitude of these fluctuations decays exponentially beyond a range proportional to R /3.
It is therefore legitimate to neglect them for large crystals. The stability of the bar is also con-
sidered: The decay into crystallites is very slow with a characteristic time increasing exponentially

with R.

I. INTRODUCTION

In recent years a number of new results have been de-
rived concerning the equilibrium shape of crystals, one of
the most prominent and well-understood capillary effects
(for a review see, e.g., Refs. 1 and 2). Among these re-
sults, the way in which the rounded part of a surface joins
a facet deserves special attention. For vicinal orienta-
tions (close to that of the facet), one may view the surface
as consisting of steps separated by terraces. Based on in-
vestigations of the interaction between these steps (either
elastically or by steric repulsion), it has been predicted
that the curvature of the rounded part diverges at the
facet edge.’ This singular behavior is only obtained in
the limit of large samples. Therefore its experimental
confirmation is difficult®, and its validity is still debated.’

Here we present a calculation of fluctuation correc-
tions to the equilibrium shape. Their magnitude will be
found to be negligible for large samples: They are, in this
sense, a finite-size effect. Although our results cannot
directly be compared with experiments, they may point
into a direction in which a solution can be found for the
discrepancies between theoretical predictions and mea-
surements on finite samples.

We consider a container of fixed volume V with a fixed
total mass M chosen such that the system separates into a
crystal of volume ¥, surrounded by the vapor or melt of
the same material. (It is well known that one has to con-
sider a canonical ensemble in order to have stable coex-
istence of two phases. If the system were allowed to ex-
change particles with a particle reservoir, it would always
prefer to be in a single phase, thereby removing all inter-
face contributions to the grand potential.) We adopt the
Gibbs convention, i.e., ¥, and the volume of the fluid,
Vy,are determined by

V=V +V;
and (1.1)

with the mass densities p. and p,. Let

F=F,+F,+F, (1.2)
be the free energy (including the surface excess part F;)
calculated for a particular surface configuration. Per-
forming the trace over all surface configurations (not just
minimizing F as in the Wulff construction) leads to the
equilibrium free energy

F(T,V,M)=—kzTInZ, Z=Trexp(—BF). (1.3)

Equation (1.3) contains the thermal fluctuations of the
equilibrium shape that we want to calculate.

We use the following model to describe the surface
configurations and their free energy. The crystal forms
an infinite bar (Fig. 1) with four equivalent facets parallel
to the xy and zy planes, respectively. By symmetry we
can restrict ourselves to one-eighth of the bar (hatched
part in Fig. 1). We shall regard the curved part as con-
sisting of p ledges of atomic height separated by terraces
(Fig. 2). No upward ledges are taken into account so that
in particular no islands on the terraces occur in our mod-
el. It will be assumed that no overhangs are present so
that the position of the mth ledge at a given ordinate y is
a well-defined number x,, (y) and satisfies

xm_l(y)fxm(y)fxm +](y) . (1.4)

Thermal vibrations and elastic strains will be ignored
[solid-on-solid (SOS) model]. Therefore, x,,(y) can only
be changed by adding or removing atoms, i.e., it is an in-
teger.

To regard the crystal as incompressible turns out to be
a useful simplification also in view (1.1): p, is a constant
independent of V., while p,(V,M,V,) is determined by

(1.1):
pr=(M—p. V.)/(V—=V,). (1.5)

At finite temperatures the ledges will not be straight
lines. They will have kinks, each with an excitation ener-
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FIG. 1. A crystalline bar with four facets parallel to the xy
and zy planes extending to infinity along the y direction.

gy 7. We shall assume that the temperature is low
enough, B7,>>1, so that the kinks form a very dilute
one-dimensional gas on a ledge and their interactions can
be ignored.

A short-range, repulsive interaction between the ledges
will be assumed; for instance,

P N
U=3 3 0lxn ) —x,00), (1.6)

m=1y=1

where N is the length of the bar measured in lattice con-
stants. An attractive or oscillating interaction would
favor other facets,® which we do not want to consider
here. Equation (1.4) implies

vix)=o for x <0 . (1.7

Denoting the surface tension of the facet and of the

Z4

FIG. 2. The rounded surface part between two facets is
represented by steps of atomic height separated by terraces.
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terraces between the ledges by a, and the energy per unit
length of the straight parts of a ledge by 7,, the surface
free energy of + of the bar is given by

F,/8=aLN +7pN+7,3 |x,,(y +1)—x,(»)|+U .

m,y

(1.8)

Of course, outside the vicinal region where the width of
the terraces is no longer large compared to atomic dis-
tances, one has to expect that a changes. However, we
can imagine these corrections to be absorbed in U, (1.6).
Similar remarks can be made for the second term in (1.8).
This model is admittedly oversimplified. It is believed to
capture the essence of the fluctuations in the vicinal re-
gion where the curved part smoothly joins the facet—the
main focus of this paper. However, it has to be regarded
with some caution near m =p.

To complete the definition of the model we have to dis-
cuss the bulk contribution F, =F_+F to the free energy
(1.2) which depends on the surface configuration through

V./8=1L’N+ 3 x,,(») (1.9)
m,y
(Fig. 2). We can avoid specifying the equations of state
by assuming we already knew the equilibrium value
VAT, V,M) of the crystal volume, and expanding F,
around it:

Fy=FS—MV,—VO+LIK(V, =V /(V = V) .
(1.10)

Regarding V79 as a fixed parameter we may use (1.10) to
calculate the equilibrium surface configuration and hence
the thermal expectation value (¥, ). It depends on V&4
and has to be determined self-consistently in the end such
that

(V. Ve)=va . (1.11)

The coefficients A and K in (1.10) are given by

A=—f+frtuip.—p7) (1.12)
and
K =[kp$*] (p,—pF) . (1.13)

The free-energy density f,(T,p%), the chemical potential
ps(T,p?), and the isothermal compressibility «(T,p%)
of the fluid around the crystal bar are determined by the
equilibrium fluid density (1.5) for ¥V, =V9. Using stan-
dard thermodynamic relations A can be related to the su-
persaturation in the fluid,” as a measure of which we take
the deviation Ay, =p (T,p3) —po(T) of the chemical po-
tential from its bulk coexistence value p, It is well
known from the Laplace-Kelvin laws that Au, becomes
arbitrarily small for large diameters of the bar. Expand-
ing A to lowest order in Au; one obtains’

A~Buslp.—pso) > (1.14)

where p r is the fluid density at bulk coexistence.
Equations (1.8)—(1.10) specify the model to be investi-
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gated in the subsequent sections. Since we are mainly in-
terested in the ledge fluctuations close to the facet, we
shall determine the equilibrium values of L and p (as-
sumed to be constant along the bar) simply by minimiz-
ing the free energy. Using (1.10), this requires

3
=—(F,—AV, 1.15
0 aL(FS eg (1.15)

and

d
0=—(F,—AV, . (1.16)
ap( s c)|eq

The trace in (1.3) will only be taken over all ledge
configurations for fixed L and p. Then the crystal volume
cannot fluctuate by a larger amount than 8pL. This may
always be assumed to be much smaller than the volume
occupied by the fluid:

|V, — V| <8pL <<V — V5 . (1.17)

Therefore, the last term in (1.10) may be neglected as far
as the ledge configurations are concerned. For our pur-
pose it thus suffices to consider

Q=(F,—AV_.)/8 . (1.18)

It is instructive to separate the part # of Q that
governs the ledge fluctuations:

Q=N[aL +7pp —(A/2)L*)+%# , (1.19)

where

H=TI [rlx,,(y +1)—x,,(y)

m,y

+o(x,, 1) —x,(¥))—Ax,, (»)] . (1.20)
Without the last term, # would be translationally invari-
ant. Therefore, it would result in a homogeneous distri-
bution of the p steps over the interval L, i.e., a flat sur-
face. The supersaturation A of the fluid surrounding the
bar acts like an external force on the ledges that pulls
them to the right (corresponding to crystal growth) (Fig.
2). In equilibrium this external force is counterbalanced
by the interaction between the ledges.® The result is the
curved equilibrium shape. The last term in (1.20) can
thus be viewed as an external potential energy of the
ledges.

In Sec. II it will be recalled how the surface profile is
determined from (1.19) neglecting fluctuations.” Then, in
Sec. III, a transfer-matrix calculation of the thermal fluc-
tuations of the ledges on the curved surface will be
presented. The physical implications are described in
Sec. IV.

In the long run the bar geometry will not be stable.
The decay into crystallites begins with small variations of
L along the bar. In Sec. V it will be shown, that the time
scale involved in this instability is extremely long, justify-
ing the picture put forward in the earlier parts of the pa-
per. Section VI contains a summary of our results as well
as a discussion of the influence of gravity!® and of other
possible extensions of our calculation.
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II. PROFILE WITHOUT FLUCTUATIONS

In this section the theory of Schulz® is briefly recalled
(or, perhaps, reinterpreted). A similar account has re-
cently been published by Parshin et al.° The shape of
the bar is determined assuming that the y coordinate can
be integrated out in (1.20), and that the resulting free en-
ergy has the form (for } of the bar)

P
Q=N 2 [f('_x-m+1_fm)——)"fm]
=1

+aL +7p—(A/2)L* | . 2.1
Here, X,, is the average value of x,,(y), and
X, 1=L . (2.2)

The assumption that f depends only on the average dis-
tance between nearest-neighbor ledges is crucial because,
then, f can be calculated for infinite, planar surfaces with
fixed orientations. Theories of Gruber and Mullins,!!
Pokrovskii and Talapov'? or Villain'? yield for large /

f(1)~1’;—7G2—, @.3)
and for the step free energy per unit length

7=1,—2G , (2.4)
where G goes to zero at low temperatures as

G =k, T exp(—Br,) . 2.5)

The expressions (2.3) and (2.4) are not applicable out-
side the vicinal regime. More generally, in this section
we shall regard f (/) as a phenomenological function with
asymptotic behavior (2.3). For the moment we need not
specify f (/) any further. At the end of this section we
shall briefly discuss the additional constraint f (/) has to
fulfill so that the crystal does not form a sharp edge at
x =L.

The equilibrium shape for given supersaturation A is
determined by minimizing € with respect to X,
(m=1,...,p):

f’(fz—fl):—)\‘ )

(2.6)
fix, 1—%X,)=f"(X,—X,,_1)—A, 2<m=<p.
The result of this recursion is
f'i,)=—im, (2.7)
where /,, denotes the width of the mth terrace,
L, =%, 1~ X, - (2.8)

Combining (2.7) with (2.3) yields the well-known power-
law shape

—-1/3 2/3
1

~

c

37
~——cm

> 2.9

m
Xm+1—R= 3

close to the facet. R =X, is half the diameter of the
facet, and
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c=A/G, (2.10)

the dimensionless supersaturation. As m is the negative z
coordinate of the terrace between X,, and X,, ., we can
also write

(—2/3m)c(x —R)}*? x>R

cz(x)= 0, x<R. (2.11)

This power law is the result of the special form (2.3) of
the ledge interaction, whereas (2.7) is completely general.
If, for instance, the ledge interaction were repulsive on
short distances but had an attractive tail, then f'(/)
would be negative only up to a largest terrace width [ ,,.
Then (2.7) would imply that the rounded part of the crys-
tal surface meets the facet at a finite angle, i.e., there
would be a discontinuity in the slope Az'=1_1.

Three important properties of (2.11) will be modified
by the fluctuations to be discussed in the subsequent sec-
tions. The first is the scaling of the shape with the in-
verse of the supersaturation. The corrections to the
shape scale differently, so that their relative size vanishes
in the limit ¢ —0. The second property of (2.11) is that
the curvature of the surface diverges close to the facet
rim:

z"(x)=(—c/2m)c(x —R)]" % (2.12)

This singularity will be smeared out due to the finite size
of the bar. Finally, for 0 <x <R the surface will no
longer be perfectly horizontal as in (2.11): Fluctuations
of the facet rim lead to an average cross section of the bar
with z'(x)70 everywhere (apart from x =0).

In addition to these properties close to the facet, it will
be useful to recall how the global dimensions of the cross
section, R, p, and L, are determined by A. First, we no-
tice that (2.7) implies

p=—r"U)/h.

On the other hand, inserting (2.1) into (1.15) leads to the
condition

) +a=AL ,

(2.13)

which combined with (2.13) yields

ptL=a/k. (2.14)

Minimizing the free energy with respect to p, (1.16),
gives the equilibrium values of R. If p is increased by 1
keeping L and all /,, fixed, then necessarily R decreases
by [,:

R—R—1,, x,—x,—1,. (2.15)
The corresponding change of the free energy,
8Q=f(,)+Apl,—AL +7,
should vanish; thus
L=1/A+pl,+f1,)/\ . (2.16)

Now we show that the last two terms on the right-hand
side can be identified with L —R so that (2.16) leads to
the well-known result
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R=1/\, (2.17)

i.e., the facet size is proportional to the ledge free energy
per unit length.> Treating m as a continuous variable one
can rewrite (2.7) in the form

df/dm =—Amdl/dm =—Ad(ml —x)/dm .
In the last step (2.8) has been used. Integration yields
fU,)/A=x,—R —ml, ;
hence for m =p
pl,+fU,)/A=L —R -1, .

Since /, can be neglected compared to L —R in the limit
of small A, this completes the derivation of (2.17).

Equations (2.13)-(2.17) show that all characteristic
lengths L, R, and p are inversely proportional to the su-
persaturation A.

Now we come back to the question of what can be
learned about the function f(I) if one knows that the
equilibrium shape has no edge at x =L, i.e., that /,=1.
Eliminating L from (2.14), (2.16), and inserting (2.13), one
finds that f must obey the equation

fH—=2f'"()=a—r7. (2.18)

III. TRANSFER-MATRIX METHOD

The transfer-matrix method used by Villain'3 will now
be extended to the case described in Sec. I. Our aim will
be to evaluate the partition function

Z(p,L)= Trexp(—B#H)= Tro¥ (3.1

with # given by (1.20). The trace is to be performed over
all ledge configurations x;(y), i =1,...,p, or all eigen-
states of the transfer matrix ©. As usual it suffices to
determine the largest eigenvalue of the transfer matrix if
the rod is very long. It can be obtained easily if the po-
tential v in (1.6) is assumed to have the form

e <0)
U(x)"— 0 (x>0) . (32)
Consider the matrix element {$|0|1'), where
W) =lx\,x5, ..., x,) (3.3)

is a possible ledge configuration at constant y and, simi-
larly, |¢) represents the state of the cross section at
y +1. If [¢) =|¢) it is simply given by [cf. (1.4)]

(¢lOlY)=-exp [BL S x,, ] if |[¥)=1¢) . (3.4)

If |¢) and |¢) differ by just one kink in the gth ledge,
then the matrix element is

(¢|8ly) = exp —Br1+BA2xm}

if (¢lx,,1¢)—(Ylx,|¢¥)=%85,, .

It is convenient to consider only low temperatures,
Br;>>1, where matrix elements between successive states

(3.5)
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that differ by more than one kink can be neglected. Then
(3.4) and (3.5) are all we need to characterize the transfer
matrix.

Let |¢) and |¢) satisfy

xm_l<xm <xm+l . (3.6)
Then (3.3) can be written in terms of fermion operators as
=t et t
) =c AR AN o),

where ¢ creates a fermion at x, and |0) is the state with

no fermion. Equations (3.4) and (3.5) can now be com-
bined into a single expression:

(glBly)=(8l0,|¢)(¢|6,l¢)
with

61=1+e-BTl S (¢fe, 41+ Hoc.)
X

~ exp e P S (c¢fey 41+ Hoc))
X

and

©,=exp [BA S xc)c, l . (3.8)

In (3.7) we used the abbreviation H.c. to denote the
Hermitian-conjugate operator. On easily checks that the
matrix element of zx(clcxHJf-H.c,) is 1 between states
that differ by exactly one kink, and O otherwise.

One can simplify the problem further in the limit
where

BAL<<1<<PBr; . (3.9)
Then one can apply the Baker-Hausdorff formula

exp A expB = exp(A4 +B +3[ 4,B]

+higher —order commutators) ,

and neglect all commutators in the exponent. Therefore,
the transfer matrix may be written as the exponential of a
simple operator:

©=exp(—BH) ,
with
H=—3[G(clc, .+ H.c.)+Axcle, ],

(3.10)

(3.11)

where G is given by (2.5).

If one knows the ground-state energy E, of H one can
immediately calculate the partition function (3.1) and
from that the free energy in the limit of large N:

Q=(aL +71p —AL%*/2+E,)N . (3.12)

Moreover, the ground state IEO) of H contains informa-
tion about the profile of the rod (Fig. 1) averaged over
thermal fluctuations. Since { Eylc jc J |E, ) is the probabil-
ity of finding a ledge at position x =j, the average profile
is given by
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z(x)=—3 (Eolcchj|E0) .
Jj<x
With this definition the height z (0) of the top of the sur-
face is very close to zero.
Equation (3.11) is a Hamiltonian of noninteracting fer-
mions in an external potential. The ground state for p
fermions is therefore

(3.13)

L
|Eo)= T a:l0), (3.14)
k=1
with energy
P
Eo= 3 & - (3.15)

k=1

k labels the various one-fermion eigenstates, a,z creates a
fermion in state k, an the k’s are ordered according to in-
creasing eigenvalues € of (3.11), i.e.,

Hall0)=g,a]10), €,<e,<e;< - . (3.16)

The Fermi operators a, can be expressed in terms of the
c,’s:

ai=3 ¥ (x)c) . (3.17)

The wave function ¥, (x) fulfills the equation
—G[Yp(x + D)+ (x —D]—Ax¢ (x)=¢g, ¢ (x) ,
(3.18)

which is easily derived by inserting (3.17) and (3.11) into
(3.16).

The easiest way to get a qualitative understanding of
the solutions of this equation is to take the continuum
limit of the discrete spacial lattice. We shall argue later
that the results are meaningful also quantitatively. Intro-
ducing the dimensionless supersaturation ¢ and energy %,

c=A/G, t=¢e/G+2, (3.19)

and recognizing Y(x +1)—2¢¥(x)+y¥(x —1) as the lattice
version of d*/dx*=4'"(x), the continuum version of
(3.18) reads

=P (x)—cx i, (x)=%, P(x) .

This is the Schrodinger equation for an electron in an
electric field, a standard example in quantum-mechanics
textbooks (see, e.g., Ref. 14).

However, the boundary conditions in this case are not
the usual ones. None of the fermions can go beyond
x =L, which corresponds to an impenetrable wall at
x =L (Fig. 3); hence

HL)=0 .

(3.20)

(3.21)

The boundary condition at the left is trickier, since we
have completely ignored so far the possibility that the
facet might form islands, or in the fermion language, that
a fermion (downward ledge) annihilates with an antifer-
mion (upward ledge) from the interval (—L,0). In Sec. V
this will be justified by showing that the rate of island for-
mation on macroscopic facets is so small that its
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€
)

FIG. 3. Schematic eigenfunctions of an electron in an electric
field with a wall at x =L: ground state #'!’ and sixth excited
state ¥'” (up to normalization factors).

influence on the ledge fluctuations can be neglected. This
means that we may regard the facet to extend to x = —
(Fig. 3), as far as the configurations of the ledges are con-
cerned. Then only the solutions vanishing for x — — o
need to be considered,

Y(x ——0)=0. (3.22)

The other ones, increasing exponentially, are not normal-
izable.

It is immediately clear that the characteristic length
scale in (3.20) is ¢ ~!/? while the energy  should be mea-
sured in units of ¢?/%. Introducing the scaled quantities

E=cx+e, e=c %% (3.23)

removes the parameters ¢ and € from the Schrddinger
equation (3.20):

d—2+§ @(§)=0, (3.24)
e
where
Y(x)=Ap(E)=Ap(c'*(x +5/c)) (3.25)

with an appropriate normalization factor 4. In the limit
of small supersaturation ¢, ¥(x) is a slowly varying func-
tion of x. This justifies the continuum approximation
(3.20).

It is well known* that the solution of (3.24) satisfying
the boundary condition (3.22) is the Airy function,

1 £ u?
p(&) o fo du cos 3 Eu (3.26)
Its asymptotic behavior is oscillatory for £— oo,
PE)=E V4sin(282+7/4) (3.27)

and exponentially decaying for £— — o,
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PE)=L|E| 7 *exp(—2[£]°72) .

According to (3.21) the corresponding wave function ¢
has to vanish at x =L, i.e.,

@lc 23(cL +%))=0.

(3.28)

(3.29)

The zeros of the Airy function thus determine the energy
spectrum (see Fig. 3). Let §; <&, <&;< -+ be the zeros
of @(&). Then the kth energy level is given by

], =—Lc+c?, . (3.30)

The asymptotic behavior (3.27) gives the following ex-
pression for &, :

3 2/3

k=1

£ = (3.31)

which is an excellent approximation not only for large k
but even down to kK =1. The first zero, §,, agrees with
(3.31) within 1%."°

It remains to determine the normalization A4; of the
corresponding eigenfunction ¥, (x), (3.25). In Appendix
A we show that for k >>1

—1/6
37k

A, =
k 2 ¢

(3.32)

Equations (3.25) and (3.30)-(3.32) are the basic results of
our calculation. Now we are in the position to discuss
their physical implications for the free energy [(3.12) and
(3.15)] per unit length of the bar,

P
w=Q/N=aL +7p —AL?/2+ 3 ¢ . (3.33)
k=1

It is minimal with respect to p if all levels below the “Fer-
mi energy” (—7,) are occupied:

€S —T05¢€, 4 - (3.34)
With (2.4), (3.19), (3.30), and (3.31) this implies
1 3 2/3
T/A=—%,/c=L —— | =-cp (3.35)
c 2

According to (2.9) the second term on the right-hand side
can be identified with L —R, so that (3.35) is equivalent
to (2.17). Similarly, stationarity with respect to L, (1.15),
implies, using (3.19) and (3.30),

P aEk
a=AL— ¥ —

=AML +
K=1 oL M P

(3.36)

in agreement with (2.14).

These results are, of course, not surprising. We take
only thermal fluctuations of the ledges into account and
do not investigate fluctuations in L or in p so that they
obey the same relations as in Sec. II. This procedure is
justified because we are mainly interested in the finite-size
corrections to the profile (2.11) close to the facet. How it
is modified by the fluctuations will be discussed in the
next section.
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IV. SURFACE FLUCTUATIONS

The results derived in Sec. III contain information
about the fluctuation properties of the facet edge. One
can easily determine two characteristic lengths: A corre-
lation length £ parallel to the global ledge direction (i.e.,

p(x,y)~{Eylclc |Ey) + exp( —y/§”)|(Eo|c:cx |E Y2 /{Eylcte |Ey) ,

where £, is proportional to the inverse energy gap be-
tween the ground state and the first excited state E, of
the fermion system. From (3.19), (3.30), and (3.31) one
obtains

-1/3

& '=Ble,+—€,)=PBmh <A 4.2)

L
21’

&, is the largest length scale over which correlations in
the ledge position are sustained. It must not be confused
with the typical distance of collisions between the facet
rim and the second ledge.'® This smaller length (which
can be shown to be proportional to ¢ ~2/3) should not de-
pend on the total number p of ledges, in contrast to (4.2).
&, describes correlations due to collective fluctuations of
the ledge system as a whole. It is inversely proportional
to the supersaturation A, just as the macroscopic lengths
L, p, and R. The asymptotic form (4.1) is only valid for
y>>§,. On smaller distances one has to take the other ei-
genvalues of the transfer matrix into account, too.

The second length we want to discuss is the typical am-
plitude &, of the wandering of the facet rim about its
average position R. Due to these fluctuations the thermal
average of the profile z(x) is not a constant for 0 <x <R.
But the deviation 6z (x) is small if x <<R —§&: It will
now be shown that &z (x) decays like

exp{ —4[(R —x)/&,1*")
inside the facet, and that
E=c 13, 4.3)

Inserting (3.14) and (3.17), the average slope of the sur-
face is
p
2'(x)=—(Eglefe |Eg)=— 3 ¢ (x)]? . (4.4)
k=1

In Appendix B it is shown that (4.4) becomes, upon inser-
tion of (3.25)—(3.32),

1 c(x —R) _ _
"(x)=—— d 172 234 4.5
z'(x . fc(x_u olo| ™" x(c 7 w) (4.5)
up to terms which are small by a factor ¢'/3. Here,
x(&)=E"2p%(&) (4.6)

vanishes exponentially for £— — o and is the squared
sine part of (3.27) for £&— o. The upper integration
boundary contains the facet size R in the absence of fluc-
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the y direction), and a transverse one, &, parallel to the x
direction.

The physical meaning of £, can best be explained by
considering the probability p(x,y) that any ledge goes
through the point (x,y) given that there was a ledge at
(x,0). Asymptotically it decays like exp(—y/§)). Using
the transfer-matrix technique one calculates

[
tuations, as defined by (2.17) and (3.35).

Now, if x <<R, the argument of y will always be nega-
tive, and hence z'(x) will be exponentially small, but
nonzero. Deep inside the facet, fluctuations modify the
profile (2.11) only by a small amount, of the order of

—i[c(R _x)]3/2

Sz(x)zL[c(R —x)]73%exp
3c

167

(4.7)

(see Appendix C for the calculation). With (4.3) this is
the above-mentioned result.

If the integration in (4.5) extends into the region where
¢ “2w> —1, significant deviations from (4.7) will occur
because Y is no longer exponentially small. This condi-
tion is equivalent to

R—x<c V=g (4.8)

and means that one has entered the interval over which
the rim of the facet typically fluctuates.

It is important to notice that the Airy function and
hence the integrand in (4.5) are bounded everywhere not-
withstanding the singular factor || '/? in (4.5). For
lw|>>c& =c?? one may use the asymptotic expression
(3.27) for the Airy function. For x —R >>£, one can
thus replace (4.5) by

1 c(x —R) _ 2 T
, d 1/2 ;2 3/2
z'(x)= - fo wo”sin® |04
+0(c??). 4.9)

The sine squared oscillates so quickly for ¢ —0 that one
may replace it by its average value 1 in the integral;
hence
2'(x)=—(1/m)[c(x —R)]'/?. (4.10)

In the limit ¢ — 0 corresponding to an-infinite diameter of
the bar we thus reproduce the power-law behavior (2.11)
implying a divergent curvature at the rim of the facet.
Notice that this singularity is directly related to the
singular factor || ~!/? in (4.5), which is actually compen-
sated by the function y if one takes fluctuations into ac-
count properly.

The actual curvature of the surface close to x =R is
obtained from (4.5):



41 SHAPE FLUCTUATIONS OF CRYSTAL BARS

z"(x)=—(c/m)|c(x —R)|""?*x(c'*(x —R))

=—(1/m)c**p*c'*(x —R)) , (4.11)

where the Airy function ¢ is perfectly smooth at x =R.
[The contribution from the lower integration boundary is
exponentially small and has been neglected in (4.11).]
This shows that the singularity (2.12) is smeared out on
the scale ¢ ~!*=¢£, as expected.

V. ISLAND FORMATION AND DECAY OF A BAR

As already mentioned, the calculations of the preced-
ing sections ignored the possibility of island formation on
the upper facet. Fluctuations like these will ultimately
lead to a decay of the translationally invariant bar shape,
which, of course, is not the true equilibrium shape of the
material. However, this decay will be seen to be very
slow for large diameters.!” It is an activated process, the
activation barrier being due to the ledge parts perpendic-
ular to the y direction required by any change of L or p.

Any deviation of the number of ledges from its optimal
value p, determined by (3.34), increases the free energy if
L is kept constant. Therefore, these fluctuations are not
responsible for the decay of the bar. This is in contrast to
fluctuations of L for fixed p (Fig. 4) that lead to an insta-
bility of the bar.

Suppose the value of L is constant along the bar apart
from an interval of length Y where it deviates by
AL ==1. This costs a free energy

AQ=YAw—+Lst. (5.1)

The second term is due to the ledge parts perpendicular
to the bar direction in the region where L changes, and s
is a positive coefficient of order unity depending, e.g., on
the island shape. The free-energy difference per unit
length, Aw, is obtained from (3.30) and (3.33):

Ao=[a—AL +p)JAL —A(AL)*/2 .

If the values of L, p, and A are adjusted according to
(3.36), the first term vanishes, so that

Awo=—A/2. (5.2)
Therefore, (5.1) becomes negative for
Y>LA 2sreL?, (5.3)

~

L e e e —— —

FIG. 4. Fluctuation of the bar diameter.
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which means that the bar is unstable for long-wavelength
fluctuations in L. As the sign of AL does not matter, one
can always arrange bulges (AL >0) and constrictions
(AL <0) in such a way that the volume of the bar, V.,
remains constant. Then the quadratic term in (1.10) is
zero and hence cannot stabilize the bar against these fluc-
tuations.

What is the characteristic time until such a bulge nu-
cleates on a bar which was prepared ideally with L and p
constant? As long as a bulge does not go all around the
bar but covers only a finite portion g <1 of the cir-
cumference, (5.1) has to be replaced by

AQ=q(—YA/2+Lst)+Ys'T . (5.4)

The last term is due to the boundaries of the bulge paral-
lel to the bar direction, and s’ is a positive geometry fac-
tor of order unity. It vanishes if the bulge goes all around
the bar (i.e., ¢ =1). If the facet width R =7/A is much
larger than 1, the positive last term in (5.4) dominates
over the first one. Hence Y remains small, as long as the
bulge is not completed. The nucleation barrier is there-
fore Lst, so that the characteristic time for the nu-
cleation of a bulge (or constriction, by analogy) is, ac-
cording to standard nucleation theory (e.g., Ref. 18),

touel = exp(BLsT) . (5.5)

For small temperatures and large samples it takes an
extremely long time for a perfectly cut bar to begin to de-
cay into crystallites. Thus the assumptions made in the
derivation of the ledge fluctuations in the preceding sec-
tions are justified.

VI. CONCLUSION

In order to summarize our main results, we distinguish
two categories of lengths which are important for the
shape of a cylindrical crystal bar with facets. The first
type scales with the inverse supersaturation A~ !. It is
well known that the diameters of the bar and the facets
belong into this category. In this paper we have shown
that the length &, (4.2), over which the ledge positions
remain correlated is proportional to these characteristic
dimensions of the cross section of the bar.

The second type scales only with A ~!/3. These lengths
are vanishingly small compared to those in the first
category if the size of the bar becomes large (i.e., A—0).
A well-known example is the width /,, (2.8), of the mth
terrace which increases only as A~ !/% [see (2.9)]. This is
the reason why the terraces are qualitatively different
from the facet, and look like a continuously rounded sur-
face in experiments on large samples. We have shown
that the amplitude £, of the fluctuation of the facet rim is
of the same order of magnitude as the width of the first
terrace. This implies that even in the vicinal regime
ledges are not well separated: Their average positions are
not much further apart than the distances over which
they typically wander. Notice, however, that we have
only taken the steric repulsion between ledges into ac-
count. The elastic repulsion!® might alter this con-
clusion. The singularity found in the curvature close to
the facet if fluctuations are neglected as in the Wulff con-
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struction is actually smeared out over the interval £,.
The power law (2.11) can only be observed in a distance
from the facet rim which is much larger than §,.

There is an interesting relation between our results and
complete wetting in two dimensions. In this case, one
considers a single line instead of p ledges. It represents
the interface between a liquid layer attracted to the sub-
strate at x =L and the vapor phase. As long as ¢ >0 the
(two-dimensional) bulk prefers to be in the vapor phase so
that the wetting layer has finite thickness /, ~ &, (see, e.g.,
Ref. 20). As one approaches phase coexistence (c —0)
the wetting layer becomes thicker and thicker: §&,
diverges as ¢ !/, At the same time the correlation
length parallel to the interface diverges as ¢ “2/3.2° This
may be regarded as a special case of our result (4.2) for
p=1

The lengths §; and &, should not be confused with
those introduced in Ref. 21, also in the context of equilib-
rium shapes of crystals. The difference becomes most ob-
vious if one considers a tilted, flat surface, i.e., A is zero
but the density of ledges, p /L, is finite. Then the correla-
tion functions decay algebraically,?? in agreement with
our result that the correlation lengths &, and §, are
infinite. In Ref. 21 § and §, have a different meaning:
They describe the (finite) scales on which the algebraic
decay occurs. For instance, £, has the meaning of the
average distance between the ledges.

The key point of the calculation was to identify the
ledges with free fermions in a triangular potential well.
For simplicity we only considered the case of tempera-
tures small compared to the kink energy, kzT <<, so
that we could neglect kink interactions. We concentrated
on the leading corrections to the Wulff shape by requiring
that A <<kyzT. This allowed us to use the Hamiltonian
limit (3.10) of the transfer matrix and to solve the fermion
system in the continuum limit.

The most basic assumption we made is that the bar
geometry is reasonably stable to permit the development
of a (quasi)equilibrium of the ledge fluctuations already
described. Therefore, we estimated the characteristic nu-
cleation time (5.5) for bulges and constrictions along the
bar—typical fluctuations which trigger its decay into
crystallites. For small supersaturation this time turns out
to be exponentially large (provided, of course, that 7 and
o are not too small compared to kg T, so that macroscop-
ic dimensions R and L are guaranteed). Therefore our as-
sumption is justified if the bar has been prepared careful-
ly enough, i.e., without many bulges and constrictions to
begin with. In practice this will be difficult to achieve, so
our theory needs future refinement in this direction in or-
der to permit a comparison with experiments.

There is another constraint—a lower bound on the
supersaturation—which has to be taken into account. It
comes from the influence of gravitation on the equilibri-
um shape and has been pointed out recently by Avron
and Zia.'? Let us assume the z axis is vertical (Fig. 1). In
the presence of gravity the chemical potential and hence
the supersaturation, too, depend linearly on the height:

AMz)=A(0)—gz , (6.1)

where A(0) is the value just above the facet, z =0, and g
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is the gravitational acceleration times (p.—pyo) [cf.
(1.14)]). Accordingly (2.6) becomes

f'(xm-kl_xm):fl(xm —fm—l)—}"(—m) ’

which implies, instead of (2.7),

ffU)=— 3 M—n)=—A0m —gm(m +1)/2 . (6.2)

n=1

Consequently, the determination (2.9) of the profile is
more complicated:

m —1/3

xm+l—R = 2

n=1

3 1
7 [AMO)n +gn(n+1)/2] G

(6.3)

If m <<A(0)/g, the A(0O) term in small parentheses dom-
inates and leads to the power laws (2.9) and (2.11). How-
ever, if m >>A(0)/g, the g term determines the behavior
of (6.3). Then one obtains

G 1/3
fm+l—R z(6'77')2/3 —m’ ’
4
or equivalently
g 1 3
~— (x —R)>. (6.4)
G (67)*

In agreement with Ref. 10 we find an exponent 3 instead
of  which was found without gravitation.

We have shown that the power law (2.11) can only be
observed for

x —R>>£=[G/AM0)]3,

i.e., in a vertical distance from the facet

lz| >1. (6.5)

On the other hand, taking gravitation into account,
|z|=m must be much smaller than A(0)/g. Otherwise
one will see the crossover to the different power law (6.4).
In order for the window to be large, where (2.11) can be
observed, it is required that

g <<A0) . (6.6)

If would be nice if one could study the fluctuations of
the shape in full generality, including the influence of
gravity. However, it can be seen easily that this becomes
a formidable task: In the fermion language gravity intro-
duces a complicated interaction among the particles so
that the Hamiltonian can no longer be straightforwardly
diagonalized.

If the bar is not infinitely long but of a length compara-
ble to 5”, then it does not suffice to take into account the
two largest eigenvalues of the transfer matrix only. This
gives rise to additional finite-size corrections?® to the
equilibrium shape, e.g., to (4.1) and (4.4). This type of
correction will be important if one wants to make a real-
istic comparison with experiments on more ‘‘cube-
shaped” crystallites.
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APPENDIX A

The normalization condition

I5 lolPdx =1 (A1)
is equivalent, according to (3.25), to
k
VA= fiqﬂ(g)dg, (A2)

where £ is the kth zero of the Airy function ¢. for large
k one can use (3.27) to write

i+
MNAE — AT~ fgk "(36) Y sind¢ (A3)
k
where &, =mk. It follows that
da;? 37 “2/37r 1
1/3 = |27 s k3
dk > k 5 1+0 X , (A4)

which can be integrated to give (3.32).

APPENDIX B

According to (4.4), (3.25), (3.30), and (3.31), the average
slope of the surface is given by

p
Z’(x)=— 3 AlpHc P o(x,k)), (B1)
k=1
where
2/3
. 37
olx,k)=c(x —L)+ —Z‘C(k —%)l . (B2)

With k=ck one may replace the k summation in (B1) by
an integral in the limit of small c:

$ =t [T

k=1

(B3)

where pc is a constant independent of ¢. Substituting w as
the integration variable gives

173
ey L 2 (|37 | _c
z'(x)= o fﬂ’o dwAdy,, 3 K73
X ¢*c " w) . (B4)
Up to corrections small by a factor ¢2/® (at most) the in-

tegration may be extended from

2443
wy=c(x —L) (B5)
through
3 2/3
w,=c(x —L)+ T”cp =c(x —R), (B6)

where we used (2.17) and (3.35) to identify R. From
(3.32) we know that for k >>c¢
~1/3

(B7)

The main error in this formula occurs when one neglects
the integration constant in the integration of (A4). This
error is small by a factor ¢'/>. Inserting (B7) into (B4)

one obtains up to corrections small by a factor ¢!/?
il e _
Z'(x)=—c 3= do ¢*(c " w) . (B8)
w f“’o ¢

With (4.6) this completes the derivation of (4.5).

APPENDIX C

For x <<R one may use the asymptotic expression
(3.28) in (4.6) and (4.5) so that

372 (C1)

4
I ()]

' 1l -1/2
|z'(x)| = yyn fwli do o™ exp 3

with wg,w, given in (BS) and (B6). To get a rough esti-
mate we extend the integration up to infinity. A substitu-
tion

(=10 (€2)
leads to
o)~ [ ge—L_ _2
lz(x)|~47r ‘) dé‘w(g) exp C§ . (C3)

Replacing o ! by its maximal value one obtains an upper
bound for the integral:

-'i_|601|3/2

3 (C4)

|z’(x)|z~8€;\w1\—1exp

The deviation 8z (x) from z =0 deep inside the facet can
now be estimated by

5z (x)= f0x|z’(x’)dx'|
1 ,(0)

- do|w,| "exp

oy ] .

(x)

Going through the same steps as above, one arrives at
4.7).
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