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The time dependence of relaxation for many substances near their glass transition region is often
found accurately to obey a “stretched exponential” form, exp[ —(¢/7)%], with the stretching ex-
ponent in the range 0 <a < 1. It is the objective of this paper to relate a and 7 to gross topographi-
cal features of the many-particle potential-energy hypersurface. The multidimensional basin repre-
sentation for the potential energy, supplied by the inherent structure theory of condensed phases,
offers a convenient analytical framework. The relaxation time spectrum for stretched exponential
behavior thus is related to the manner in which basins can be aggregated in the multidimensional
configuration space into “‘metabasins,” using a transition free-energy criterion. A conclusion of the
analysis is that a should decline with decreasing temperature; some limited experimental and simu-
lational support exists for this proposition. In addition, the usually found non-Arrhenius behavior
for 7 is connected by the study to the increasing extent of branching and tortuosity of basins inha-

bited as the temperature declines.

I. INTRODUCTION

The properties of glass-forming materials continue to
resist comprehensive and fundamental understanding,
despite intense scientific effort devoted to the subject. In
particular, it remains somewhat unclear how chemical
distinctions between substances influence the kinetics of
relaxation processes in the glass transition region, and
even how those distinctions fully control glass-forming
ability itself. This study addresses some of these issues in
a general way, and appears to yield a few useful insights.

It will be helpful at the outset to recall the primary ex-
perimental attributes of good glass-forming substances,
i.e., those that can be readily supercooled (without nu-
cleation) to a rather well-defined ““glass transition temper-
ature” T,. For pure substances that melt at temperature
T, and are good glass formers, T, occurs at about
0.7T,,.' In any case T, ¢ marks the point at which various
relaxation processes have become slower than typical
times of experimental observation, producing sudden
shifts in the temperature dependence of most measurable
properties. The heat capacity provides an important ex-
ample: It usually shows a sudden drop upon cooling
through T, becoming for the sub-T, glass nearly equal
to that for the crystal.>? Naive extrapolation of the
supercooled-liquid heat capacity to the regime below T,
leads to identification of the Kauzmann point T, < T, at
which an ideal glass with vanishing configurational entro-
py hypothetically would obtain.*

For temperatures in the vicinity of T, the relaxational
behavior for most observable properties conforms to a
stretched-exponential (Kohlrausch-Williams-Watts) func-
tion of time ¢:

§(ty=Coexp[ — (/7)) . (1.1)
The stretching exponent « lies in the range

O<a<l, (1.2)
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appears to be sensitive to the chemical nature of the ma-
terial, and tends to decrease as temperature is lowered
through T,. The characteristic time scale 7 of the relaxa-
tion function is strongly temperature dependent, and like
the shear viscosity 7)(7) it exhibits markedly non-
Arrhenius behavior that can often be fitted by a
Tammann-Vogel-Fulcher form in which the Kauzmann
temperature T, (or a close approximation thereto) spon-
taneously reappears:®

T(T),n(T)=Aexp[B/(T—T,)], A,B>0. (1.3)
Typically 7(T,) will lie in the range of seconds to days,
7n(T,) in the range 10''-10" poise.

A wide variety of theoretical models have been pro-
posed to explain glass formation and relaxation. Those
that are most relevant to this analysis have stressed the
highly constrained nature of atomic or molecular motions
in glassy media, and have offered simplified visions of the
available collective rearrangements.” '© An attempt will
be made in the following to avoid specific modelistic as-
sumptions. Rudimentary versions of some of the ideas
used in the following were presented in an earlier paper.'!

Section II reviews the generic properties expected for
the multiparticle potential energy function ¢ that de-
scribes interactions in glass formers. As often pointed
out before,!' '3 it is natural and useful to describe the
geometry of the @ hypersurface in terms of its “basins,”
one surrounding each relative minimum of ®. Section II
therefore also considers the classification and enumera-
tion of those basins by a relevant set of intensive order
parameters. Section III examines the kinetics of inter-
basin transitions, and discusses the nature of history-
dependent properties of low-temperature glasses. Section
IV introduces a systematic procedure for aggregating
basins into ‘“‘metabasins’ as a way to assess the hierarchi-
cal character of the ® hypersurface topography. This
procedure leads, in Sec. V, to a geometric connection
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with the relaxation parameters a and 7 in the stretched-
exponential form (1.1), the main objective of this paper.
Section VI presents some comments and conclusions.

II. INTERACTION POTENTIAL

The many-particle systems of interest will contain
some macroscopic numbers, N;,N,,..., of distinct
chemical species. If chemical reactions are involved in
the formation and relaxation of the glass state (as ap-
parently happens in liquid sulfur'® and selenium'?), it
may be convenient to regard the different types of atoms
as the elementary species. We shall denote the total num-
bers of particles by N:

N=TZN,. 2.1)

The interaction potential for the system as a whole,
®(R), generally will comprise intramolecular, inter-
molecular, and container wall interactions. It may be
identified as the ground-electronic-state = Born-
Oppenheimer energy hypersurface for the system, with a
suitable choice for the zero of energy. Experimental pro-
tocols can require either constant volume (¥) or constant
pressure (p) conditions. In the former case the
configurational vector R would be composed of the posi-
tion coordinates for all nuclei present in the system. In
the latter case it is convenient to include a pressure-
volume term p¥ in ® (so it becomes a potential enthalpy),
and to extend R to include an additional component
specifying the position of a constant-force boundary pis-
ton. The following formalism accommodates both proto-
cols.

Several generic properties can be listed for ®(R).

(a) ® <+ « provided R has all atomic nuclei separat-
ed.

(b) &= —CN, where the positive constant C depends
on the intensive composition variables and the pressure,
but is independent of N.

(c) @ possesses full permutational symmetry under in-
terchange of identical particles.

(d) @ is arbitrarily many times differentiable in all its
variables for all configurations R with separated nuclei.

(e) Absolute minima of ® correspond to the most near-
ly perfect crystalline arrangement of particles that can be
formed with the given composition and boundary condi-
tions; higher-lying relative minima include imperfect
crystalline and fully amorphous particle packings.

(f) An enumeration of all local ® minima (mechanical-
ly stable particle packings) shows that their number Q
has the following asymptotic form for large system size
N:

InQ~In

1~ ] +wN , 2.2)

where positive constant v depends only on intensive com-
position variables.'”> The term containing factorials in
this expression arises simply from the existence of
permutation-related equivalent minima, while v measures
the exponential rise rate of the number of inequivalent
particle packings.

Mass-weighted descent trajectories on the ® hypersur-
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face in the multidimensional configuration space can be
used to define mutually exclusive and exhaustive basins
surrounding each of the relative ® minima. These trajec-
tories are the solutions to

m-dR/du=—V,®, (2.3)

which converge to configurations of minima as the virtual
time variable u — + «. Here m is the vector composed
of nuclear masses (and the piston mass for the constant
pressure case). The locus of all configuration-space
points that lie on trajectories to a specific relative
minimum at R, defines the basin B, for that minimum.
The solutions to Eq. (2.3) that converge to other types of
extrema (saddle points, maxima) have zero measure and
can be disregarded for the moment.

The pair of basins B, and B/, that share a nonvanish-
ing portion of boundary will be dynamically connected
through one or more transition states (saddle points) ly-
ing in that shared boundary. The motivation for includ-
ing the mass weighting in Eq. (2.3) is that the trajectories
descending from the saddle point to minima A and p to-
gether trace out the conventionally defined reaction coor-
dinate for the transition.!* Variation of the masses (as by
isotropic substitution) changes the shapes of the basins as
already defined. However, the basin boundary hypersur-
faces continue to pass through the saddle points, merely
rotating the direction of their normal there, the direction
of the reaction coordinate. The number of basins and
their mean size remain unchanged under mass variation.

An additional attribute of the ® hypersurface can be
listed, which plays a very basic role in the subsequent
analysis.

(g) Transition states, and the associated reaction coor-
dinate paths between neighboring relative minima, in-
volve particle rearrangements that are localized in 3-
space. This is obvious for transitions leading out of the
crystalline absolute minima, where localized point defects
(close vacancy-interstitial pairs) are created. It is less ob-
vious for transitions between contiguous amorphous-
packing basins, but has been discovered to be the case by
careful computer simulation studies on a variety of model
systems,'*!81% and it is supported by analytical models.?’

Several important consequences follow from property
(g). The first is that the number of transition states on
the boundary of any basin is expected to be O (N), since
the elementary localized transitions could occur any-
where throughout the macroscopic system. Furthermore
the saddle point directions (i.e., normals to the basin
boundary hypersurfaces at the transition states) are not
isotropically distributed, but must be concentrated along
directions with just a few non-negligible Cartesian com-
ponents to be equivalent in fact to localized particle rear-
rangements. Another inference is that ® only changes by
O(1) in passing from a minimum, across a saddle point,
to a contiguous minimum. This contrasts with the O (N)
variation in @ that the system must experience under
rearrangement from a crystalline absolute minimum to
one of the highest-lying amorphous relative minima; such
a global rearrangement requires a sequence of elementary
transitions whose number must be at least O (N).

The next step involves classifying the local ® minima,
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the particle packings, by a set of intensive order parame-
ters {£;} =&. These will be chosen to be invariant to per-
mutations of identical particles. By convention this set
will always include ¢=®,/N, the depth of the minima
on a per-particle basis. Other order parameters to be
considered will depend on the specific application, but
might include coordination number distributions, molec-
ular conformational-state probabilities, concentrations of
crystallites of various sizes, and (for constant pressure
conditions) the volume per particle.

Because of (g), each &; can only change by O (N 1) as a
result of an elementary interbasin transition. In the large
system limit these order parameters thus can be treated
as continuous functions of time, with variations that are
uniquely determined by the thermal history of the sys-
tem.

Even after they have been classified by £ the number of
minima (and basins) is expected to depend asymptotically
on N in qualitatively the same way as exhibited in Eq.
(2.2). If Q&) stands for the density of minima in order-
parameter space, we can write

InQ(£)~1n []‘[N,-!]Jra(é’)N, o(£)>0), (2.4)

and in light of Eq. (2.2) we can make the identification

v=maxo(£) . (2.5)

The quantity o is k5 ! times the configurational, or pack-
ing, entropy per particle in the state with given order pa-
rameters.

Intrabasin excursions away from the ® minimum arise
from vibrational motions. Large amplitude excursions
can be very anharmonic and can be interrupted by a tran-
sition into a neighboring basin. In the large system limit
of primary concern here, mean vibrational properties of
all of the basins for a given & will be virtually identical.
Specifically this is true for the intrabasin vibrational free
energy, which on a per-particle basis will be denoted by
f,- The formal definition of this temperature-dependent
property, using classical statistical mechanics, is as fol-
lows (B=1/kgT):

FAEB=—(NB) In(Z,(B)) ,
H }\’-“31\"

(2.6)

Z,B= fBMdRexp[—B(CD—(I)“)] ,

where the A; are mean thermal deBroglie wavelengths for
the respective species, and where the average indicated in
the first line covers basins of the species denoted by the
given order parameters. Though it is somewhat more
cumbersome to write, a quantum version of the f,
definition could be cited.?! As remarked in the Introduc-
tion the (vibrational) heat capacity of many glasses below
T, is similar to that of the crystalline phases, suggesting
at least for those cases that f, is relatively insensitive to
variations in the £.

The pair of functions o and f, suffice to determine the
thermal equilibrium state of the system at any tempera-
ture, and density or pressure. The appropriate free-
energy function, Helmholtz or Gibbs for constant volume
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or constant pressure, respectively, is given on a per-
particle basis by

mgin [f,(&,B)+6—B la(£)] . (2.7)
Furthermore, the set of order parameters that minimizes
this combination is indeed that whose basins are the oc-
cupied ones under the given conditions of temperature
and pressure.

Selection of order parameters merely to describe

thermal equilibrium is straightforward, at least in princi-
ple. It suffices to use just a single &;, which, by conven-
tion, would be ¢. The resulting theory would give ¢ as a
function of temperature and density (or pressure). Incor-
poration of a larger set of £;’s would simply describe the
same equilibrium states as before, but more fully in terms
of microscopic structure. However, the requirements are
more challenging in the nonequilibrium regime, where it
then becomes necessary to include a sufficiently complete
set of order parameters to describe at least all experimen-
tally accessible thermal history effects.

Equation (2.7) refers to strict thermal equilibrium, and
below the melting temperature it automatically accesses
the crystalline phase. However, a conceptually simple
modification has been advanced that permits examination
of supercooled liquid and amorphous solid states.?>?
This modification requires removal from consideration
(and thus from the definitions of ¢ and f,) all basins
whose stable packings contain regions of crystalline order
larger than a preassigned microscopic cutoff size. Pro-
jecting out of consideration such crystallite-containing
packings leaves virtually unchanged the predicted ther-
modynamic properties of the stable liquid phase, while
automatically providing a clean extrapolation of those
properties into the supercooled regime.

III. INTERBASIN KINETICS

Dynamical details of intrabasin vibrational motions
have little direct relevance to glass relaxational phenome-
na. A more coarse-grained dynamical description, which
accounts only for time dependence of basin occupancy, is
sufficient, and for that purpose we let p,(¢) represent the
probability that the system inhabits configuration space

basin B u at time ¢. The master equation for these proba-
bilities is:!!
dp#(t) _

i > [KVAH(E) V(t)—Kyﬁw(E)p#(t)] . (3.1

w7 pu)

The conserved energy for the system (including the piston
if the constant-pressure protocol applies) has been denot-
ed by E. The transition rates K, _,, and K,_,, obviously
depend on E, and must satisfy the condition of detailed
balance. If M, (E) is the phase-space measure of basin

B, at energy E, then this condition requires
_ 1

K, . (E)=[M,E)/M,/E)]'?4,,E),

K, . (E)=[M/E)/M,E)]'?4,/(E),

where 4, (E)=A4,,(E).
An assumption of intrabasin quasiergodicity underlies

(3.2)
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applicability of master equation (3.1). This would surely
be violated at low energy (low temperature) where small
amplitude, nearly harmonic, vibrations obtain. But in
that regime virtually no transitions between basins would
occur anyway, so violating the assumption is irrelevant.
However, there is a more significant concern about Eq.
(3.1) that must be kept in mind. This involves changing
E by heating or cooling the system nonuniformly,
specifically at its surface. In this circumstance localized
transitions in the surface region would have their rates
first affected, and only after thermal conduction had
equilibrated temperature throughout the sample would
interior localized transitions have their rates modified.
We shall avoid this problem simply by assuming that on
the time scale of experiment, it is possible to arrange for
temperature uniformity.

Since virtually all properties of experimental interest
are symmetric under exchange of identical particles, the
description offered by Eq. (3.1) is still unnecessarily de-
tailed. It suffices merely to have the probabilities that the

system inhabits equivalence classes of basins. Conse-
quently set
ﬁ,u(t)z zpe(y)(t) ’ (3.3)

where the summation covers all [];N,! basins related by
permutations of identical particles, and henceforth index
p will label equivalence classes. The master equation for
these aggregate probabilities has the following form:

Bt _ L, (Ep,(t)—L, (Ep,(t)
dt _v(glu)[ v D, (t p—v Py t ] >
(3.4)
in which
L, . (E)=[M,E)/M/E)]'*B,E), (
3.5)

L, (E)=[M/E)/M,E)]'*B,E),

and the symmetric matrix B,,=B,, is composed of a
sum over one or the other equivalence classes of the prior

J
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matrix elements 4 ,,:

B;w: 2 A;l.e(v)= 2 Ae(/.t)v . (3.6)
e e

Previous studies of models for various real materials
indicate that direct transitions between basins belonging
to the same equivalence class indeed exist, but are rela-
tively infrequent.!® In any case these purely permutation-
al transitions, which switch identical particles around
closed loops, do not enter into the new transition rates
(3.5) and (3.6).

The order parameters {£;} =& introduced earlier are
permutation-symmetric quantities, and so they serve as
appropriate classification indices for the basin
equivalence classes. Time dependence of the order pa-
rameters is the central concern for understanding glass
relaxation. Therefore, it is desirable to convert Eq. (3.4)
explicitly to an order parameter basis, within which the
probability density is given by

P(E,,t)=exp[No(§,)1p,(1) .

Here §, represents the location of basin equivalence class
p in the order parameter space.

The configurational entropy function in § space will be
denoted by S(&,E). It includes both packing and vibra-
tional contributions, and is given by

(3.7)

explky 'S(&,E)]1=(M,(E))exp[Na(£)] . (3.8)

The average value indicated by (. .. ) covers equivalence
classes u in the neighborhood of location £. In the same
spirit a suitably averaged and weighted transition matrix
B can be introduced

B(§,&,E)=exp{{N[o(£)+0(§)]} (B, (E))) .
(3.9)

The double average (. .. )) covers equivalence classes u
at location &, as well as those denoted by v at £&'. With
these definitions the master equation adopts the form

AL — [ ag'B(e, €, EXexp|(2Ky) ~'[S(E,E)=S(E, N PLE ) —exp((2Ks) (S (§,E) = SEENIPIED) .

In the large-system limit the order parameters become
continuous variables, so that the discrete v summation in
Eq. (3.4) is replaced by the &’ integration in Eq. (3.10).

It was pointed out earlier that the fundamental inter-
basin transitions cause only O (N ~') shifts in £. Conse-
quently B is nearly diagonal in £ and &'. To take advan-
tage of this feature it is useful to set

B(§,8')=By(E+1AE,AE), AE'=E—E, (3.11)

and to introduce the expansion

(3.10
I
By(§+3AE,AE')=B((§,A8' )+ 1AL -VBy(E,AE)
+ A AEVVBL(E,AE)+ -+ - .
(3.12)
A corresponding expansion for P is the following:
P(&,t)=P(§,t)+AE'-VP(E,1)
+1AEAE:VVP(E, )+ - . (3.13)

For present purposes, it is only necessary to retain terms
through quadratic order. When these expansions are in-
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serted in the transformed master equation, Eq. (3.10), sur-

viving terms yield a Fokker-Planck differential equation

in & space:**?
dP(&,1)/dt=—V-[(u-F)P1+B~'V-(u-VP) . (3.14)

The quantities u and F respectively are a mobility tensor
and a thermodynamic force in § space:

p(§,E)=%de§’ By(£,AE',E)AE'AE'
F(&,E)=(kpB) 'VS(&,E) .

(3.15)
(3.16)

The temperature variable B=(kyz T)~ ! appearing in Eq.
(3.14) has been inserted to render the result recognizable
in the standard Fokker-Planck form. It is treated as a &-
independent constant, with 5 and B! occurring as mutu-
ally cancelling pairs. Consequently the precise value
selected is formally irrelevant, but on physically motivat-
ed grounds it is desirable for B to represent the kinetic
temperature that the system would have if it were stabi-
lized at its current £-space distribution by blocking fur-
ther transitions.

Under thermal equilibrium conditions the distribution
function P is very narrow for a macroscopically large sys-
tem, in fact exhibiting a width that is O (N ~!/?). Even
under nonequilibrium conditions a distribution that ini-
tially has a width that is vanishing small for N —
remains vanishingly small during relaxation toward equi-
librium. This is true even if nucleation and phase change
are involved. Clearly the basic behavior of relaxation is
conveyed by the time dependence of £, the mean of the
order-parameter distribution:

En= [dEEP(ED .

As mentioned at the end of Sec. II, projecting out
basins whose packings contain substantial crystallites
yields a formalism in which equilibrated glass states are
attainable in principle. In such a circumstance the con-
strained equilibrium naturally corresponds to a local &-
space maximum of S(§,E). If the order parameter set is
sufficiently complete to describe all measurable relaxation
modes, then £(z) should exhibit simple linear relaxation
behavior in the vicinity of such a maximum. Let

AE=E(1)—E()

represent the deviation from equilibrium. The entropy
locally may be approximated by a quadratic form in A§
components:

kg 'AS(E,E)=—1 D 8,;A8AE;
ij

(3.17

(3.18)

=—1g:AEAE . (3.19)
It is straightforward to show that
dAE/dt=—B (u-g)-AE , (3.20)

where p is the mobility tensor introduced earlier in Eq.
(3.15). It is clear from this last expression that the relaxa-
tion spectrum is determined by the eigenvalues of the ma-
trix B~ 'u-g. Understanding the physical origin of these
eigenvalues in terms of the ® hypersurface topography is
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the basic objective of the next Sec. IV.

While distinct measurable quantities can be expected
to probe the different relaxation modes with somewhat
different weights, the fact that a common functional form
in the time domain, the stretched exponential of Eq. (1.1),
seems to be universally applicable has unavoidable
significance. With that in mind, note that the generic
stretched exponential shown in Eq. (1.1) has the following
spectral resolution:!!+2¢

g(t)=,;0fo°°z(mexp(—mdx , (3.21)
where z (A) has the following behavior at small A:
z(A)=exp[— A (TA) " P+0o(A7P)], (3.22)

and A and p are related to the stretching exponent « in
Eq. (1.1) by

A=(1—a)a®'179

p=a/(l—a). (3.23)

Evidently Eq. (3.22) is the intrinsic spectral density form
to be expected in the long-relaxation-time limit (A—0)
for the eigenvalues of the matrix B~ 'u-g already dis-
cussed. It is thus a form we must expect to encounter in
a detailed study of interbasin transitions in the following
Sec. IV.

IV. BASIN AGGREGATION

The distribution of potential-energy barriers that must
be surmounted controls relaxation rates in glass-forming
materials. Both barrier heights and the apertures of the
transition-state regions are important for the kinetics.
Activation free energies F* account for these two attri-
butes, and so provide an appropriate description.

Specifically we can employ transition-state theory?”?® to
rewrite transition rates from Eq. (3.4) as follows:
L,  (E)=oy&exp[—BF*(u—v)], 4.1

where wy(£) is a frequency factor, and B is the inverse
temperature quantity appropriate for system energy E. It
should be stressed that w, may depend strongly on the or-
der parameters £. Activation free energies F*(u—v) and
F*(v—p) for forward and for reverse transitions general-
ly will be unequal.

The activation free energies can now be used to formu-
late a criterion for basin aggregation. More precisely,
equivalence classes for basins will be grouped together to
form larger “metabasins.” By construction, free-energy
barriers within any metabasin will be low, while those be-
tween metabasins will be higher. Consequently, most
motions (relaxations) within metabasins will be rapid,
while those between metabasins will be slower.

Introduce a continuous free-energy cutoff variable
1n20. For fixed 7 the metabasins are defined to be the
largest sets of basin equivalence classes such that within
each set any pair of equivalence classes is connected ei-
ther directly of indirectly by a transition path along
which the net rise in activation free energy does not
exceed 1. Notice that such net rises can consist of a sum
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of smaller barrier contributions, as Fig. 1 illustrates.
Free energy changes along paths connecting the bottoms
of distinct metabasins necessarily exceed 7.

In order to make the aggregation process unique for a
given 7, it is necessary to proceed sequentially, starting
with the equivalence class of deepest available basins
(these correspond to amorphous packings, as mentioned
at the end of Sec. II). After having identified the aggre-
gate containing these basins, the same procedure is then
applied to those that remain to form the second meta-
basin. This operation is continued until all basin
equivalence classes have been exhausted. In principle,
the same sequential formation method for metabasins
must be followed for each new value of 7.

It is obvious that the number of metabasins will be less
than exp(vN), the original number of basin equivalence
classes, and will be monotonically decreasing with 7.
That is, a rise in 7 on average creates larger metabasin
aggregates that are fewer in number. The same comment
applies to metabasins labelled by fixed values of intensive
order parameters.

Because the barriers between metabasins by construc-
tion are at least 7 in activation free energy, the rates of
those relaxation processes which require passage between
metabasins is no faster than

AMn)=w,(E)exp(—Bn) ,

which parallels the form utilized in Eq. (4.1). Here w,(§)
is an appropriate frequency factor for the 7-level meta-
basins. Processes faster than those described by Eq. (4.2)
have become intra-metabasin processes.

Just as was the case before aggregation, transitions be-
tween metabasins should involve localized rearrange-
ments of O(1) particles. But now there are far fewer
such transitions to be considered, as indeed there are far
fewer metabasins than basins. In principle, it is possible
to enumerate metabasins at aggregation level 7 by speci-
fying a characteristic 3-space volume v (7)) within which,
on average, a single localized transition that switches be-
tween metabasins could be expected to occur.!' In ac-
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FIG. 1. Construction of metabasins using the activation-
free-energy criterion.
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cord with the earlier convention, we shall denote the den-
sity of metabasins in order-parameter space by
exp[o(&,m)N], where o(§,0) is the quantity introduced
in Eq. (2.4), prior to implementing the aggregation pro-
cess. This density would then have the form

explo(&,mN]=2""" g(&n)=VIn2/Nv(n), (4.3)

where V as before denotes the volume of the entire sys-
tem.

Clearly v (%) will increase with 7, though in a manner
likely to be nonuniversal and sensitive to details of the
particle interactions. In order to accommodate diverse
glass-forming materials in the description, the following
flexible form will be adopted as a reasonable representa-
tion for large %:

v(n)=vgexp{[w,(§)/A(n]"P},

wherein v, is some order-unity fixed volume that is in-
dependent of 7. The quantity g, expected to be material
dependent, has been introduced here to express the rate
of increase of v(n) with 7. For later convenience,
B=1/kgT has been placed in the exponent in Eq. (4.4).
Notice that Eq. (4.2) transforms Eq. (4.4) to

(4.4)

v(n)=veexp[exp(gn)], 4.5)

so that the metabasin enumeration function o may be ex-
pressed as follows:

o(&,m)=aexp[—exp(gn)], a=VIn2/Nv,. (4.6)

We now turn to the task of connecting the inter-
metabasin Kinetics to the measured relaxation functions,
the stretched exponential form (1.1), for which the spec-
tral resolution function z(A) was given earlier in Eq.
(3.22). Note that the cumulative spectral density has the
same asymptotic form as z (1) itself:

[lzovdv=expl— a0 HoA ], @)
where A and p were given earlier in terms of the stretch-
ing exponent a. This cumulative density involves all
inter-metabasin transitions whose localized rearrange-
ments are capable of producing a measurable change at
the experimental probe. In effect this demands that
probe and localized rearrangement occur within the same
region of 3-space. Therefore, to within insignificant fac-
tors, the cumulative spectral density for a typical relaxa-
tion measurement will be inversely proportional to v (7).
Hence from Egs. (4.4) and (4.7) we must have

[, () /A ]P= A (r0)7P . (4.8)

The next step involves eliminating the 7 dependence of
the left side of Eq. (4.8) in terms of rate variable A. To do
this we note first that the metabasin frequency factor
w,(§) is expected to decline with increasing 7. The
reason is that the interiors of metabasins by construction
exhibit rough topography, and Zwanzig has shown?’ that
diffusion in rough potentials can become very slow.
Furthermore, the aggregation process may produce tenu-
ous and multiply-branched metabasins that amount to
blind mazes from which the dynamical configuration
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point escapes only with difficulty. A reasonable represen-
tation of such effects should be given by the form:

w,(E)=wy(E)exp(—y7) . 4.9)

As is the case with ¢, the parameter y should vary from
one glass former to another. Combining Egs. (4.2) and
(4.9), one finds

o, (E)=[ag(&)JP/ PR/ EHY) (4.10)
Consequently Eq. (4.8) becomes:
[og(£) /A BFY = g ()~ 17 | (4.11)

where p has been eliminated in favor of the stretching ex-
ponent « using Eq. (3.23).

As a result of these manipulations, the two principal
results of this paper now emerge from Eq. (4.11). The
first is that the time scale 7 for relaxation is inversely pro-
portional to w:

Tx1/wy(§) . (4.12)
The second is that the inverse of the stretching exponent
a is formally a linear function of B=1/kzT, and is
directly related to the pair of material-specific parameters
gand y:

1/a=1+(B+y)/q . (4.13)

V. DISCUSSION

It was pointed out in the Introduction that the relaxa-
tion time scale 7(T) for many glass formers has a strong
temperature dependence that can often be represented by
the Tammann-Vogel-Fulcher form, Eq. (1.3). Our first
principal result, Eq. (4.12), states that the same must be
true for 1/wy(&). It is true that basins located in the re-
gion of order-parameter space accessed by well-annealed
glasses are especially deep (i.e., separated by high poten-
tial barriers) compared to the basins for high-temperature
liquid. But this distinction alone does not explain the
strong temperature dependence of w,. Frequency factors
for basins of simple and compact shape should vary rela-
tively little with temperature, even though their depths
may become large. Instead, the explanation seems to be
that typical basins become more and more tortuous and
dendritic as one proceeds along the &-space path from
high-temperature liquid to low-temperature glass. Find-
ing an available exit corridor in a complex glass-state
basin could entail first a lengthy sequence of entrances
into blocked basin corridors. It is relevant to point out
that a recognizable version of this idea appears in recent
modeling of glass relaxation using percolation on hyper-
cube edge networks.'%3°

Under the assumption that parameters ¢ and y are
essentially constant throughout order-parameter space,
Eq. (4.13) states that a plot of @ ! versus inverse temper-
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ature should be linear. Relatively little information is
available about the temperature dependence of a over a
sufficiently wide range to make effective tests of this
linearity, although a does appear to decline as tempera-
ture decreases,”’ 33 consistent with Eq. (4.13) and with
the presumption that g >0. Nevertheless we can cite two
examples offered by Fredrickson.>* The first concerns
time dependence of the single-spin correlation function
for the 2-spin facilitated kinetic Ising model (2SFM) on a
square lattice,® evaluated by Monte Carlo computer
simulation. Fredrickson finds that this quantity can be
accurately fitted by a Kohlrausch-Williams-Watts
stretched exponential at all temperatures investigated,
and that the stretching exponent a has the following tem-
perature dependence:

1/a=1.3+2.3(h /kgT)£0.1 . (5.1

Here h is an external-field coupling constant introduced
in the 2SFM. Comparison between Eqgs. (4.13) and (5.1)
suggests that indeed ¢ and ¥ may be constant for the
2SFM, and that

q=0.43/h |

(5.2)
y=0.13/h .

Of course the 2SFM nominally is not a continuum model
as described in this paper, but procedures exist for
embedding Ising-type discrete models in a continuum
context,?® to which our detailed basin aggregation pro-
cedure would apply.

The second example offered by Fredrickson is taken
from Matsuoka’s measurements of mechanical relaxation
in polycarbonate melts and glasses.’> Again the
Kohlrausch-Williams-Watts stretched exponential ade-
quately represents the data, and the stretching exponent

a has the following temperature dependence
(0.0024 < T~ '<0.0037):
1/a=—89+38000/T , (5.3)

in which T is degrees Kelvin. While this formally has the
requisite linear form in B=1/kyzT established by Eq.
(4.13), the negative constant term presents a conflict with
our positive term 1+y /q. However, there may be reason
to doubt whether these mechanical relaxation measure-
ments are relevant to this context. Much of the data
refers to temperatures well below T,, and the stretching
exponents are extremely small, becoming as low as 0.02
over the temperature range examined. Only a small por-
tion of the entire relaxation is observed (on account of its
slowness), and there seems to be a good possibility that
the entire system is moving its state through the order-
parameter space § while the relaxation function is under
measurement. This represents a complication not encom-
passed in our analysis, which assumes a steady metastable
state with macroscopically unchanging order parameters.
While limited support seems to exist for our key result
Eq. (4.13), it is clear that more systematic experiments on
relaxation behavior over a wide temperature range, and
including many different glass formers, would be very in-
formative.
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