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We study the low-temperature properties of a fractional-statistics liquid. Using a hydrodynamic
approach based on an extended mean-field approximation, we show that the excitation is gapless, in
agreement with a random-phase calculation of Fetter, Hanna, and Laughlin [Phys. Rev. B 39, 9679
(1989)]. A compressible quantum fluid with only a phonon as low-lying excitation is shown to be a
superfluid with a ‘“Meissner effect.” We develop a two-fluid model and calculate some properties of
the superfluid phase at finite temperatures. These properties are consistent with high-temperature
superconductivity. We also discuss experimental signals of time reversal and parity breaking in the

superfluid state.

I. INTRODUCTION

The statistical mechanics! of a collection of particles
satisfying fractional statistics’ > poses a challenging
problem in theoretical physics. Recently, this problem
has taken on great physical interest with the suggestion
of Kalmeyer and Laughlin® that the elementary excita-
tions in high-temperature superconductors may have
fractional statistics. We have shown”? that in a non-
linear o-model description of the high-temperature su-
perconductivity, fractional statistics, together with the
separation of spin and charge, emerge quite naturally.
We found that the statistics parameter e‘? (to be defined
later) could have the values e‘™?", for n=integer. This
conclusion agrees with that of Ref. 6. In particular, for
n =1, the excitations are semions. Together with
Wilczek, we have also shown how fractional statistics
could arise in a lattice formulation based on the notion of
chiral spin states.’

In a profound and original article,'® Laughlin outlined
a general picture for the superfluidity of the fractional-
statistics fluid. Microscopically, semions, being half way
between fermions and bosons, should be more inclined
than fermions to pair. Two semions make a boson and
the condensation of such bosons may lead to supercon-
ductivity. We have developed an effective Landau-
Ginzburg theory'! based on this picture and have used
the theory to calculate possible experimental conse-
quences.

The Lagrangian describing a collection of fractional-
statistics particles is rather simple:

L=Sim| | 4p8 s d L1)
2 w2t .

Here x; is a two-dimensional vector specifying the loca-
tion of the ith particle and ¢;; is the azimuthal angle be-
tween particles i and j (measured relative to some fixed
reference axis). We may remind the reader that fraction-
al statistics occurs only in (2 + 1)-dimensional space-time.
The second term in (1) is a total time derivative and does
not contribute classically. Quantum mechanically, how-
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ever, a phase is induced in the wave function. In particu-
lar, if particle i goes halfway around particle j (thus
effectively interchanging the two particles after a transla-
tion) a phase e’ is induced. For §=0mod27 we have
bosons; for 6= mod2m, we have fermions, while for an
arbitrary value of 6, we have anyons. For physical appli-
cations to high-temperature superconductivity, we are
particularly interested®”!'! in semions with 6=m/2.
While most of our discussion holds for arbitrary 6 as will
be clear from context, for ease of language we will often
speak of semions.
From (1) we find that the canonical momentum

p,=mx; —fia;(x;) , (1.2)
where
€ap0x;—x ;)P
aulx)=2 3 ST T 5 (1.3)
T i |xi_xj|

Here the spatial indices a,3=1,2. Repeated «,f indices
are summed. The Hamiltonian is then
2

H g 1 dx;
=3 1im
i=1 : dt
N
> ﬁ[p,-ﬁ-ﬁa,(xi)]z. (1.4)

As is well-known by now, the dynamics can be described
by bosons interacting via a statistical gauge potential a
(not to be confused with the electromagnetic gauge po-
tential, of course). More precisely, the particles may be
regarded as carrying statistical charge 1 and flux ¢=80/7.
There is then a Dirac-Aharonov-Bohm phase interaction
between the particles. The N-body wave function
¥(x,,...,xy) satisfies the Bose condition:

¢(...xi...xj...)=¢(...x,...xi...).

J

Alternatively, we can describe the particles as fermions
interacting with a but with the shift 6—~6—m. In this
case the N-body wave function satisfies the Fermi condi-
tion:
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¢(...x‘_...xj..

We can also perform a singular gauge transformation
and have a free Hamiltonian

2
N op;

H'= .
2m

(1.5)

i=1

In this gauge, the wave function is constrained by the
rather nasty condition that upon interchange of two
functional-statistical particles the wave function acquires
the phase e’°.

The difficulty of the problem may be appreciated by
noting that in the singular gauge the N-body wave func-
tion'? cannot be constructed out of the one-body wave
function as is the case for bosons and fermions. Strictly
speaking, even the notion of the wave function is not
defined. For instance, the two-body wave functions
¥(x,,x,) are reached from some reference positions
(x9,x9). The wave function ¥(x,,x,) has a phase e’%/™%
relative to ¥(x9,x?), where @ is the angle measuring the
number of times the particles have wound around each
other in going from (x9,x9 to (x,,x,). In the N-body
case, the phase depends on the positions of the other par-
ticles.

As is well known by now, the system described here
violates time reversal T and parity P. An exciting possi-
bility is that T and P are violated in high-temperature su-
perconductors,'? leading to rather dramatic experimental
consequences.!! In superconductors the excitations carry
a unit electric charge. In writing down (1), we have ig-
nored the Coulomb interaction term. Its effect is negligi-
ble in the high-density limit, when the kinetic energy,
which is of order #°n/m, is much larger than the
Coulomb energy e?/n~12 in other words, for
n>>(me?/#)%

The problem is then to understand the statistical
mechanics of this system. How does it differ from the
free bose gas and the free fermion gas? What are its ele-
mentary excitations? Is it a superfluid?

It should be noted that at zero temperature this prob-
lem has only two dimensionful parameters: #/m with di-
mension length squared divided by time and the density n
with dimension inverse length squared. Notice that in
our convention the spatial component of the gauge poten-
tial has dimension inverse length (so that the covariant
derivative is 8,—ia ).

At this point, let us warn the reader again of a poten-
tial confusion in this subject. The statistical gauge poten-
tial a is not to be confused with the electromagnetic
gauge potential, which we will denote by A. As it is
rather cumbersome to speak of statistical flux, statistical
magnetic field, and so on, we will simply use terms such
as flux and magnetic field, trusting the reader to discern
from the context whether we mean the statistical magnet-
ic field or the standard magnetic field. When we wish to
emphasize the distinction we will restore the qualifier
“statistical” or put words like magnetic in quotation
marks. We could have followed the practice of another
field and invented terms like selectric and smagnetic but
it is probably clearer not to.

II. MEAN-FIELD APPROXIMATION

The statistical mechanics had been worked out in the
low-density (or high-temperature) limit since the problem
reduces essentially to a two-body problem.!”!* Even so,
the physics contains some surprising features.

In the high-density limit, Arovas et al.' suggested that
a mean-field approximation in which the statistical flux
carried by the particles be averaged over space. The par-
ticles are then treated as moving in a uniform magnetic
field b =€,40,a5=2n60. The idea is then to reduce the
problem to a single-body problem. At first sight, this
appears questionable since the gauge potential a; in (1.4)
felt by each particle is in fact a pure (but topologically
nontrivial) gauge and thus associated with zero b:
€,39,3;5=0. Consider, however, the scattering of one
particle off another. Due to P (and T) violation, the par-
ticle tends to scatter preferentially to one side.'* The net
effect is that the particle moves more or less in a circular
orbit and acts as if it is experiencing a uniform magnetic
field. (Fig. 1). More precisely, as a given particle is trans-
ported around a large loop of area A4 and, enclosing n 4
particles, its wave function picks up a phase e‘"*?¢
Thus, the effective “magnetic” field

b=2n0 . (2.1)

This heuristic picture suggests that the mean-field ap-
proximation may be sensible, at least as a starting point
for further work. Indeed, Laughlin'® has used this ap-
proximation to derive reasonable results for the
fractional-statistics liquid. Furthermore, Girvin and
MacDonald,!® and others!”~!° have shown that this mean
magnetic field approximation when applied to the frac-
tional Hall effect gives results in agreement with
Laughlin’s microscopic theory.

In Laughlin’s work,'> he treated the particles in (1.4) as
fermions and built up the ground state by filling the Lan-
dau levels in accordance with the Pauli exclusion princi-
ple. Recall from the theory of the fractional Hall effect
that the filling factor v is equal to

FIG. 1. A fractional-statistics particle moving in a back-
ground of many other fractional-statistical particles experiences
an effective “magnetic” field.
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Here we plug in for B the value for b given above and so
v=m/60 and the semion case corresponds to filling the
two lowest Landau levels.'’

Recently, Fetter, Hanna, and Laughlin®® went beyond
this work by employing a random-phase approximation.
They showed that the semion liquid is a superfluid.
While this conclusion is plausible, the physics underlying
this random-phase calculation is not totally clear to us.
The important physics is inextricably intertwined with
the technical complexity of the calculation.

Our goal here is to lend support to the conclusion of
Fetter et al. by developing an alternative and hopefully
more physical picture. Our picture overlaps considerably
with the picture developed by Laughlin and his colla-
borators. Our approach is in the tradition of Landau’s
and Feynman’s treatment of superfluidity;?! ~2* it is phys-
ical rather than computational.

(2.2)

v

III. FRUSTRATION AND PAIRING

The difficulty in solving the fractional-statistics-
particle liquid may be expressed by saying that the sys-
tem is frustrated. The wave function has to change sign
whenever one particle goes around another. One way of
relieving this frustration in the semion case is for two
semions to join so as to form a boson.

We would like to sketch some heuristic arguments sug-
gesting that the semions would tend to pair to form bo-
sons. It will be clear that these arguments are incomplete
and may only be suggestive.

First, we can attempt to go beyond the [(N —1)+1]-
body treatment of Ref. 15 by considering an [(N —2)
+2]-body problem in which two semions move in the
mean magnetic field b =2n6=nm generated by the other
(N —2) semions. The two-body Hamiltonian can be
decomposed into a center-of-mass Hamiltonian and the
relative motion Hamiltonian. Solving the relative motion
Hamiltonian, we find that the lowest energy of relative
motion is just 1fiw, =#%b /2m after we take into account
the reduced mass and so on. (Here w,. denotes the cyclo-
tron frequency.) This is the same as the lowest one-body
energy, i.e., the lowest energy of a particle moving
around in the field b.

The key is then to argue that the center of mass does
not see a magnetic field. When the center of mass moves

around a large loop of area A4 and enclosing N , particles,
) . iN (2002 i2aN, _ - .
it acquires a phase e =e =1 for 6=/2 (Fig.

2). Hence, the center of mass sees a zero magnetic
field rather than a magnetic field that is twice as large.
If so, then the two semions have energy
E; body T Ec.m. =3fiw.+(0), which is less than E; .,
tE| poay = 3fi0. + 3w, thus suggesting that it may be
energetically favorable for the semion to pair. This argu-
ment is essentially a more precise expression of the words
given in the first paragraph of this section.

Our second argument is based on the observation that
in contrast to the difficulty of solving the problem of
fractional-statistics particles in empty space, we can

FIG. 2. A pair of fractional-statistical particles moving in a
background of other fractional-statistical particles.

readily write down the wave function of fractional-
statistics particles in an external (electromagnetic) mag-
netic field B. We simply borrow from the theory of the
fractional Hall effect, Laughlin’s famous wave function,
and change the odd integer he put in the exponential by a
fraction:

PY(zy, ..

zy)=[1(zi—z )7 exp
1<j

B
_:2 |2112

I

(3.1)

Here z; =x; +iy; is the position of the ith particle in com-
plex coordinates. (This is manifestly a solution, since ¥

may be expanded as a superposit%on of one-body wave
. —(B/4)lz,] . .
function of the form z/e “" for any given i.) A

heuristic way of saying this is that the phase frustration
required of the fractional-statistics particles is just com-
pensated by the phase change imposed by the magnetic
field. As is well known, the magnetic field B is con-
strained to be related to the density n by [cf. (2.2)]

2mn _ w =,

B 0 '
(This is of the crux of the matter for the theory of frac-
tional Hall effect and essentially implies that the ‘“Hall”
gas is incompressible.)

However, we do not want to solve the problem of the
fractional-statistics-particle gas in an external magnetic
field B. We want to solve it for B =0. Suppose we try to
reach B =0 by decreasing B. For B —§8B, the density
would want to decrease correspondingly to n —&n almost
everywhere. To conserve the total number of fractional-
statistics particles, the system necessarily has to nucleate
regions with higher n (see Fig. 3). These nucleated lumps
are just the quasielectron in Laughlin’s theory of the frac-
tional Hall effect in which the quantum numbers of these
quasielectrons are worked out. For the semion gas, these
nucleated lumps contain two semions. This picture sug-
gests strongly that the semion gas tends to pair into bo-
sons.

In the Appendix we give yet another heuristic argu-
ment. Taken together, these admittedly heuristic argu-
ments all indicate that pairing of half fermions may be a
central feature of the half-fermion liquid. However, the

(3.2)
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FIG. 3. As the magnetic field is lowered, fractional-statistical
particles nucleate into lumps. Each lump contains two
fractional-statistical particles if 6= /2.

size of these pairs tends to be of order b /2~ (ng)~'/2
(for general 0) and is thus comparable to the interparticle
separation for semions and larger than the interparticle
separation for 6 small. This suggests that at least for 0
small, a mean-field approximation may be quite reliable
in the same way that the mean-field approximation works
well in the BCS theory because of the large size of the
Cooper pairs. On the other hand, it may be quite
misleading to view the fractional-statistics liquid roughly
as consisting of point bosons.

IV. AHYDRODYNAMIC TREATMENT

In this section we will develop an effective theory of
the fractional-statistics liquid valid at long wavelength
and low frequency. For the rest of this paper we will con-
centrate on the case 6=m/g, for g an integer. We will
use the mean “magnetic” field approximation, but in con-
trast to Laughlin et al.,'>?° we treat the particles in (1.4)
as bosons. It may be worthwhile to emphasize here that
having a Bose gas does not necessarily mean that we have
superfluidity or superconductivity, as is sometimes said
rather glibly. In his classic paper Landau?' pointed out
that superfluidity requires that the energy dispersion w(k)
of the elementary excitation has the “roton” form, ie.,
that the ratio w(k)/k is bounded below. In particular,
for small k, w(k) has to be linear in k, and thus the free
Bose gas is certainly not a superfluid. As Bogoliubov®*
showed, a hard-core repulsion changes the energy disper-
sion from w(k)xk? to w(k)xk. Furthermore, we must
show that the single-particle ground state the bosons can
condense into is not degenerate.

Here we have a system of bosons with a rather unfami-
liar magnetic interaction. In the mean magnetic field ap-
proximation, the bosons are to put into the states of
lowest Landau level

n, —(1/4)|z|?

Y,~z" 4.1)

(We have set the magnetic length to unity here.) Given
that these states in the lowest Landau level ¢, are all de-

generate with the energy 17w, how do we put the N bo-
sons into these states?

To obtain a hint on this question, we recall that the
quantum degeneracy corresponds classically to the free-
dom of centering the Larmor orbit around any point we
choose. In other words, by taking linear combinations of
¥,, we can form the wave function

¢a(z)~e~(1/4)<|z[2—2a*z) ) 4.2)
where the complex number a specifies the center of the
orbit corresponding to ¥,. We consider an arrangement
shown in Fig. 4. We consider a periodic arrangement of
orbits so that space is filled. Since the radius of the orbit
is of order of the magnetic length

1~b~2~(ne)~ 12, 4.3)

in the classical picture the orbits are essentially touching.
Since the filling factor is v=g, we put g bosons into the
quantum state corresponding to each orbit (Fig. 4). In
this case the state has a uniform density of anyons, which
is consistent with our assumption that the mean “mag-
netic” field b is constant in space. Notice that the states
1/;al and d)aj are not orthogonal but the overlap is small

because of the exponential.

This state is stable as can be seen from the following
argument. Suppose we take out a boson from one of the
orbits and put it into some other orbit (see Fig. 5). In the
region where there is an excess of bosons, the mean mag-
netic field b is somewhat higher, leading to a higher
1#iw.. The opposite holds where there is a deficit of bo-
sons. Thus, it is energetically favorable to have the uni-
form arrangement shown in Fig. 4. The particle density
tends to be spatially uniform.

There is a more direct way to understand the aformen-
tioned result. We know that the anyon wave function ob-
tains a nonzero phase after exchanging two anyons. This
nonzero phase implies that the fractional-statistics-
particle system is frustrated and the fractional-statistics
particles have nonzero Kinetic energies even in the
ground state. The average kinetic energy per particle is
expected to be proportional to the fractional-statistics-
particle density. In particular, for fermions the average

818181 8181E,
OSOO0O0O00

SOOCOO0
OSOOO0O0

SOOoO0O0

FIG. 4. Landau orbits in real space. For §=m/2 two half
fermions are put in each orbit in the superfluid state.
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FIG. 5. One particle moves from one Landau orbit to anoth-
er to obtain a state with a nonuniform distribution.

kinetic energy is equal to half of the Fermi energy:
Ep/2=#mn/m. If the fractional-statistics-particle den-
sity is not uniform the fractional-statistics particles will
flow from high-density region to low-density region. In
other words, there is an exchange pressure in the
fractional-statistics-particle fluid to keep the fractional-
statistics-particle density unform. In our mean-field ap-
proach to the fractional-statistics-particle fluid, the first
Landau level has an energy 1w, =#*6n /m, which corre-
sponds to the average kinetic energy of a fractional-
statistics particle. Thus the ‘“magnetic” field in the
mean-field theory correctly (at least qualitatively)
represents the frustration in the fractional-statistics-
particle system. We expect that the correct treatment of
the mean-field theory should lead to a qualitatively
correct physical picture for the fractional-statistics-
particle fluid at low temperatures.

In a sense, a fractional-statistics-particle gas resembles
a fermion gas in having an exchange pressure due to
quantum statistics. But it also resembles a Bose gas in
not having a Fermi surface and so it does not have low-
lying particle-hole excitations across the Fermi surface.
Thus, the low-lying excitations of the fractional-
statistics-particle fluid are likely to be only phonons with
linear rather than quadratic dispersion.

We see that to obtain a nondegenerate ground state it
is crucial to allow the magnetic field to react to the bo-
sons rather than having the bosons move in a fixed and
static magnetic field. Thus, the approximation may be
called an “extended mean-field approximation.”

In the ground state, the magnetic field b is constant.
The low-lying long-wavelength excitation corresponds to
a ‘“‘breathing mode” in which b and the particle density
vary slowly over space and time (Fig. 6).

Let us thus consider a hydrodynamic treatment. This
is made possible by the simple observation that the pic-
ture given earlier determines the potential energy com-
pletely. The energy of the state considered here is

N (1 o )=N#0n/m = A#6n*/m .

Thus, the energy of the liquid E contains a term
fdzx #26n?/m. Including the kinetic energy the energy

functional E must have the form

E= fdzx(%mnvz-i-ynz) (4.4)

SESIGIS XSS
SESIGIO XIS
SESIGIS XSS
SESIQISISTS:
S SIQGIS TSy

FIG. 6. The low-lying excitations correspond to a “breathing
mode” of Landau orbits.

with y =#%0/m. The energy E is to be minimized with a
fixed total number of particles.
The pressure is easily calculated,

S R S
p 34’ An*=yn* . (4.5)
The hydrodynamics equation is thus
& va=——Lap=—2Lg, 4.6)
at mn m

Linearizing (4.6) around the ground state with uniform
density n, and the equation of continuity

don

——+d(nv)=0, 4.7)
at
we find the wave equation
2 2yn
a—’2’+ Y70 g2 =0, (4.8)
ot
so that the speed of sound is given by
cl=2yny/m =2#0n,/m? . 4.9)

The form of this result could have been determined by di-
mensional analysis. Thus, the low-lying elementary exci-
tation of the system is expected to be a gapless phonon.

It was crucial here that the potential energy is propor-
tional to n? rather than to n (in which case ¢, would
clearly vanish). This is a direct consequence of the “mag-
netic” interaction between the bosons, or in other words,
the exchange pressure of the fractional statistics as dis-
cussed earlier.

We may calculate the coherence length if we can re-
gard (4.4) as the Ginzburg-Landau theory. The potential

term in the Ginzburg-Landau theory can be identified as
V(n)=pun +yn?, (4.10)

where p is the chemical potential to cause V(n) to be-
come minimized at n =n,. Using a standard formula, we
find the coherence length £, to be

__# _ #® _1
2mlul  4myn, 46n,

£ 4.11)

The coherence length obtained in Ref. 20 is larger than
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our value by a factor of ~2.

It is not entirely clear to us how the discussion, given
here for 6=1/q, would proceed for 6=p/q or for 0 ir-
rational. We suspect that the statistical mechanics of the
fractional-statistics-particle liquid have an extremely
complicated dependence on 6, similar to the dependence
of the energy or the filling factor v in the fraction quan-
tum Hall effect. This was already suggested by the result
obtained in Ref. 1 that the second virial coefficient as a
function of 6 has a cusp at 6=0. In the following, we
stick to 0=m/q.

V. SUPERFLUIDITY AND SUPERCONDUCTIVITY
The relation between b and #n in (2.1) may be written as
. 1
]OEn:EGijfij . (5.1)
We are led to introduce an electric component f, by

writing
J

Lm /6*)fY

dixl 1= [ g2 ~ 2 M
J d*xymmt= [ Y note S /40 / * 81002

Combining (5.4) and (5.5) and keeping terms to leading
order in the field strength we see that the dynamics is de-
scribed by none other than the Maxwell Lagrangian

—_ 1
16mg2”

(5.6)

if we use length and time units so that the speed of sound
¢, is equal to unity. This allows us to use a relativistic
notation. The “fine-structure constant” g2 is equal to

2=___6m2 . (5.7)
2mhi

The theory describes a gapless excitation, namely, the
Maxwell “photon” but in fact the phonon here. The
higher-order terms such as ~f%k(6ijf,-j ) break “Lorentz”
invariance but not gauge invariance. They are important
only at short distances. It is crucial that we do not obtain
the Chern-Simons term e““"a“ f.» since it would gen-
erate a gauge invariant mass for the phonon. (For a re-
cent discussion of the Chern-Simons term, see Refs. 7 and

]

2

Gy —k)) = —
g2 160%d>

€uio€vpr{ S0 K)f pr(—K))

1

jyzze_eyvlka ’ (5.2)

so that in addition to (5.1) we make the identification

j,-znv,»=—21ée,-jf0j . (5.3)
(We should say a word abut the notation. In the preced-
ing sections, in keeping with the standard practice from
the theory of the quantum Hall effect to label particles by
the index i, we label spatial coordinates by a,f, ..., .
Here we revert to the more standard notation of labeling
space-time coordinates as u,v, ..., and spatial coordi-
nates as i,j, ..., .)

In that case we recognize the potential energy in (4.4)
as

fdzx yni= fdsz% fr (5.4)
and the kinetic energy as
- T (5.5)
1 Weijfij .

f

25). In our long-wavelength low-frequency treatment of
the semion liquid the T and P violation explicit in the
microscopic theory (1.4) has been ‘‘averaged over.”
Physically, this is quite reasonable in our picture of
semions pairing into bosons: we expect T and P violation
to appear only at high frequencies and short distances at
which the microscopic structure is revealed. In the
effective Lagrangian, T and P violation should appear in
only higher-dimensional terms, and not in the Chern-
Simons term (which has one lower dimension than the
Maxwell term). We will discuss this point in more detail
later.

It is now easy to show that superconductivity occurs
by coupling in the electromagnetic field. We recall that
the semions are electrically charged and thus the current
Ju=(n,nv;) is in fact the electromagnetic current. The
three spatial dimensional electromagnetic current density
is given by (e/d)j,, where d is the interplane distance.
(Recall that high-temperature superconducting materials
consist of weakly coupled layers.) The current-current
correlation function is easily calculated in momentum
space:

€2

_——-——E,u}\aevprklkp<aa(k)ar( _k)>

40%d*?

2

—__Te 2 2_ 2
= 92d2g (8uvk*—k,k,)/k

‘ITe2

6%d?

848+ Gy (5.8)
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where G is the gauge degree of freedom. We obtain the
Meissner effect and thus superconductivity. In coordi-
nate space (5.8) can be written as

2

me 2g28‘3)(x)

0%*d

-_—E‘iigzsm(x) )
0’d

The 6 function in 1+ 3 dimensions is given effectively by

8¥(x)=86")(x)/d. Putting back the speed of the sound

c; we get

e2 . .
?<Jﬂ(x)_]v(0))=

(5.9)

2 2
% (i(x)j;(0)) = %gchﬁ(‘”(x)
_ €2n0

md

which is the expected result. We see that the London
penetration depth is

8% (x) , (5.10)

2
p=med (5.11)

4me“n,
where c is the speed of light. The ratio between the Lon-
don penetration depth and the coherence length is given
by «:

(5.12)

The reader may have recognized that the gauge poten-
tials @, and A4, are dual to each other in the sense dis-
cussed in Ref. 25. Our effective theory (5.6) can be re-
garded as the dual form?® of the conventional Ginzburg-
Landau theory in (2+ 1)-dimensional space-time.

Although the effective theory (5.6) gives rise to the
Meissner effect, the value of the flux quantum is not
determined by the theory. This is because (5.6) only de-
scribes the local small fluctuations in the superfluid. In
the following we would like to show that in any quantum
fluid state of the charge e fractional-statistics-particle sys-
tem, hc /ge flux always has finite energy if the fractional-
statistics particles have 8=pm/q. First, according to the
argument of Byers and Yang?’ hc /e flux has finite energy
because the fractional-statistics-particle wave function
acquires a phase 27 after a fractional-statistics particle
goes around the flux. We also know that the fractional-
statistics-particle wave function acquires a phase 2pm/q
after a fractional-statistics particle goes around another
fractional-statistics particle. Because p and g are incom-
mensurable, there exists an integer n such that
np/q =(—1/q)modl. Thus the bound state of the n
fractional-statistics particles and hc/ge flux has a finite
energy because a fractional-statistics particle going
around this bound state acquires a phase of 27. We
would like to stress that in the above we only show that
hc /ge flux has a finite energy, this does not imply that
hc /ge is the smallest flux quantum. When both p and ¢
are odd integers, a 2g-particle bound state is a boson,
since the statistics angle for such a bound state is given
by (2¢)%6. The condensation of these bosons lead to a su-

perconducting state, and the smallest flux quantum in
this superconducting state is hc /2ge. We do not know
whether there exists a superconducting state for
fractional-statistics particles with odd p and g such that
the flux quantum is hc/qe. For fermions (p =q =1),
Yang?® showed that the flux quantum is always less than
or equal to hc/2e in the superconducting state of a
charge e fermion system. When one of p and g is an even
integer, g fractional-statistics-particle bound states are
bosons. In the boson condensed state the flux quantum is
hc /qe, which coincides with the value obtained from gen-
eral consideration.

From the discussion in this section we see that the
compressibility and the superfluidity of quantum fluid are
closely related. We demonstrate that a compressible
quantum fluid with phonons as the only low-lying excita-
tions is actually a superfluid. Here by superfluid we mean
a quantum fluid with Meissner effect, i.e., the current-
current correlation is given by (5.8) for small momenta.
Landau’s argument?! assures that the quantum fluid un-
der consideration supports dissipationless flow, but it
does not imply the existence of off diagonal long-range or-
der?®?® or Meissner effect, which is the essence of
superfluidity. Our dual relation (5.2) is needed.

Due to the importance of this result it is worthwhile to
give another derivation of the relation between compres-
sibility and superfluidity. We start with the Hamiltonian
of the phonon system

H= f%mnouzdzx
+ [1px —x"n(x)n (x")d*x d?x" (5.13)
where @(x) is some short-ranged interaction satisfying

[dxip)=y . (5.14)

In momentum space, we have the linearized version of
the Hamiltonian

d’k m
H= ——— AR tieenn_
Iy 2ngk? KT kT APRIT —k
d* | nok’
=f (217.)2 2m 7Tk7T_k+%(pknkn_k N (5.15)
where 7 _; is the canonical conjugate of n;
[7_p,npe]= —i#i(2m)*8%(k —k') . (5.16)
Introducing the phonon annihilation operator
: o, 172 172
k k
a=—=||— —i|— n (5.17)
V| | o | F
we may write H as
d*k t
H=| ——#w,a,a, + const , (5.18)
f (27)? Dy Ay Ay
where
n
w2 =2kl0 4o (5.19)
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[a,,af 1=(27)%8(k —k') . (5.20)
The current is given by
ik .. Mo
Ik _Fnk—*lk—‘#_k (5.21)

The time-ordered product of the currents is found to be

R Ut;k)=(T[ji(2)j.,(0)])

2
on —io
= 1k i 0Pk el (5.22)
m-w,
In frequency space
_ kikin}
R o k) =i—— 2 L (5.23a)
m W Wy

Similarly, we may obtain the time-ordered products be-
tween the current and the density

. k'n
RU=—i——2—, (5.23b)
m @ —‘a)k

_ k*n

R0=;—2 —21—2 . (5.23c)
m @ —Cl)k

We find that
kK ,,=0,
~ in .

kMR y=—k' . (5.24)

m

However, the current-current correlation function K*V is
required by current conservation to satisfy the Ward
identity

kHK 4, =0 . (5.25)
Thus, K*” differs from K " by an additional term:
K*=EK "+ AKH* . (5.26)

(The existence of AK#¥ corresponds to the appearance of
the Schwinger term in the charge-current commutation
relation, as is well-known from the field-theory litera-
ture.>)

Since the poles in K*¥ and K ** must have the same
residue and location, AK*" can only be a polynomial
function of w and k. Let AKy=a, AKy=bk;, and
AK[j=ckikj+d8ij, where a,b,c,d are polynomials in
and k. We see immediately that Egs. (5.24) and (5.25)
imply that

ing

=7+ck2—aw2 . (5.27)

Thus, at zero frequency and momentum d —in,/m and
the correlation function

P Mo
Kij—>K,-j+17n—8-- .

ij (5.28)

The ,; term describes the Meissner effect. (In the field-

theory literature, AK,, is determined completely by the
further requirement that it behaves suitably at high fre-
quency and momentum. Here, however, since we are
dealing with an effective theory, we do not impose this
additional constraint.)

We remark that the one-phonon state a[0) is just
iV 2@, /fiw,n}|0). It corresponds to the wave function

N kX
Px)=F e ylx),

i=1

which is just the variational wave function considered by
Bijl and Feynman.’!

From the preceding discussion, it is clear that the rela-
tion between compressibility and superfluidity should be
valid in any dimension, even though the mathematical
manipulations used at the beginning of this section are
only valid in (2+ 1)-dimensional space-time.

VI. VORTICES

We can solve Maxwell’s equations d,,/#"=0 by writing

fH=e"*d,n , (6.1)
where 7) is a real scalar field. We then have

€3, f,, =37 , (6.2)
and the Bianchi identity e’“’kal,f w =0 is satisfied if

3’n=0. (6.3)

Thus, the gapless degree of freedom in f,,, the phonon,
is represented by the real field 7.
The current j, is equal to

Ju=3g8m X8 (6.4)
where Y is a complex field with a phase proportional to 7
and with |y|=1. A constant density is represented by an
oscillatory phase in y «< e,

A defect or vortex is present at a point x if the circu-
lation P dx;0;n around that point is nonzero and quan-
tized. At the core of the vortex, |y| vanishes.

Since the total number of fractional-statistics particles
is given by N =( 1/40)fd2x €;fij » adding a fractional-
statistics particle to the system is equivalent to adding a
26 flux:

20=5[d* £\,
=5Pdx-a. 6.5)

In other words, the Lagrangian in (5.6) describes compact
“electrodynamics.”

As is well known, this theory contains instantons,>?

namely the hedgehog in Euclidean 3 space. The
hedgehog density 4 (x) is given by
h(x)=e""*d, f =3 . (6.6)

Denote the phenomenological field that creates and an-
nihilates vortices by the complex field ®(x). We now
show that ® represents an “‘electric” charge with respect
to f,,. Assuming that ® is “electric,” we can write the
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effective Lagrangian, by gauge invariance, as

1
— 2 2 i 2
L=[d%x — 2,413, +igay)®|

—vp|(9; +iga,)®|*— 1A |®|? 6.7)

The @ particles corréspond to the vortices in the

superfluid. To see this we notice that a density of the ®

particle i®*3,P generates an “electric” field of the U(1)

gauge field:
foilx)=2q8%5 Q0 , 6.8)

x
where Q4= f i ®*5:de 2x is the number of ® particles.

The superfluid velocity for such a configuration is given
by

_ €ifo; _ gg? €x’
=l r=A 500 - (6.9)

This corresponds to a vortex with circulation
(2G6#%/m)Q., after we restore a factor of c¢2. Since the
circulation is quantized in unit #/m, § must equal to
1/26. Because of the finite amount of circulation, to
create a vortex (or a ® particle) cost an energy that
diverges logarithmically with the size of the system. Due
to the finite-energy gap A, for creating vortex-antivortex
pair, the vortex excitations have little effect on the low-
energy superfluid properties, but as we will see further,
they have important effects at short distances.

The gap parameter A,, may become negative as various
parameters in the theory are changed. The system may
thus enter into a Higgs phase in which the statistical
gauge potential acquires a mass and becomes short
ranged. This would then a represent a statistics-changing
phase transition.??

We note that in the presence of ®, d“f,, no longer
vanishes and so the field 7 cannot be defined [cf. (6.1)].
Thus, a vortex is present where 7 is not defined, as it
should be. The vortex field ® is dual to the y field in the
context discussed in Refs. 26 and 25.

VIIL. FINITE TEMPERATURE

Thus far, the discussion has been for zero temperature.
At finite temperature, we expect a normal fluid com-
ponent to form. Microscopically, configurations such as
those shown in Fig. 7 would be excited by thermal fluc-
tuations. The energy of excitation is of order #iw, ~n /m.
Thus, we expect the critical temperature to be

T,~n/m . (7.1

Let us look at this in more detail in order to develop a
two-fluid picture in the spirit of London and Tisza. We
first identify the superfluid as the state described earlier,
i.e., the state in which each Landau orbit contains ¢
fractional-statistics particles. The low-frequency excita-
tion of the superfluid (phonon) corresponds to the breath-
ing mode of the Landau orbit. We now construct the
high-energy excitation, i.e., the normal fluid component,

S181818181E
81818181818,
S181818181e,
S18ISISINIE
8181818181 E

FIG. 7. Normal fluid component is created by adding two
particles to a Landau orbit (0= /2).

by adding g particles to the Landau orbit ¢, at the origin
(Fig. 7). The added particles behave like a 27 flux tube to
the particles far away from the origin. Therefore the ¢
added particles have no effect on the wave function far
away from the origin. As a direct consequence, the add-
ed particles have a finite energy. Certainly we can add
the g particles to any Landau orbit we like. The added
particles behave like a quasiparticle moving on the back-
ground of the superfluid and carrying finite entropy.
Thus we may identify the added particles as the normal
fluid component.

Another way to construct the normal fluid component
is to use Laughlin’s fluxoid argument. We fix the gauge
field f, to be constant, and pierce the space at the origin
by an infinitely thin fluxoid. Then we turn on a 27 flux
through the fluxoid slowly. The initial uniform
superfluid state evolves adiabatically into a new state.
Due to the “Hall” effect, g particles are accumulated near
the fluxoid after the 27 flux has been turned on. These
additional g particles are identified as an element of the
normal fluid. The quasiparticle that we constructed ear-
lier can be regarded as the roton in the superfluid.

The energy of the roton can be estimated by substitut-
ing the density function with the added particles into
(4.4). We find the energy can be written as E,,
=nmn,#*/m, where n; is the superfluid density and 7 is
the numerical constant of order 1, which is independent
of g. (Actually n=3 from this crude calculation.)

The free energy of the two-fluid model can be roughly
written as

2
f=ﬁ(n52+nnsn,, )——LTn,, In—
qm q n,

(7.2)

if the normal fluid density n, <<n. The entropy in (7.2) is
calculated from the roton (the g-particle bound state) gas.
As the temperature increases, more and more rotons are
excited and the superfluid density decreases. At a critical
temperature T, the superfluid density vanishes.

From (7.2) we find that near T =0 the normal fluid
density is

—(n—Zmnﬁz/mT*I

(7.3)

n, =ne

The gap for the normal fluid excitation can be read off
from (7.3):
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_ n#’ -5 1
A,,——vr(n~2)-—m . (7.4) 9= 3 [ +(1/2)¢The, /T,
=0 e —

. (7.6)
1
If § is independent of g, T.—1/Ing as g— o (6—0),
which is a reasonable result since T, for the free boson
gas vanishes. If §is small ({ < In[1+1/q)] we get

Near T.(n; <<n) the physical picture is quite different.
The situation becomes very complicated and the roton
picture breaks down because of overlapping between ro-
tons. Instead, we develop a simple picture based on a

mean-field approach for the normal fluid. The free ener- T = é‘fmﬁz ) 1.7)
gy is essentially determined by the normal fluid. Due to ¢ gmin(l/q+1)

the frustrations introduced by the statistics, the normal

fluid naively behaves like a gas of bosonic particles in the We find that (for small ¢)

“magnetic” field with #iw, =27n#?/qm. The free energy

of such a boson gas can be easily calculated. There is no A, n—2 1

superfluid phase for this system because the first Landau T. ¢ gln q +1 (7.8)

level is highly degenerate (N /g fold degeneracy). In this
simple picture, to obtain superfluidity we require that If we take n=3, £=0.25, and ¢ =2 (semion), we find that
there is a nondegenerate single-body energy level lying A,/T,=3.2. For La-Cu-O with 10% doping,
below the first Landau level. The bosons in the ground  T,~200m,/m K where m, denotes the mass of the elec-
state are identified as superfluid, and the bosons in the  tron. We see that the fractional-statistics-particle super-
excited state are normal fluid. The energy difference be-  conductor behaves very much like the conventional s-
tween the ground state and the first Landau level corre-  wave BCS superconductor as far as the thermodynamics
sponds to the condensation energy of the superfluid. The properties are concerned.

condensation energy of the superfluid is difficult to calcu-

late. However it is reasonable to assume that the conden-

sation energy is a fraction of the energy of the first Lan- VIII. TIME REVERSAL AND PARITY VIOLATION
dau level ((7#2/qm)n (where 0S£S1). Thus the ther-
modynamic potential () may take a form (for n; <<n) As remarked earlier, because fractional-statistics-

u+(¢/Dhw,)/T particle gas breaks time-reversal symmetry and parity,

) the superfluid should show some T and P breaking effects

p—lhiw, )/ T at short distances. Since the vortex is sensitive to short-

). (7.5)  distance physics, we can include the T and P breaking

effect of the fractional-statistics-particle by including a

The chemical potential is determined by requiring  coupling between the superfluid current and the vortex

N=-—0Q/du. At the critical temperature p-+(§/  current in our theory. The effective Lagrangian (6.9) be-
2)fiw,=0. We obtain comes

Q=TIn(l—e

+1Y 3 m(1-e'
9 /=0

2
+

2

L=[d% 2+ —A}lef?

16mg? " *

o ]

. A ouw . A i
a,+1a0+zzc—e°“ v 8,-+za,-+t;c—e‘“ v . (8.1

We have set v, =c, =1 here for convenience. The possibility of including the A coupling was pointed out in Ref. 34.
Because the coupling between the superfluid current j#=e***f 4« and the vortex current ®*D#®, the superfluid density
is different near the core of the vortex and the antivortex. Thus the vortex and the antivortex have different energies. If
the fractional-statistics particles are charged as they are in high-temperature superconductors, this means that the
lower critical field H_, is different for the magnetic field with opposite orientation.

Integrating out the vortex field ® in (8.1), we obtain the following low-energy effective Lagrangian of the superfluid

1 2
a87A,  w

1
L= [d* 2 4+
f 167Tg2fl“'

A
v Fuv=Fuvt —a—):(a#evp,fpa —8,€50f po) - (8.2)

The Lagrangian contains a T and P breaking term of the form
e‘w}‘a“azava;L . (8.3)

As is consistent with our earlier discussion, this is not the Chern-Simons term but part of a higher derivative Chern-
Simons term. Thus, in addition to the term giving rise to the Meissner effect in (5.8), the superfluid current-current
correlation also contains a T and P breaking term
2A
R TP
0 (3g7°+A Ay

(ulk)j(—k))= gt + - (8.4)

T
6Xg 2 +1ApY
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This T and P breaking term leads to T and P violation in
the propagation of light in the medium. We pointed out
in Ref. 11 that when polarized light is reflected from such
a T and P breaking superconductor the polarization is ro-
tated. The rotation angle is given here by

2 2
2 W,

(1434, /87) (@3 —a?P?

¢ (8.5)

where o, is the plasma frequency. We see that (8.5) and
the T and P breaking Ginzburg-Landau theory discussed
in Ref. 11 give the same physical results. Thus in some
sense (8.2) can be regarded as the dual theory of the T
and P breaking Ginzburg-Landau theory. The calcula-
tion given here is meant to be illustrative. We have arbi-
trarily set the vortex velocity to be equal to the phonon
velocity. Also, in principle, there could be two different A
couplings in (8.1).

We note from (8.5) that the rotation ¢ vanishes as the
vortex gap A, goes to infinity. This restates the fact that
in this treatment 7 and P violation comes from the
short-distance physics introduced effectively by the vor-
tex field.

In Ref. 11, the role of the vortex field is effectively
played by the spinon pairing order parameter, denoted
there by ¢gs. The Landau-Ginzburg theory given there
cannot be compared in a one-to-one fashion with the
more microscopic theory given here. However, the un-
derlying physics is similar in spirit. As the gap Ags for
the spinon field ¢¢g goes to infinity, or equivalently as the
condensate value for ¢g¢ (denoted by v in Ref. 11) goes to
zero, we see from Eq. (8) in Ref. 11 that the T and P
violation, and hence the rotation of polarization ¢ disap-
pear. This consistent with the treatment given here.

Halperin®® and Wilczek®® have pointed out to us that
since an electric field constant in space couples only to
the center of mass of the fractional-statistics-particle gas,
the rotation of polarization we discussed in Ref. 11 and in
this paper should vanish to leading order in frequency for
the ideal fractional-statistics-particle gas described in Eq.
(1.1), in which the charge density p, and the mass density
pm are strictly tied together.

We expect the holon fluid in the T and P breaking spin
liquid state not to be ideal. In particular, as described in
our previous work,” the holons interact with the (elec-
tromagnetically) neutral spinons via the statistical gauge
potential a,. The statistical gauge potential would ac-
quire in general a Maxwell term

1
v (8.6)
16mg?™ *

relevant only at short distances. We expect g2 to be pro-
portional to the spinon gap Ags. As a result of this
Maxwell term, the holons are dressed by an electrically
neutral cloud of statistical gauge quanta and spinons.

At energy scales near the spinon gap Agg or the statist-
ical gauge field gap 1/g2, the charge density p, and the
mass density p,, are no longer tied together and a con-
stant electric field no longer couples exclusively to the
center of the mass of the holon field. In our discussion

here, the deviation from an ideal gas is described phe-
nomenologically by the parameter A. Since the spinon
gap and the gauge field gap are about the same order as
the superconducting gap (they are all order a few hun-
dred Kelvin), A is expected of order 0(1).

We may remark in passing here that T and P violation
and superconductivity are logically distinct. For in-
stance, in this paper, the normal phase is described by a
gas of fractional-statistics particles and T and P are cer-
tainly violated. The calculation of ¢ in our Landau-
Ginzburg approach!! breaks down for w larger than the
gap, but this does not imply that the rotation disappears
at high o. We expect that the polarization of light
reflected off material to be rotated even in the normal,
i.e., nonsuperconducting, phase.

IX. SHORT-DISTANCE PHYSICS

From the discussion in Sec. II, we see that the
superfluidity and the compressibility of quantum fluid are
closely related. We believe that existence of a gapless
phonon implies superfluidity. Mathematically, the
compressibility of the fractional-statistical-particle fluid
is reflected by the fact that the U(1) gauge field in (5.6) is
massless. Our discussion about the superfluidity of the
fractional-statistical-particle fluid relies crucially on the
masslessness of these gauge fields.

The effective Lagrangian in (5.6) is only a leading order
approximation of the full effective theory of the
fractional-statistics-particle fluid. A more complete
effective Lagrangian should contain higher- and higher-
dimensional interaction terms, such as f fw, interaction of
the vortex field @, etc. It would not be obviously mean-
ingful to calculate the quantitative effects of these
higher-dimensional terms since in going to the
fractional-statistical-particle gas we have already aver-
aged over the short-distance lattice scale physics of the
actual solid-state system. However, we do have to argue
that these high-energy effects cannot change our con-
clusions qualitatively.

In particular, an important question would be whether
the U(1) phonon field a, remains massless after we turn
on these short-distance interactions. If the U(1) field
would obtain a mass after we turn on arbitrarily small in-
teractions, this would mean the superfluidity and the
compressibility discussed in this paper for the fractional-
statistical-particle fluid may just be an artifact of the
mean-field approximation, and these properties may have
nothing to do with the real fractional-statistical-particle
fluid. However, due to gauge symmetry, the U(1) field
can never obtain a mass in perturbation theory if the in-
teraction respects T and P. There are only three possible
ways for a, to obtain a mass term and we will discuss
them in turn.

(i) Through the Higgs mechanism: this may happen,
e.g., if A% in (6.9) become negative. In this case creation
of the vortex-antivortex pairs lowers the energy of the
system. As a consequence the vacuum becomes a
superfluid of the vortex. The density fluctuation of
fractional-statistics particles acquire an energy gap, or in
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other words, the fractional-statistical-particles fluid be-
comes incompressible.?® If the fractional-statistical parti-
cles carry charge, such a vortex condensed state is an in-
sulator. However, if we start with positive A2, interac-
tions can change sign of A% only when the interactions
are strong enough. Weak interactions cannot give a mass
toa,.

(ii) Through the Polyakov instantons: a Polyakov in-
stanton is a monopole, or more precisely, hedgehog of the
U(1) field if we view the (2+ 1)-dimensional space-time as
a three-dimensional space. After an instanton event, the
total number of the U(1) flux is changed

1 N
a0 L axern=f

Our normalization corresponds to unit monopole charge.
Polyakov®? showed that the instantons may induce a
mass term for the U(1) field [and the U(1) gauge field be-
comes linearly confining). However, in our two-fluid
model, (9.1) implies that the total number of the particles
in the superfluid is changed by g. Because the conserva-
tion of the number of particles, some normal fluid must
be created by the instanton. Since the normal fluid exci-
tations has a finite-energy gap, the instantons are
confined in space-time. For example, for a pair of instan-
ton and anti-instanton, (Fig. 8) the action is given by

—,1,

. d*x ei’f,j 9.1

e Mrse 9.2)
where t is the time separation of the two instantons and
A, is the gap for the normal fluid. Because the instanton
is linearly confined, it cannot generate any mass for the
u(1) field.

(iii) Through the Chern-Simons term: the U(1) field
may obtain a topological mass from the Chern-Simons
term €,,,a,f,,. In the leading order approximation our
effective theory for the fractional-statistical-particle gas
does not contain the Chern-Simons term. However, this
does not imply the superfluid state of the fractional-
statistical-particle fluid respects the T andP symmetries.
The T and P breaking effects of the fractional-statistical-
particle fluid may appear in the higher-order interaction
terms in the effective theory. Now the crucial question is
whether the radiative corrections from those T and P
breaking interaction terms may generate the Chern-
Simons term. To our knowledge, there is no general

N Anti-instanton

\
Normal
Fluid

O

Instanton

FIG. 8. A pair of the instantons. Normal fluid is created by
instanton and annihilated by anti-instanton.

proof that the Chern-Simons term does not receive any
radiative corrections in a T and P breaking theory. How-
ever, the experience from many specific T and P breaking
models strongly suggests that the Chern-Simons term
does not receive any perturbative corrections.’’ "%’ The
Chern-Simons term may be changed only when the in-
teractions are strong enough to drive the system across a
critical point and into a new phase.*

We would like to mention that in the presence of the
Chern-Simons term the fractional-statistical-particle fluid
is an incompressible quantum Hall fluid because the
gauge potential a acquires a topological mass. The quan-
tum Hall conductance is determined by the coefficient in
front of the Chern-Simons term. A (true) magnetic field
is generated in the system.!! In the presence of a mag-
netic field the quantum Hall state of the fractional-
statistical-particle fluid (including fermion fluid and bo-
son fluid) is described by the following effective theory
L= 16717'g2 f;24v+a6pv)\ayfv)»+
which can be thought of as the dual form of the effective
theory studied in Ref. 18. By varying a, we find that
the magnetic field B=¢;;04; is proportional to the
fractional-statistical-particle density.

In the preceding discussion we argue that the super-
fluid phase of the fractional-statistical-particle fluid is a
stable phase in the sense that superfluidity persists for
any small perturbations of the Hamiltonian. The
superfluid phase exists in a finite region in the parameter
space. When we turn on a strong enough interaction, the
superfluid state may change into new states. We have
discussed two possible phases connected to the superfluid
phase. One is the incompressible fluid or insulating state.
Another is the quantum Hall state. The third possible
phase connecting to the superfluid phase is the crystal
phase. The fractional statistical-particle fluid may crys-
talize in low-density limit if there is a repulsive interac-
tion, e.g., Coulomb interaction, between fractional-
statistical particles.

e‘uvl.Ayva ’ 9.3)

£
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X. FERMION PICTURE

In our discussion we studied the low-temperature
properties of fractional-statistical-particle fluid with
0==*m/q, by regarding the fractional-statistical-particle
as a bound state of a boson and a +7/q flux tube. We
may use a similar method to study fractional-statistical-
particle fluid with 6=w=*m/q by treating the fractional-
statistical particle bound state of a fermion and a +7/¢g
flux tube. In the mean-field approach,!®!>?° the super-
fluid component is identified as the particles in the lowest
q filled Landau levels. The normal fluid component is
identified as the fermion excitations in the (¢ + 1)th Lan-
dau level or higher levels. The low-lying excitations of
the superfluid still correspond to the breathing modes of
the Landau orbits, and is expected to have a gapless
linear dispersion.

Notice that once again it is crucial to have the extend-
ed mean-field approximation. If the mean field is regard-
ed as fixed and static, then one would conclude errone-
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ously that the introduction of an excitation requires a
finite amount of energy corresponding to the gap between
the gth and the (g + 1)th level. In fact, the introduction
of particles also increases the magnetic field and allows
more particles to be accommodated in each level in pre-
cisely such a way that we do not have to cross the gap be-
tween the gth and the (g + 1)th level.

Interestingly enough, the description of the origin of
the gapless excitation is quite different in the fermion pic-
ture than in the boson picture. In the boson picture, as
explained in Sec. IV, the extended mean-field approxima-
tion is necessary to lift the degeneracy of the ground
state.

XI. CONCLUSION

In conclusion, we believe that we understand the be-
havior of the fractional-statistics liquid at low tempera-
ture and high density. The salient feature is its
superfluidity. Using a dual construction, we showed that
the charged fractional-statistics liquid exhibits a Meissner
effect and we calculated the London penetration depth.
The finite temperature behavior is described by a two-
fluid picture. Experimentally, 2A /T, is found to range
from 3 to 10, which is consistent with our picture. (The
2A used conventionally in the superconductivity litera-
ture corresponds to A, here.)

Physically, we believe that the low-temperature
fractional-statistics liquid resembles both the free fermion
gas and the boson gas in some respects, but yet is unlike
either of these two gases. The frustration experienced by
the wave function leads to an exchange pressure due to
quantum statistics, just as is the case for the fermion gas.
In particular, the energy density € is proportional to the
number density n squared: e~(#%0/m)n?, for small 6.
The n? dependence is characteristic for a Fermi liquid,
for which e=(m#?/m)n?. But yet the fractional-statistics
liquid is unlike the fermion gas in that there is no Fermi
surface and no low-energy particle-hole excitation across
the Fermi surface. The fractional-statistics liquid exhib-
its behavior reminiscent of Bose-Einstein condensation.
In contrast to the free Bose gas however, the only-low-
lying excitation does not disperse quadratically but rather
linearly. This behavior is reminiscent of the hard-core
Bose gas, but at the same time the linear dispersion may
be attributed to the Fermilike exchange pressure.

Upon first hearing of the presence of a gapless excita-
tion, one might immediately ask what continuous symme-
try is broken. In our low-energy long-wavelength field
theoretic description (5.6) of the fractional-statistics
liquid, the broken continuous symmetry is hidden. The
gapless phonon excitation is guaranteed by gauge invari-
ance. In the point particle description however, the pho-
non results from broken global U(1) invariance related to
the conservation of the particle numbers. The “off-
diagonal long-range order” here may be expressed
schematically in a second quantized formalism in which
@(x) is a field for creating a semion. Then we expect the
“effective pairing operator”

0 (w)= fdle d2x,f (@;%1,%, )plx ) )p(x;)

to have a nonzero ground-state expectation value. (Here
the bound-state wave function f(w;x,,x,) acquires a
phase e/™’2? upon interchanging x, and x,.) This is just a
formal way of saying semions pair into bosons.

Our treatment depends crucially on an extended
mean-field approximation, which goes beyond the mean-
field approximation in that the particles and the mean
“magnetic” field the particles move in are allowed to
influence each other dynamically.

We also studied the possible T and P breaking effect in
the superfluid state of fractional-statistical particles. The
T and P breaking effects are found to vanish in the limit
k =0 and 0w=0. This is consistent with the picture that
the superfluidity is due to semion pair condensation and
that the semion pair behaves as a boson with no long-
distance T and P breaking effect. However, we do find
some T and P breaking effects for nonzero k and w. In
this case we are probing the short-distance properties in-
side the semion pair, and the T and P breaking effects are
expected to appear because fractional-statistics breaks T
and P.

In this paper, we have studied the physical picture of
the fractional-statistics liquid in some detail. However,
our discussion is only semi-quantitative, and remains to
be done in deriving a more quantitative theory from the
microscopic Hamiltonian.
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APPENDIX

Following Laughlin’s lead in developing his theory of
the fractional Hall effect, we may be tempted to write
down the wave function

Wz, . .z)= 11 (zi—zj)e/”.

i<j

(A1)

This wave function is in fact formally an eigenstate of the
Hamiltonian

2
pi _ 1 3’

2m 2m < 9z}*oz;

H=3

i

However, it has an enormous angular momentum
N(N —1)6/2m (as we can see readily by letting
z;—e'%z;). To reduce the angular momentum we can in-
troduce N “effective particles” located at w, ... D g
Consider the wave function

Yw,z)=¢(w) [] (z;, —w,) " '¥(z) ,

ia

where ¥(z) is the ¥(z,, . .

(A2)

.,2,) of (3.1) and where



d(w)= TT (w,—w,)™°. (A3)
a<b
The angular momentum of the system is then
L =M= Ny NN —1m/26. (A4)

For a suitable choice of N we can reduce the angular
momentum L from O(N?) to O(N) (or even zero). We
find to leading order N=0N /7. In particular, for half
fermions, we have N=N /2 and we see from the form of
¢(w) that these “w particles” behave like bosons upon in-
terchange. This suggests that somehow we may be able
to trade the degrees of freedom in z; for the degrees of
freedom in w,.

This discussion is however not quite correct since the
system would not have a uniform density unless it is con-
tained in a finite region. In other words, we lose
Laughlin’s plasma analogy which guarantees the uniform
density of the Hall gas in his theory. In other words, the
wave function in (Al), for instance, is not normalizable
without some “magnetic exponential” of the form
exp(—£3,1z,1%).

The singularity contained in the factor (z;—w,)” ! in
(A2) should be regularized, say to have the form

(z —w)*

(z—w) l—"—"— .
2w |z —wl|?*+1?

(AS)
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The parameter / is a measure of the size of the pairs. We
expect that to minimize the energy / would have to in-
crease, to something of the order of the interparticle sep-
aration n ~!/2

One possible interpretation of the wave function is to
treat the w’s to be parameters to be integrated over.
Thus, the N-particle wave function of the Hamiltonian in
(1.4) may have the form

V(2)= [da,, ..., dogYw,2),

with ¢(w®) and Y(w,z) as given here but with ¥(z) possibly
different from (A.1). For half fermions (8=w/2) and
N =N /2, we can carry out the w integration by observing
that the gesult of the integration should have a dimension
like z 7V"/2 and be totally symmetric upon interchange of
any pairs of z’s. We find that ¥ can only be

1
Y(z)= — |Y(2) .
‘ § i§j (zi—zj)z vz
iLjEP

Here P denotes a partition of the N z;’s into two equal
sets each with N /2 z’s. The summation is over all possi-
ble partitions. We feel that ¥(z) may offer a starting
point for a variational calculation.
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